1
|
Plath M, Plath K. [Medical examination: Preparation for ENT specialisation : Part 71]. HNO 2024; 72:283-290. [PMID: 38448664 DOI: 10.1007/s00106-024-01439-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2023] [Indexed: 03/08/2024]
Affiliation(s)
- M Plath
- Kopfklinik, Hals‑, Nasen- und Ohrenklinik, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Deutschland.
| | - K Plath
- HNO-Praxis Bensheim, Bensheim, Deutschland
| |
Collapse
|
2
|
Cui W, Nagano Y, Morita S, Tanoue T, Yamane H, Ishikawa K, Sato T, Kubo M, Hori S, Taniguchi T, Hatakeyama M, Atarashi K, Honda K. Diet-mediated constitutive induction of novel IL-4+ ILC2 cells maintains intestinal homeostasis in mice. J Exp Med 2023; 220:214103. [PMID: 37163450 PMCID: PMC10174189 DOI: 10.1084/jem.20221773] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/06/2023] [Accepted: 04/26/2023] [Indexed: 05/12/2023] Open
Abstract
Group 2 innate lymphoid cells (ILC2s) expressing IL-5 and IL-13 are localized at various mucosal tissues and play critical roles in the induction of type 2 inflammation, response to helminth infection, and tissue repair. Here, we reveal a unique ILC2 subset in the mouse intestine that constitutively expresses IL-4 together with GATA3, ST2, KLRG1, IL-17RB, and IL-5. In this subset, IL-4 expression is regulated by mechanisms similar to but distinct from those observed in T cells and is partly affected by IL-25 signaling. Although the absence of the microbiota had marginal effects, feeding mice with a vitamin B1-deficient diet compromised the number of intestinal IL-4+ ILC2s. The decrease in the number of IL-4+ ILC2s caused by the vitamin B1 deficiency was accompanied by a reduction in IL-25-producing tuft cells. Our findings reveal that dietary vitamin B1 plays a critical role in maintaining interaction between tuft cells and IL-4+ ILC2s, a previously uncharacterized immune cell population that may contribute to maintaining intestinal homeostasis.
Collapse
Affiliation(s)
- Wanlin Cui
- Department of Microbiology and Immunology, School of Medicine, Keio University, Tokyo, Japan
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, China
| | - Yuji Nagano
- RIKEN Center for Integrative Medical Sciences (IMS) , Yokohama, Japan
- Graduate School of Medicine, The University of Tokyo , Tokyo, Japan
| | - Satoru Morita
- Department of Microbiology and Immunology, School of Medicine, Keio University, Tokyo, Japan
| | - Takeshi Tanoue
- Department of Microbiology and Immunology, School of Medicine, Keio University, Tokyo, Japan
| | - Hidehiro Yamane
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Keiko Ishikawa
- Department of Organoid Medicine, Sakaguchi Laboratory, School of Medicine, Keio University, Tokyo, Japan
| | - Toshiro Sato
- Department of Organoid Medicine, Sakaguchi Laboratory, School of Medicine, Keio University, Tokyo, Japan
| | - Masato Kubo
- RIKEN Center for Integrative Medical Sciences (IMS) , Yokohama, Japan
- Division of Molecular Pathology, Research Institute for Biomedical Science, Tokyo University of Science, Noda, Japan
| | - Shohei Hori
- Graduate School of Pharmaceutical Sciences, The University of Tokyo , Tokyo, Japan
| | - Tadatsugu Taniguchi
- Graduate School of Medicine, The University of Tokyo , Tokyo, Japan
- Institute of Industrial Science, The University of Tokyo , Tokyo, Japan
| | - Masanori Hatakeyama
- Graduate School of Medicine, The University of Tokyo , Tokyo, Japan
- Institute of Microbial Chemistry (BIKAKEN), Microbial Chemistry Research Foundation, Tokyo, Japan
- Center of infection-associated cancer, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Koji Atarashi
- Department of Microbiology and Immunology, School of Medicine, Keio University, Tokyo, Japan
- RIKEN Center for Integrative Medical Sciences (IMS) , Yokohama, Japan
- Human Biology-Microbiome-Quantum Research Center (WPI-Bio2Q), Keio University, Tokyo, Japan
| | - Kenya Honda
- Department of Microbiology and Immunology, School of Medicine, Keio University, Tokyo, Japan
- RIKEN Center for Integrative Medical Sciences (IMS) , Yokohama, Japan
- Human Biology-Microbiome-Quantum Research Center (WPI-Bio2Q), Keio University, Tokyo, Japan
| |
Collapse
|
3
|
Han X, Hu S, Yang Q, Sang X, Tang D, Cao G. Paeoniflorin ameliorates airway inflammation and immune response in ovalbumin induced asthmatic mice: From oxidative stress to autophagy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 96:153835. [PMID: 34799185 DOI: 10.1016/j.phymed.2021.153835] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 10/14/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Asthma characterized by airway remodeling is a multiple pulmonary disease, which is associated with various physiological processes including inflammation reaction, immune response, oxidative stress and autophagy. PURPOSE This study aimed to investigate whether these processes are modulated by the total glucosides of Paeonia lactiflora Pall (TGP), and its active compound paeoniflorin (PF) with anti-inflammatory and immune-regulatory effects could alleviate ovalbumin (OVA)-induced mouse asthma. METHODS In vivo, models of mouse asthma were established by intraperitoneally with a mixture of OVA and aluminum hydroxide, plus a single nasal injected with OVA to female C57BL/6 mice. The results were observed with PET imaging, TEM, RT-PCR, western blotting. In vitro, CD4+ T cells were isolated and detected with flow cytometry. RESULTS TGP, either in its crude or processed form, and PF effectively ameliorated lung injury in mice induced by OVA, regulated immune/inflammatory response by inhibiting the release of pro-inflammatory cytokines, thereby decreasing Th2 cell proportion, inhibited oxidative stress by recovering mitochondrial membrane potential and regulating metabolic activity in dose-dependent manner. Moreover, PF could inhibit autophagy by regulating mitochondrial function. In addition, the therapeutic effects of TGP and PF on pulmonary injury in asthmatic mice were not affected by processing. CONCLUSION PF may be a valuable agent in ameliorating inflammation and immune response in asthmatic mice, and the possible mechanism involved in this response rang may from oxidative stress to autophagy.
