1
|
Yayla M, Binnetoğlu D. Experimental Approaches to Diabetes Mellitus. Eurasian J Med 2022; 54:145-153. [PMID: 36655459 PMCID: PMC11163337 DOI: 10.5152/eurasianjmed.2022.22304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 11/27/2022] [Indexed: 01/19/2023] Open
Abstract
One of the most common health problems today, diabetes is a serious, chronic, and complex disease characterized by high blood glucose levels. Nowadays, experimental diabetes models are being developed to study existing diabetes in depth, to improve diabetes medications, or to develop new medications. The protocols developed to date to create an experimental diabetes model are finalized in different time intervals and depending on various factors. With these models, which can be designed in vivo and in vitro, a picture similar to type 1 and type 2 diabetes can be created. In this review, we aimed to present the methodology, advantages, and disadvantages of all currently used experimental diabetes models in the light of current literature.
Collapse
Affiliation(s)
- Muhammed Yayla
- Department of Pharmacology, Kafkas University Faculty of Medicine, Kars, Turkey
| | - Damla Binnetoğlu
- Department of Pharmacology, Kafkas University Faculty of Medicine, Kars, Turkey
| |
Collapse
|
2
|
Turkez H, Yıldırım S, Sahin E, Arslan ME, Emsen B, Tozlu OO, Alak G, Ucar A, Tatar A, Hacimuftuoglu A, Keles MS, Geyikoglu F, Atamanalp M, Saruhan F, Mardinoglu A. Boron Compounds Exhibit Protective Effects against Aluminum-Induced Neurotoxicity and Genotoxicity: In Vitro and In Vivo Study. TOXICS 2022; 10:428. [PMID: 36006107 PMCID: PMC9413983 DOI: 10.3390/toxics10080428] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/18/2022] [Accepted: 07/26/2022] [Indexed: 02/04/2023]
Abstract
Genetic, neuropathological and biochemical investigations have revealed meaningful relationships between aluminum (Al) exposure and neurotoxic and hematotoxic damage. Hence, intensive efforts are being made to minimize the harmful effects of Al. Moreover, boron compounds are used in a broad mix of industries, from cosmetics and pharmaceuticals to agriculture. They affect critical biological functions in cellular events and enzymatic reactions, as well as endocrinal and mineral metabolisms. There are limited dose-related data about boric acid (BA) and other boron compounds, including colemanite (Col), ulexite (UX) and borax (BX), which have commercial prominence. In this study, we evaluate boron compounds' genetic, cytological, biochemical and pathological effects against aluminum chloride (AlCl3)-induced hematotoxicity and neurotoxicity on different cell and animal model systems. First, we perform genotoxicity studies on in vivo rat bone marrow cells and peripheric human blood cultures. To analyze DNA and chromosome damage, we use single cell gel electrophoresis (SCGE or comet assay) and micronucleus (MN) and chromosome aberration (CA) assays. The nuclear division index (NDI) is used to monitor cytostasis. Second, we examine the biochemical parameters (superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), malondialdehyde (MDA), total antioxidant capacity (TAC) and total oxidative status (TOS)) to determine oxidative changes in blood and brain. Next, we assess the histopathological alterations by using light and electron microscopes. Our results show that Al increases oxidative stress and genetic damage in blood and brain in vivo and in vitro studies. Al also led to severe histopathological and ultrastructural alterations in the brain. However, the boron compounds alone did not cause adverse changes based on the above-studied parameters. Moreover, these compounds exhibit different levels of beneficial effects by removing the harmful impact of Al. The antioxidant, antigenotoxic and cytoprotective effects of boron compounds against Al-induced damage indicate that boron may have a high potential for use in medical purposes in humans. In conclusion, our analysis suggests that boron compounds (especially BA, BX and UX) can be administered to subjects to prevent neurodegenerative and hematological disorders at determined doses.