Collapse
Affiliation(s)
- Xin Han
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shaoqi Hu
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiao Yang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xianan Sang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Dongxin Tang
- First Affiliated Hospital of Guizhou Universit of Traditional Chinese Medicine (TCM), Guiyang, China
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
4
|
McSorley HJ, Arthur JSC. The devil's in the detail: cell-specific role of PPARγ in ILC2 activation by IL-33. Mucosal Immunol 2021; 14:544-546. [PMID: 33328594 DOI: 10.1038/s41385-020-00363-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 02/04/2023]
Affiliation(s)
- Henry J McSorley
- Division of Cell Signalling and Immunology, University of Dundee, Dundee, UK.
| | - J Simon C Arthur
- Division of Cell Signalling and Immunology, University of Dundee, Dundee, UK
| |
Collapse
|
5
|
Asghar Pasha M, Yang Q. Innate Lymphoid Cells in Airway Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1303:183-191. [PMID: 33788194 DOI: 10.1007/978-3-030-63046-1_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Airways are constantly exposed to antigens and various pathogens. Immune cells in the airways act as first line defense system against these pathogens, involving both innate and acquired immunity. There is accumulating evidence that innate lymphoid cells, newly identified lymphoid lineage cells, play a critical role in regulating tissue homeostasis and in the pathogenesis of inflammation. Cytokines produced by other cells activate innate lymphoid cells, which in turn produce large amount of cytokines that result in inflammation. Type 2 innate lymphoid cells (ILC2s) are recognized as key component of T helper type 2 (Th2) inflammation, and are known to be elevated in type 2 (T2) human airway diseases (asthma). Th2 cytokines produced by ILC2s amplify inflammation via activation of eosinophils, B cells, mast cell, and macrophages. "T2 high asthma" has an increased Th2 response triggered by elevation of IL-4, IL-5 and IL-13 and other inflammatory mediators, leading to increased eosinophilic inflammation. The growing evidence of ILC2 contribution in the induction and maintenance of allergic inflammation suggests that targeting upstream mediators may affect both the innate and adaptive immune responses and all disease phenotypes. Blocking ILC2 activators, activation of inhibitory pathways of ILC2, or suppression of ILC2-mediated pathways may be therapeutic strategies for the type 2 airway diseases.
Collapse
Affiliation(s)
- M Asghar Pasha
- Division of Allergy and Immunology, Department of Medicine, Albany Medical College, Albany, NY, USA.
| | - Qi Yang
- Department of Microbial Disease & Immunology, Albany Medical College, Albany, NY, USA
| |
Collapse
|
6
|
Fan X, Xu ZB, Li CL, Zhang HY, Peng YQ, He BX, Liu XQ, Chen DH, Chen D, Akdis CA, Fu QL. Mesenchymal stem cells regulate type 2 innate lymphoid cells via regulatory T cells through ICOS-ICOSL interaction. STEM CELLS (DAYTON, OHIO) 2021; 39:975-987. [PMID: 33662168 PMCID: PMC8360040 DOI: 10.1002/stem.3369] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 01/19/2021] [Accepted: 02/03/2021] [Indexed: 11/10/2022]
Abstract
Group 2 innate lymphoid cells (ILC2s) are recognized as key controllers and effectors of type 2 inflammation. Mesenchymal stem cells (MSCs) have been shown to alleviate type 2 inflammation by modulating T lymphocyte subsets and decreasing TH 2 cytokine levels. However, the effects of MSCs on ILC2s have not been investigated. In this study, we investigated the potential immunomodulatory effects of MSCs on ILC2s in peripheral blood mononuclear cells (PBMCs) from allergic rhinitis patients and healthy subjects. We further investigated the mechanisms involved in the MSC modulation using isolated lineage negative (Lin- ) cells. PBMCs and Lin- cells were cocultured with induced pluripotent stem cell-derived MSCs (iPSC-MSCs) under the stimulation of epithelial cytokines IL-25 and IL-33. And the ILC2 levels and functions were examined and the possible mechanisms were investigated based on regulatory T (Treg) cells and ICOS-ICOSL pathway. iPSC-MSCs successfully decreased the high levels of IL-13, IL-9, and IL-5 in PBMCs in response to IL-25, IL-33, and the high percentages of IL-13+ ILC2s and IL-9+ ILC2s in response to epithelial cytokines were significantly reversed after the treatment of iPSC-MSCs. However, iPSC-MSCs were found directly to enhance ILC2 levels and functions via ICOS-ICOSL interaction in Lin- cells and pure ILC2s. iPSC-MSCs exerted their inhibitory effects on ILC2s via activating Treg cells through ICOS-ICOSL interaction. The MSC-induced Treg cells then suppressed ILC2s by secreting IL-10 in the coculture system. This study revealed that human MSCs suppressed ILC2s via Treg cells through ICOS-ICOSL interaction, which provides further insight to regulate ILC2s in inflammatory disorders.
Collapse
Affiliation(s)
- Xingliang Fan
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Zhi-Bin Xu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Cheng-Lin Li
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China.,Center for Clinical Medicine Innovation, ShenZhen Hospital of Southern Medical University, Guangdong, People's Republic of China
| | - Hong-Yu Zhang
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Ya-Qi Peng
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Bi-Xin He
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Xiao-Qing Liu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - De-Hua Chen
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Dong Chen
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland.,Christine Kühne-Center for Research and Education (CK-CARE), Davos, Switzerland
| | - Qing-Ling Fu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China.,Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
7
|
Cavagnero KJ, Badrani JH, Naji LH, Amadeo MB, Leng AS, Lacasa LD, Strohm AN, Renusch SR, Gasparian SS, Doherty TA. Cyclic-di-GMP Induces STING-Dependent ILC2 to ILC1 Shift During Innate Type 2 Lung Inflammation. Front Immunol 2021; 12:618807. [PMID: 33679760 PMCID: PMC7935536 DOI: 10.3389/fimmu.2021.618807] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 01/25/2021] [Indexed: 12/18/2022] Open
Abstract
Type 2 inflammation is found in most forms of asthma, which may co-exist with recurrent viral infections, bacterial colonization, and host cell death. These processes drive the accumulation of intracellular cyclic-di-nucleotides such as cyclic-di-GMP (CDG). Group 2 innate lymphoid cells (ILC2s) are critical drivers of type 2 lung inflammation during fungal allergen exposure in mice; however, it is unclear how CDG regulates lung ILC responses during lung inflammation. Here, we show that intranasal CDG induced early airway type 1 interferon (IFN) production and dramatically suppressed CD127+ST2+ ILC2s and type 2 lung inflammation during Alternaria and IL-33 exposure. Further, CD127-ST2-Thy1.2+ lung ILCs, which showed a transcriptomic signature consistent with ILC1s, were expanded and activated by CDG combined with either Alternaria or IL-33. CDG-mediated suppression of type 2 inflammation occurred independent of IL-18R, IL-12, and STAT6 but required the stimulator of interferon genes (STING) and type 1 IFN signaling. Thus, CDG potently suppresses ILC2-driven lung inflammation and promotes ILC1 responses. These results suggest potential therapeutic modulation of STING to suppress type 2 inflammation and/or increase anti-viral responses during respiratory infections.
Collapse
Affiliation(s)
- Kellen J. Cavagnero
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States
- Department of Dermatology, University of California, San Diego, La Jolla, CA, United States
| | - Jana H. Badrani
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Luay H. Naji
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Michael B. Amadeo
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Anthea S. Leng
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Lee Diego Lacasa
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Allyssa N. Strohm
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Samantha R. Renusch
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Suzanna S. Gasparian
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Taylor A. Doherty
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States
- Veterans Affairs San Diego Health Care System, La Jolla, CA, United States
| |
Collapse
|
8
|
Cavagnero KJ, Doherty TA. Lipid-mediated innate lymphoid cell recruitment and activation in aspirin-exacerbated respiratory disease. Ann Allergy Asthma Immunol 2021; 126:135-142. [PMID: 32950684 PMCID: PMC7855910 DOI: 10.1016/j.anai.2020.09.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/02/2020] [Accepted: 09/11/2020] [Indexed: 01/17/2023]
Abstract
OBJECTIVE To synthesize investigations into the role of lipid-mediated recruitment and activation of group 2 innate lymphoid cells (ILC2s) in aspirin-exacerbated respiratory disease (AERD). DATA SOURCES A comprehensive literature review of reports pertaining to cellular mechanisms, cytokine, and lipid mediators in AERD, as well as ILC2 activation and recruitment, was performed using PubMed and Google Scholar. STUDY SELECTIONS Selections of studies were based on reports of lipid mediators in AERD, cytokine mediators in AERD, type 2 effector cells in AERD, platelets in AERD, AERD treatment, ILC2s in allergic airway disease, and ILC2 activation, inhibition, and trafficking. RESULTS The precise mechanisms of AERD pathogenesis are not well understood. Greater levels of proinflammatory lipid mediators and type 2 cytokines are found in tissues derived from patients with AERD relative to controls. After pathognomonic cyclooxygenase-1 inhibitor reactions, proinflammatory mediator concentrations (prostaglandin D2 and cysteinyl leukotrienes) are rapidly increased, as are ILC2 levels in the nasal mucosa. The ILC2s, which potently generate type 2 cytokines in response to lipid mediator stimulation, may play a key role in AERD pathogenesis. CONCLUSION Although the literature suggests that lipid-mediated ILC2 activation may occur in AERD, there is a dearth of definitive evidence. Future investigations leveraging novel next-generation single-cell sequencing approaches along with recently developed AERD murine models will better define lipid mediator-induced ILC2 trafficking in patients with AERD.
Collapse
Affiliation(s)
- Kellen J Cavagnero
- Department of Medicine, University of California, San Diego, La Jolla, California; Department of Dermatology, University of California, San Diego, La Jolla, California
| | - Taylor A Doherty
- Department of Medicine, University of California, San Diego, La Jolla, California; Veterans Affairs San Diego Health Care System, La Jolla, California.
| |
Collapse
|
9
|
Zhang H, He F, Li P, Hardwidge PR, Li N, Peng Y. The Role of Innate Immunity in Pulmonary Infections. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6646071. [PMID: 33553427 PMCID: PMC7847335 DOI: 10.1155/2021/6646071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/26/2020] [Accepted: 01/08/2021] [Indexed: 02/07/2023]
Abstract
Innate immunity forms a protective line of defense in the early stages of pulmonary infection. The primary cellular players of the innate immunity against respiratory infections are alveolar macrophages (AMs), dendritic cells (DCs), neutrophils, natural killer (NK) cells, and innate lymphoid cells (ILCs). They recognize conserved structures of microorganisms through membrane-bound and intracellular receptors to initiate appropriate responses. In this review, we focus on the prominent roles of innate immune cells and summarize transmembrane and cytosolic pattern recognition receptor (PRR) signaling recognition mechanisms during pulmonary microbial infections. Understanding the mechanisms of PRR signal recognition during pulmonary pathogen infections will help us to understand pulmonary immunopathology and lay a foundation for the development of effective therapies to treat and/or prevent pulmonary infections.