Collapse
Affiliation(s)
- Hasan Turkez
- Department of Medical Biology, Faculty of Medicine, Atatürk University, 25240 Erzurum, Turkey;
| | - Serkan Yıldırım
- Department of Pathology, Faculty of Veterinary, Atatürk University, 25240 Erzurum, Turkey;
| | - Elvan Sahin
- Department of Histology and Embryology, Faculty of Medicine, Sakarya University, 54050 Sakarya, Turkey;
| | - Mehmet Enes Arslan
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, 25050 Erzurum, Turkey; (M.E.A.); (O.O.T.)
| | - Bugrahan Emsen
- Department of Biology, Kamil Özdağ Faculty of Science, Karamanoğlu Mehmetbey University, 70200 Karaman, Turkey;
| | - Ozlem Ozdemir Tozlu
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, 25050 Erzurum, Turkey; (M.E.A.); (O.O.T.)
| | - Gonca Alak
- Department of Aquaculture, Faculty of Fisheries, Atatürk University, 25240 Erzurum, Turkey; (G.A.); (A.U.); (M.A.)
| | - Arzu Ucar
- Department of Aquaculture, Faculty of Fisheries, Atatürk University, 25240 Erzurum, Turkey; (G.A.); (A.U.); (M.A.)
| | - Abdulgani Tatar
- Department of Medical Genetics, Medical Faculty, Atatürk University, 25240 Erzurum, Turkey;
| | - Ahmet Hacimuftuoglu
- Department of Medical Pharmacology, Medical Faculty, Atatürk University, 25240 Erzurum, Turkey; (A.H.); (F.S.)
| | - Mevlut Sait Keles
- Department of Biochemistry, Medical Faculty, Uskudar University, 34664 Istanbul, Turkey;
| | - Fatime Geyikoglu
- Department of Biology, Faculty of Arts and Sciences, Atatürk University, 25240 Erzurum, Turkey;
| | - Muhammed Atamanalp
- Department of Aquaculture, Faculty of Fisheries, Atatürk University, 25240 Erzurum, Turkey; (G.A.); (A.U.); (M.A.)
| | - Fatih Saruhan
- Department of Medical Pharmacology, Medical Faculty, Atatürk University, 25240 Erzurum, Turkey; (A.H.); (F.S.)
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH-Royal Institute of Technology, 114 28 Stockholm, Sweden
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London WC2R 2LS, UK
| |
Collapse
|
3
|
Ide M, Sonoda N, Inoue T, Kimura S, Minami Y, Makimura H, Hayashida E, Hyodo F, Yamato M, Takayanagi R, Inoguchi T. The dipeptidyl peptidase-4 inhibitor, linagliptin, improves cognitive impairment in streptozotocin-induced diabetic mice by inhibiting oxidative stress and microglial activation. PLoS One 2020; 15:e0228750. [PMID: 32032367 PMCID: PMC7006898 DOI: 10.1371/journal.pone.0228750] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/21/2020] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE Accumulating epidemiological studies have demonstrated that diabetes is an important risk factor for dementia. However, the underlying pathological and molecular mechanisms, and effective treatment, have not been fully elucidated. Herein, we investigated the effect of the dipeptidyl peptidase-4 (DPP-4) inhibitor, linagliptin, on diabetes-related cognitive impairment. METHOD Streptozotocin (STZ)-induced diabetic mice were treated with linagliptin (3 mg/kg/24 h) for 17 weeks. The radial arm water maze test was performed, followed by evaluation of oxidative stress using DNP-MRI and the expression of NAD(P)H oxidase components and proinflammatory cytokines and of microglial activity. RESULTS Administration of linagliptin did not affect the plasma glucose and body weight of diabetic mice; however, it improved cognitive impairment. Additionally, linagliptin reduced oxidative stress and the mRNA expression of NAD(P)H oxidase component and TNF-α, and the number and body area of microglia, all of which were significantly increased in diabetic mice. CONCLUSIONS Linagliptin may have a beneficial effect on diabetes-related dementia by inhibiting oxidative stress and microglial activation, independently of glucose-lowering.
Collapse
Affiliation(s)
- Makoto Ide
- Department of Internal Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Noriyuki Sonoda
- Department of Internal Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Innovation Center for Medical Redox Navigation, Kyushu University, Fukuoka, Japan
- * E-mail:
| | - Tomoaki Inoue
- Department of Internal Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shinichiro Kimura
- Department of Internal Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yohei Minami
- Department of Internal Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroaki Makimura
- Department of Internal Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Eiichi Hayashida
- Department of Internal Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Fuminori Hyodo
- Innovation Center for Medical Redox Navigation, Kyushu University, Fukuoka, Japan
| | - Mayumi Yamato
- Innovation Center for Medical Redox Navigation, Kyushu University, Fukuoka, Japan
| | - Ryoichi Takayanagi
- Department of Internal Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toyoshi Inoguchi
- Innovation Center for Medical Redox Navigation, Kyushu University, Fukuoka, Japan
- Fukuoka City Health Promotion Support Center, Fukuoka, Japan
| |
Collapse
|