Collapse
Affiliation(s)
- Huihui Zhang
- College of Animal Medicine, Southwest University, Chongqing, China
| | - Fang He
- College of Animal Medicine, Southwest University, Chongqing, China
| | - Pan Li
- College of Animal Medicine, Southwest University, Chongqing, China
| | | | - Nengzhang Li
- College of Animal Medicine, Southwest University, Chongqing, China
| | - Yuanyi Peng
- College of Animal Medicine, Southwest University, Chongqing, China
| |
Collapse
|
10
|
Liu G, Liu F. [Advances of IL-33/ST2 signaling pathway in allergic rhinitis]. LIN CHUANG ER BI YAN HOU TOU JING WAI KE ZA ZHI = JOURNAL OF CLINICAL OTORHINOLARYNGOLOGY, HEAD, AND NECK SURGERY 2020; 34:565-568. [PMID: 32842193 PMCID: PMC10128328 DOI: 10.13201/j.issn.2096-7993.2020.06.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Indexed: 11/12/2022]
Abstract
Interleukin-33 that binds to the membrane receptor ST2L, can not only regulate mast cells, eosinophils, and group 2 innate lymphoid cells(ILC2s), but also affect the function of regulatory T cells(Treg) and Follicular helper T cells(Tfh). Interleukin-33 can activate the NF-κB and MAPK signaling pathways of the above cells, then participates in allergic immunity reaction. IL-33/ST2 signaling pathway is closely related to the allergic rhinitis(AR). IL-33 has been used as a new biomarker to evaluate the effect of AR treatment. At the same time, antagonizing IL-33 is also expected to become a new treatment. This article reviewed the latest research of IL-33/ST2 signaling pathway in the field of AR.
Collapse
|
11
|
Osei ET, Brandsma CA, Timens W, Heijink IH, Hackett TL. Current perspectives on the role of interleukin-1 signalling in the pathogenesis of asthma and COPD. Eur Respir J 2020; 55:13993003.00563-2019. [PMID: 31727692 DOI: 10.1183/13993003.00563-2019] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 11/05/2019] [Indexed: 12/12/2022]
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) cause significant morbidity and mortality worldwide. In the context of disease pathogenesis, both asthma and COPD involve chronic inflammation of the lung and are characterised by the abnormal release of inflammatory cytokines, dysregulated immune cell activity and remodelling of the airways. To date, current treatments still only manage symptoms and do not reverse the primary disease processes. In recent work, interleukin (IL)-1α and IL-1β have been suggested to play important roles in both asthma and COPD. In this review, we summarise overwhelming pre-clinical evidence for dysregulated signalling of IL-1α and IL-1β contributing to disease pathogenesis and discuss the paradox of IL-1 therapeutic studies in asthma and COPD. This is particularly important given recent completed and ongoing clinical trials with IL-1 biologics that have had varying degrees of failure and success as therapeutics for disease modification in asthma and COPD.
Collapse
Affiliation(s)
- Emmanuel T Osei
- Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada .,Dept of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Corry-Anke Brandsma
- Dept of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Groningen Research Institute of Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Wim Timens
- Dept of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Groningen Research Institute of Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Irene H Heijink
- Dept of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Groningen Research Institute of Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Dept of Pulmonology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Tillie-Louise Hackett
- Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada.,Dept of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
12
|
Turkeltaub PC, Lockey RF, Holmes K, Friedmann E. Asthma and/or hay fever as predictors of fertility/impaired fecundity in U.S. women: National Survey of Family Growth. Sci Rep 2019; 9:18711. [PMID: 31822754 PMCID: PMC6904488 DOI: 10.1038/s41598-019-55259-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 11/26/2019] [Indexed: 01/25/2023] Open
Abstract
This study addresses whether asthma and/or hay fever predict fertility and impaired fecundity. The lifetime number of pregnancies (fertility) and spontaneous pregnancy losses (impaired fecundity) in 10,847 women representative of the U.S. population 15 to 44 years of age with histories of diagnosed asthma and/or hay fever are analyzed in the 1995 National Survey of Family Growth using multivariable Poisson regression with multiple covariates and adjustments for complex sampling. Smokers have significantly increased fertility compared to nonsmokers. Smokers with asthma only have significantly increased fertility compared to other smokers. Higher fertility is associated with impaired fecundity (ectopic pregnancy, miscarriage, stillbirth). Women with asthma (with and without hay fever) have significantly higher pregnancy losses than women without asthma. With increasing number of pregnancies, smokers have increased pregnancy losses compared to nonsmokers. Smokers, especially those with asthma only, have increased fertility and require special attention as to their family planning needs, reproductive health, and smoking cessation. Women with asthma, regardless of number of pregnancies, and smokers with higher numbers of pregnancies have high risk pregnancies that require optimal asthma/medical management prenatally and throughout pregnancy. Whether a proinflammatory asthma endotype underlies both the increased fertility and impaired fecundity associated with age and smoking is discussed.
Collapse
Affiliation(s)
| | - Richard F Lockey
- Division of Allergy & Immunology, University of South Florida College of Medicine, 13000 Bruce B. Downs Blvd, Tampa, Florida, 33613, USA
| | - Katie Holmes
- Organizational Systems and Adult Health, University of Maryland School of Nursing, 655 W. Lombard St., Baltimore, Maryland, 21201, USA
- The Hilltop Institute, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland, 21250, USA
| | - Erika Friedmann
- Organizational Systems and Adult Health, University of Maryland School of Nursing, 655 W. Lombard St., Baltimore, Maryland, 21201, USA
| |
Collapse
|
13
|
Tojima I, Matsumoto K, Kikuoka H, Hara S, Yamamoto S, Shimizu S, Kouzaki H, Shimizu T. Evidence for the induction of Th2 inflammation by group 2 innate lymphoid cells in response to prostaglandin D 2 and cysteinyl leukotrienes in allergic rhinitis. Allergy 2019; 74:2417-2426. [PMID: 31267527 DOI: 10.1111/all.13974] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 05/21/2019] [Accepted: 05/26/2019] [Indexed: 01/05/2023]
Abstract
BACKGROUND Group 2 innate lymphoid cells (ILC2s) play important roles in allergic inflammation. However, their roles in the pathophysiology of allergic rhinitis (AR) are poorly understood. OBJECTIVE Prevalence of ILC2s in the inferior nasal turbinate (INT) tissues and the activating mechanisms of ILC2s were examined in patients with house dust mite (HDM)-induced AR. METHODS Eighteen patients with HDM-induced AR and 13 control subjects were recruited. Fresh INT tissues and peripheral blood mononuclear cells (PBMCs) were analysed using flow cytometry. Nasal lavage fluids (NLF) were collected at 10 minutes after the nasal provocation test (NPT) with HDM disc, and released mediators were measured by ELISA. Sorted ILC2s were cultured and stimulated with mediators associated with AR. RESULTS The prevalence of ILC2s was significantly increased in nasal mucosa of patients with HDM-induced AR, and it was positively correlated with the number of infiltrating eosinophils. ILC2s in the INT tissues expressed a prostaglandin D2 (PGD2 ) receptor, chemoattractant receptor-homologous molecule-expressed TH2 cells (CRTH2) and a cysteinyl leukotriene (cysLTs) receptor, CysLT1. After NPT, the number of eosinophils and concentrations of PGD2 and cysLTs were significantly increased in the NLF from AR patients. PGD2 and cysLTs significantly induced IL-5 production from cultured PBMC-derived ILC2s dose-dependently. PGD2 -induced and cysLTs-induced productions of IL-5 and IL-13 from ILC2s were completely inhibited by ramatroban, a dual CRTH2 and thromboxane receptor antagonist, and montelukast, a CysLT1 antagonist, respectively. CONCLUSIONS PGD2 -CRTH2 and cysLTs-CysLT1 axes may activate tissue-resident ILC2s to produce Th2 cytokines, IL-5 and IL-13, leading to the development of allergic inflammation in AR.
Collapse
Affiliation(s)
- Ichiro Tojima
- Department of Otorhinolaryngology Shiga University of Medical Science Otsu Japan
| | - Koji Matsumoto
- Department of Otorhinolaryngology Shiga University of Medical Science Otsu Japan
| | - Hirotaka Kikuoka
- Department of Otorhinolaryngology Shiga University of Medical Science Otsu Japan
| | - Shiori Hara
- Department of Otorhinolaryngology Shiga University of Medical Science Otsu Japan
| | - Sayuri Yamamoto
- Department of Otorhinolaryngology Shiga University of Medical Science Otsu Japan
| | - Shino Shimizu
- Department of Otorhinolaryngology Shiga University of Medical Science Otsu Japan
| | - Hideaki Kouzaki
- Department of Otorhinolaryngology Shiga University of Medical Science Otsu Japan
| | - Takeshi Shimizu
- Department of Otorhinolaryngology Shiga University of Medical Science Otsu Japan
| |
Collapse
|
14
|
Sun R, Yang Y, Huo Q, Gu Z, Wei P, Tang X. Increased expression of type 2 innate lymphoid cells in pediatric patients with allergic rhinitis. Exp Ther Med 2019; 19:735-740. [PMID: 31853326 DOI: 10.3892/etm.2019.8235] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 10/10/2019] [Indexed: 01/04/2023] Open
Abstract
Type 2 innate lymphoid cells (ILC2s) are a newly identified group of innate immune cells. ILC2s promote features of allergic airway diseases through the secretion of Th2 type cytokines, including interleukin (IL)-4, IL-5 and IL-13. It remains unknown whether ILC2s aggregate in the peripheral blood. The present study examined the ILC2 levels in pediatric patients with allergic rhinitis (AR), and the correlation with the severity of clinical symptoms. Flow cytometry detected the ILC2s frequency in the peripheral blood of 12 healthy controls (HCs), 12 patients with AR sensitized only to house dust mites (HDM-AR), and 18 AR patients monosensitized to other antigens including weeds, animal danders and Blattella germanica, but not including HDM (non-HDM-AR). Clinical symptoms of AR were expressed according to the Total 5 Symptom Score (T5SS). The percentages of ILC2s in the peripheral blood were increased significantly in patients with HDM-AR and non-HDM-AR, compared with that in the HCs. A subgroup analysis of patients with AR indicated that the proportion of ILC2s was significantly increased in HDM-AR in comparison with that in non-HDM AR. Furthermore, there was a notable correlation between ILC2 levels and T5SS scores. ILC2s frequencies in PBMC were increased significantly in pediatric patients with AR, irrespective of the type of allergen. HDM may trigger more severe allergic reactions and an increase in the number of ILC2s. These discoveries indicate the unique function of ILC2 in AR and provide a potential therapeutic target.
Collapse
Affiliation(s)
- Rong Sun
- Department of Physical Examination, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yang Yang
- Department of Otolaryngology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Qianzhu Huo
- Department of Physical Examination, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Zheng Gu
- Department of Otolaryngology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Ping Wei
- Department of Otolaryngology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Xinye Tang
- Department of Otolaryngology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| |
Collapse
|
15
|
Galle-Treger L, Hurrell BP, Lewis G, Howard E, Jahani PS, Banie H, Razani B, Soroosh P, Akbari O. Autophagy is critical for group 2 innate lymphoid cell metabolic homeostasis and effector function. J Allergy Clin Immunol 2019; 145:502-517.e5. [PMID: 31738991 DOI: 10.1016/j.jaci.2019.10.035] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/07/2019] [Accepted: 10/11/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Allergic asthma is a chronic inflammatory disorder characterized by airway hyperreactivity (AHR) and driven by TH2 cytokine production. Group 2 innate lymphoid cells (ILC2s) secrete high amounts of TH2 cytokines and contribute to the development of AHR. Autophagy is a cellular degradation pathway that recycles cytoplasmic content. However, the role of autophagy in ILC2s remains to be fully elucidated. OBJECTIVE We characterized the effects of autophagy deficiency on ILC2 effector functions and metabolic balance. METHODS ILC2s from autophagy-deficient mice were isolated to evaluate proliferation, apoptosis, cytokine secretion, gene expression and cell metabolism. Also, autophagy-deficient ILC2s were adoptively transferred into Rag-/-GC-/- mice, which were then challenged with IL-33 and assessed for AHR and lung inflammation. RESULTS We demonstrate that autophagy is extensively used by activated ILC2s to maintain their homeostasis and effector functions. Deletion of the critical autophagy gene autophagy-related 5 (Atg5) resulted in decreased cytokine secretion and increased apoptosis. Moreover, lack of autophagy among ILC2s impaired their ability to use fatty acid oxidation and strikingly promoted glycolysis, as evidenced by our transcriptomic and metabolite analyses. This shift of fuel dependency led to impaired homeostasis and TH2 cytokine production, thus inhibiting the development of ILC2-mediated AHR. Notably, this metabolic reprogramming was also associated with an accumulation of dysfunctional mitochondria, producing excessive reactive oxygen species. CONCLUSION These findings provide new insights into the metabolic profile of ILC2s and suggest that modulation of fuel dependency by autophagy is a potentially new therapeutic approach to target ILC2-dependent inflammation.
Collapse
Affiliation(s)
- Lauriane Galle-Treger
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Calif
| | - Benjamin P Hurrell
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Calif
| | - Gavin Lewis
- Janssen Research and Development, San Diego, Calif
| | - Emily Howard
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Calif
| | - Pedram Shafiei Jahani
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Calif
| | | | - Babak Razani
- Departments of Medicine and Pathology & Immunology, Washington University School of Medicine and John Cochran VA Medical Center, St Louis, Mo
| | | | - Omid Akbari
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Calif.
| |
Collapse
|
16
|
Kerscher B, Barlow JL, Rana BM, Jolin HE, Gogoi M, Bartholomew MA, Jhamb D, Pandey A, Tough DF, van Oosterhout AJM, McKenzie ANJ. BET Bromodomain Inhibitor iBET151 Impedes Human ILC2 Activation and Prevents Experimental Allergic Lung Inflammation. Front Immunol 2019; 10:678. [PMID: 31024538 PMCID: PMC6465521 DOI: 10.3389/fimmu.2019.00678] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/12/2019] [Indexed: 12/12/2022] Open
Abstract
Group 2 innate lymphoid cells (ILC2) increase in frequency in eczema and allergic asthma patients, and thus represent a new therapeutic target cell for type-2 immune-mediated disease. The bromodomain and extra-terminal (BET) protein family of epigenetic regulators are known to support the expression of cell cycle and pro-inflammatory genes during type-1 inflammation, but have not been evaluated in type-2 immune responses. We isolated human ILC2 and examined the capacity of the BET protein inhibitor, iBET151, to modulate human ILC2 activation following IL-33 stimulation. iBET151 profoundly blocked expression of genes critical for type-2 immunity, including type-2 cytokines, cell surface receptors and transcriptional regulators of ILC2 differentiation and activation. Furthermore, in vivo administration of iBET151 during experimental mouse models of allergic lung inflammation potently inhibited lung inflammation and airways resistance in response to cytokine or allergen exposure. Thus, iBET151 effectively prevents human ILC2 activation and dampens type-2 immune responses.
Collapse
Affiliation(s)
- Bernhard Kerscher
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Jillian L Barlow
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Batika M Rana
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Helen E Jolin
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Mayuri Gogoi
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Michelle A Bartholomew
- Allergic Inflammation DPU, Respiratory Therapy Area, GlaxoSmithKline, Medicines Research Centre, Stevenage, United Kingdom
| | - Deepali Jhamb
- Computational Biology, GSK R&D, Collegeville, PA, United States
| | - Ashutosh Pandey
- Computational Biology, GSK R&D, Collegeville, PA, United States
| | - David F Tough
- Epigenetics DPU, Immunoinflammation Therapy Area Unit, Glaxo Smith Kline, Medicines Research Centre, Stevenage, United Kingdom
| | - Antoon J M van Oosterhout
- Allergic Inflammation DPU, Respiratory Therapy Area, GlaxoSmithKline, Medicines Research Centre, Stevenage, United Kingdom
| | - Andrew N J McKenzie
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, United Kingdom
| |
Collapse
|
17
|
Li KL, Lee AY, Abuzeid WM. Aspirin Exacerbated Respiratory Disease: Epidemiology, Pathophysiology, and Management. Med Sci (Basel) 2019; 7:E45. [PMID: 30884882 PMCID: PMC6473909 DOI: 10.3390/medsci7030045] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 03/11/2019] [Accepted: 03/11/2019] [Indexed: 11/17/2022] Open
Abstract
The correlation between aspirin sensitivity, asthma, and nasal polyposis was recognized in the early 20th century. Today, this classic triad of symptoms, eponymously named Samter's Triad, is known as aspirin exacerbated respiratory disease (AERD). Aspirin exacerbated respiratory disease affects approximately 0.3⁻0.9% of the general population in the USA and approximately 7% of asthmatic patients. The management of AERD is challenging as no single modality has proven to have high rates of symptom control. Consequently, disease management typically involves a multimodality approach across both medical and surgical disciplines. This review describes the epidemiology of AERD and the current state-of-the-art as it relates to the underlying pathophysiologic mechanisms of this disease process. A significant proportion of the review is focused on the appropriate diagnostic workup for AERD patients including the utility of aspirin provocation testing. The spectrum of medical treatments, including aspirin desensitization and recently introduced immunotherapies, are discussed in detail. Furthermore, surgical approaches to disease control, including advanced endoscopic techniques, are reviewed and treatment outcomes presented.
Collapse
Affiliation(s)
- Kevin L Li
- Department of Otorhinolaryngology: Head and Neck Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10467, USA.
| | - Andrew Y Lee
- Department of Otorhinolaryngology: Head and Neck Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10467, USA.
| | - Waleed M Abuzeid
- Department of Otorhinolaryngology: Head and Neck Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10467, USA.
| |
Collapse
|
18
|
Kubo F, Ariestanti DM, Oki S, Fukuzawa T, Demizu R, Sato T, Sabirin RM, Hirose S, Nakamura N. Loss of the adhesion G-protein coupled receptor ADGRF5 in mice induces airway inflammation and the expression of CCL2 in lung endothelial cells. Respir Res 2019; 20:11. [PMID: 30654796 PMCID: PMC6337809 DOI: 10.1186/s12931-019-0973-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 01/02/2019] [Indexed: 01/09/2023] Open
Abstract
Background Adhesion G-protein coupled receptor F5 (ADGRF5) was recently identified as an essential regulator of pulmonary surfactant homeostasis in alveolar type II cells. We previously showed that in addition to abnormal surfactant accumulation, Adgrf5-deficient (Adgrf5−/−) mice exhibit emphysema-like signs, suggesting a possible role for ADGRF5 in immune regulation. Here, we extended the phenotypic analysis of Adgrf5−/− mice to help understand its biological role in the lung, and especially in immune regulation. Methods Histological features of lungs were evaluated by Alcian blue and Masson’s trichrome staining. Quantitative real-time PCR (qPCR) and western blot analyses were performed to analyze the differential expression of genes/proteins related to airway inflammation in lungs between wildtype and Adgrf5−/− mice. Acid–base status was assessed by performing blood gas tests and urine pH measurements. Inflammatory cell counting was performed using Giemsa-stained bronchoalveolar lavage cells. Serum IgE concentrations were determined by enzyme-linked immunosorbent assay. The expression of Ccl2, S100a8, S100a9, and Saa3 in primary lung endothelial cells (ECs) was determined by qPCR and/or western blotting. Finally, the effect of administrating RS504393 to 2-week-old Adgrf5−/− mice on gene expression in the lungs was analyzed by qPCR. Results Adgrf5−/− mice exhibited several features of chronic airway inflammation (mucous cell metaplasia, mucus hyperproduction, subepithelial fibrosis, respiratory acidosis, high serum IgE, mast cell accumulation, and neutrophilia) in parallel with elevated expression of genes involved in mucous cell metaplasia (Muc5ac, Muc5b, Slc26a4, and Clca1), fibrosis (Tgfb1, Col1a1, Fn1, and Tnc), and type 2 immune response (Il4, Il5, Il13, IL-25, and IL-33) at 12 and/or 30 weeks of age. In contrast, mRNA expression of Ccl2, S100a8, and S100a9 was upregulated in embryonic or neonatal Adgrf5−/− lungs as well as in lung ECs of Adgrf5−/− mice at 1 week of age. RS504393 treatment suppressed the upregulation of S100a8, S100a9, Slc26a4, and Il5 in Adgrf5−/− lungs. Conclusions Targeted disruption of ADGRF5 results in the development of airway inflammation, which is likely mediated by the type 2 immune response and possibly CCL2-mediated inflammation. ADGRF5 also has a potential role in the regulation of genes encoding CCL2 in lung ECs, thereby maintaining immune homeostasis. Electronic supplementary material The online version of this article (10.1186/s12931-019-0973-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fumimasa Kubo
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259-B13 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Donna Maretta Ariestanti
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259-B13 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Souta Oki
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259-B13 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Taku Fukuzawa
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259-B13 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Ryotaro Demizu
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259-B13 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Tomoya Sato
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259-B13 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Rahmaningsih Mara Sabirin
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259-B13 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan.,Department of Physiology, Faculty of Medicine, Public Health and Nursing, Gadjah Mada University, JI.Farmako Sekip Utara, Yogyakarta, 55281, Indonesia
| | - Shigehisa Hirose
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259-B13 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Nobuhiro Nakamura
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259-B13 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan.
| |
Collapse
|
19
|
Airway innate lymphoid cells in the induction and regulation of allergy. Allergol Int 2019; 68:9-16. [PMID: 30473412 PMCID: PMC6614863 DOI: 10.1016/j.alit.2018.11.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/20/2018] [Accepted: 10/24/2018] [Indexed: 12/11/2022] Open
Abstract
The recent discovery of innate lymphoid cells has revolutionized our understanding of the pathogenesis of immune diseases including allergy and asthma. Innate lymphoid cells (ILCs) are a heterogeneous collection of lymphocytes that lack antigen-specificity (non-T, non-B cells) and potently produce characteristic cytokines of T cell subsets (Th1, Th2, Th17). ILCs are divided into group 1 (ILC1s), group 2 (ILC2s), or group 3 (ILC3s). Similar to Th2 cells, ILC2s produce IL-4, IL-5, and IL-13, among others, and are present in increased numbers in samples from patients with many allergic disorders including asthma and chronic rhinosinusitis (CRS). Animal models have identified that ILC2s contribute to eosinophilic tissue infiltration, airway hyperresponsiveness, mucus production, as well as coordinate adaptive immune responses. Finally, recent studies support regulation of ILC2s by neuro-immune mechanisms as well as demonstrate a significant degree of plasticity between ILC subsets that may impact the immune responses in asthma and allergic airway diseases. Here, we review the current literature on ILC2s in human asthma and allergic airway diseases, as well as highlight some recent mechanistic insights into ILC2 function from in vitro studies and in vivo animal models.
Collapse
|
20
|
Yu QN, Guo YB, Li X, Li CL, Tan WP, Fan XL, Qin ZL, Chen D, Wen WP, Zheng SG, Fu QL. ILC2 frequency and activity are inhibited by glucocorticoid treatment via STAT pathway in patients with asthma. Allergy 2018. [PMID: 29542140 PMCID: PMC6175310 DOI: 10.1111/all.13438] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Background Group 2 innate lymphoid cells (ILC2s) were closely associated with asthma. However, there were no perspective studies about the effects of glucocorticoid on ILC2s in asthma patients. Our objective was to perform a perspective study and evaluate the ILC2 activity after glucocorticoid therapy in asthma patients. Methods The asthma and asthma with allergic rhinitis patients were treated with glucocorticoid for 3 months. The circulating ILC2 levels were evaluated. The effects of glucocorticoid on ILC2s and possible signalling pathways were investigated in vitro. Results The patients were well‐controlled, and the high ILC2 levels were significantly decreased at 1 and 3 months after treatment. Peripheral blood monocytes from allergic patients produced dramatic IL‐5, IL‐13 and IL‐9 in response to IL‐25, IL‐33 plus IL‐2, and glucocorticoid significantly decreased their levels. Moreover, ILC2s were identified to be the predominant source of IL‐5, IL‐13 and IL‐9, and glucocorticoid treatment was able to reverse their high levels. STAT3, STAT5, STAT6, JAK3 and MEK signalling pathways were proved to be involved in regulating ILC2 activity under the glucocorticoid treatment. Conclusion The data suggested that glucocorticoid administration could be effective in treating asthma by regulating ILC2s via MEK/JAK‐STAT signalling pathways. This provides a new understanding of glucocorticoid application in regard to allergic diseases.
Collapse
Affiliation(s)
- Q. N. Yu
- Otorhinolaryngology Hospital; The First Affiliated Hospital; Sun Yat-sen University; Guangzhou China
| | - Y. B. Guo
- Department of Respiratory; The First Affiliated Hospital; Sun Yat-sen University; Guangzhou China
| | - X. Li
- Department of Emergency; Guangdong General Hospital; Guangdong Academy of Medical Science; Guangzhou China
| | - C. L. Li
- Otorhinolaryngology Hospital; The First Affiliated Hospital; Sun Yat-sen University; Guangzhou China
| | - W. P. Tan
- Department of Respiratory; The First Affiliated Hospital; Sun Yat-sen University; Guangzhou China
| | - X. L. Fan
- Otorhinolaryngology Hospital; The First Affiliated Hospital; Sun Yat-sen University; Guangzhou China
| | - Z. L. Qin
- Otorhinolaryngology Hospital; The First Affiliated Hospital; Sun Yat-sen University; Guangzhou China
| | - D. Chen
- Otorhinolaryngology Hospital; The First Affiliated Hospital; Sun Yat-sen University; Guangzhou China
| | - W. P. Wen
- Otorhinolaryngology Hospital; The First Affiliated Hospital; Sun Yat-sen University; Guangzhou China
| | - S. G. Zheng
- Department of Clinical Immunology; The Third Affiliated Hospital; Sun Yat-sen University; Guangzhou China
- Milton S. Hershey Medical Centre; Penn State University; Hershey PA USA
| | - Q. L. Fu
- Otorhinolaryngology Hospital; The First Affiliated Hospital; Sun Yat-sen University; Guangzhou China
| |
Collapse
|
21
|
Karagiannis F, Wilhelm C. Innate lymphoid cells—key immune integrators of overall body homeostasis. Semin Immunopathol 2018; 40:319-330. [DOI: 10.1007/s00281-018-0684-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/04/2018] [Indexed: 12/17/2022]
|
22
|
Doherty TA, Broide DH. Lipid regulation of group 2 innate lymphoid cell function: Moving beyond epithelial cytokines. J Allergy Clin Immunol 2018. [PMID: 29522852 DOI: 10.1016/j.jaci.2018.02.034] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Taylor A Doherty
- Department of Medicine, University of California, San Diego, San Diego, Calif
| | - David H Broide
- Department of Medicine, University of California, San Diego, San Diego, Calif.
| |
Collapse
|
23
|
Pelaia C, Vatrella A, Lombardo N, Terracciano R, Navalesi P, Savino R, Pelaia G. Biological mechanisms underlying the clinical effects of allergen-specific immunotherapy in asthmatic children. Expert Opin Biol Ther 2017; 18:197-204. [PMID: 29113525 DOI: 10.1080/14712598.2018.1402003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Allergen-specific immunotherapy (AIT) is indicated for patients with allergic asthma and/or allergic rhinitis, and can be implemented by either subcutaneous injection (SCIT) or sublingual administration (SLIT). AIT reduces asthma symptoms, lowers the use of pharmacologic controller therapy, and decreases the need for rescue medications. SLIT appears to be safer than SCIT, but SCIT seems to be more efficacious and acts earlier in allergic asthmatic children. AREAS COVERED This review looks at the pathobiology of allergic asthma as well as the role of regulatory T and B cells in allergen tolerance. It also reviews the immunological mechanisms underlying the clinical effects induced by AIT in allergic asthmatic children. EXPERT OPINION AIT is very effective in allergic asthmatic children, who can significantly benefit from this particular type of immunotherapy in order to achieve a better control of their disease. AIT is also capable of modifying the natural history of allergic asthma. Furthermore, AIT can potentially represent a valuable therapeutic tool within the context of precision medicine, as recombinant allergen technology might allow the creation of targeted extracts able to be effective against specific proteins to which individual asthmatic children are allergic, thus helping to implement a personalized approach to treatment.
Collapse
Affiliation(s)
- Corrado Pelaia
- a Department of Medical and Surgical Sciences , University "Magna Græcia" of Catanzaro , Catanzaro , Italy
| | - Alessandro Vatrella
- b Department of Medicine, Surgery and Dentistry , University of Salerno , Salerno , Italy
| | - Nicola Lombardo
- a Department of Medical and Surgical Sciences , University "Magna Græcia" of Catanzaro , Catanzaro , Italy
| | - Rosa Terracciano
- c Department of Health Science , University "Magna Græcia" of Catanzaro , Catanzaro , Italy
| | - Paolo Navalesi
- a Department of Medical and Surgical Sciences , University "Magna Græcia" of Catanzaro , Catanzaro , Italy
| | - Rocco Savino
- c Department of Health Science , University "Magna Græcia" of Catanzaro , Catanzaro , Italy
| | - Girolamo Pelaia
- a Department of Medical and Surgical Sciences , University "Magna Græcia" of Catanzaro , Catanzaro , Italy
| |
Collapse
|