1
|
Mehdi SF, Pusapati S, Khenhrani RR, Farooqi MS, Sarwar S, Alnasarat A, Mathur N, Metz CN, LeRoith D, Tracey KJ, Yang H, Brownstein MJ, Roth J. Oxytocin and Related Peptide Hormones: Candidate Anti-Inflammatory Therapy in Early Stages of Sepsis. Front Immunol 2022; 13:864007. [PMID: 35572539 PMCID: PMC9102389 DOI: 10.3389/fimmu.2022.864007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/28/2022] [Indexed: 12/27/2022] Open
Abstract
Sepsis is a potentially life-threatening systemic inflammatory syndrome characterized by dysregulated host immunological responses to infection. Uncontrolled immune cell activation and exponential elevation in circulating cytokines can lead to sepsis, septic shock, multiple organ dysfunction syndrome, and death. Sepsis is associated with high re-hospitalization and recovery may be incomplete, with long term sequelae including post-sepsis syndrome. Consequently, sepsis continues to be a leading cause of morbidity and mortality across the world. In our recent review of human chorionic gonadotropin (hCG), we noted that its major properties including promotion of fertility, parturition, and lactation were described over a century ago. By contrast, the anti-inflammatory properties of this hormone have been recognized only more recently. Vasopressin, a hormone best known for its anti-diuretic effect, also has anti-inflammatory actions. Surprisingly, vasopressin's close cousin, oxytocin, has broader and more potent anti-inflammatory effects than vasopressin and a larger number of pre-clinical studies supporting its potential role in limiting sepsis-associated organ damage. This review explores possible links between oxytocin and related octapeptide hormones and sepsis-related modulation of pro-inflammatory and anti-inflammatory activities.
Collapse
Affiliation(s)
- Syed Faizan Mehdi
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, United States
| | - Suma Pusapati
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, United States
| | - Raja Ram Khenhrani
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, United States
| | - Muhammad Saad Farooqi
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, United States
| | - Sobia Sarwar
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, United States
| | - Ahmad Alnasarat
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, United States
| | - Nimisha Mathur
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, United States
| | - Christine Noel Metz
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, United States
| | - Derek LeRoith
- Division of Endocrinology, Diabetes & Bone Disease, Icahn School of Medicine at Mt. Sinai, New York, NY, United States
| | - Kevin J. Tracey
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, United States
| | - Huan Yang
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, United States
| | | | - Jesse Roth
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, United States
- *Correspondence: Jesse Roth,
| |
Collapse
|
2
|
Pathania A, Garg P, Sandhir R. Impaired mitochondrial functions and energy metabolism in MPTP-induced Parkinson's disease: comparison of mice strains and dose regimens. Metab Brain Dis 2021; 36:2343-2357. [PMID: 34648126 DOI: 10.1007/s11011-021-00840-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 09/08/2021] [Indexed: 11/27/2022]
Abstract
Heterogenous diseases such as Parkinson's disease (PD) needs an efficient animal model to enhance understanding of the underlying mechanisms and to develop therapeutics. MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine), a neurotoxin, has been widely used to replicate the pathophysiology of PD in rodents, however, the knowledge about its effects on energy metabolism is limited. Moreover, susceptibility to different dose regimens of MPTP also varies among mice strains. Thus, the present study compares the effect of acute and sub-acute MPTP administration on mitochondrial functions in C57BL/6 and BALB/c mice. In addition, activity of enzymes involved in energy metabolism was also studied along with behavioural alterations. The findings show that acute dose of MPTP in C57BL/6 mice had more profound effect on the activity of electron transport chain complexes. Further, the activity of MAO-B was increased following acute and sub-acute MPTP administration in C57BL/6 mice. However, no significant change was observed in BALB/c mice. Acute MPTP treatment resulted in decreased mitochondrial membrane potential along with increased swelling of mitochondria in C57BL/6 mice. In addition, perturbations were observed in hexokinase, the rate limiting enzyme of glycolysis and pyruvate dehydrogenase, the enzymes that connects glycolysis and TCA cycle. The activity of TCA cycle enzymes; citrate synthase, aconitase, isocitrate dehydrogenase and fumarase were also altered following MPTP intoxication. Furthermore, acute MPTP administration led to drastic reduction in dopamine levels in striatum of C57BL/6 as compared to BALB/c mice. Behavioral tests such as open field, narrow beam walk and footprint analysis revealed severe impairment in locomotor activity in C57BL/6 mice. These results clearly demonstrate that C57BL/6 strain is more vulnerable to MPTP-induced mitochondrial dysfunctions, perturbations in energy metabolism and motor defects as compared to BALB/c strain. Thus, the findings suggest that the dose and strain of mice need to be considered for pre-clinical studies using MPTP-induced model of Parkinson's disease.
Collapse
Affiliation(s)
- Anjana Pathania
- Department of Biochemistry, Panjab University, Basic Medical Science Block-II, Sector-25, Chandigarh, 160014, India
| | - Priyanka Garg
- Department of Biochemistry, Panjab University, Basic Medical Science Block-II, Sector-25, Chandigarh, 160014, India
| | - Rajat Sandhir
- Department of Biochemistry, Panjab University, Basic Medical Science Block-II, Sector-25, Chandigarh, 160014, India.
| |
Collapse
|
3
|
Almansoub HAMM, Tang H, Wu Y, Wang DQ, Mahaman YAR, Salissou MTM, Lu Y, Hu F, Zhou LT, Almansob YAM, Liu D. Oxytocin Alleviates MPTP-Induced Neurotoxicity in Mice by Targeting MicroRNA-26a/Death-Associated Protein Kinase 1 Pathway. J Alzheimers Dis 2021; 74:883-901. [PMID: 32083584 DOI: 10.3233/jad-191091] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Neurotoxicity is one of the major pathological changes in multiple neurological disorders, including Alzheimer's disease (AD) and Parkinson's disease (PD), the second popular neurodegenerative disease in aged people. It is known that the AD and PD share the similar neuropathological hallmarks, such as the oxidative stress, loss of specific neurons, and aggregation of specific proteins. However, there are no effective therapeutic drugs for both AD and PD yet. Oxytocin (OXT) is a small peptide with 9 amino acids that is neuroprotective to many neurological disorders. Whether OXT administration confers neuroprotection to 1-methyl-4-phenyl-1, 2, 3, 6- tetrahydropyridine (MPTP)-induced neurotoxicity in mice are still not known. In this study, we first found that the OXT levels are decreased in MPTP mice. Supplementation with OXT effectively rescues the locomotor disabilities and anxiety-like behaviors in MPTP mice. OXT also alleviates the hyperphosphorylation of α-synuclein at S129 site and the loss of dopaminergic neurons in the substantia nigra pars compacta, as well as the oxidative stress in the MPTP mice, and alleviates both oxidative stress and cell cytotoxicity in vitro. Furthermore, we found that OXT could inhibit the miR-26a/DAPK1 signal pathway in MPTP mice. In summary, our study demonstrates protective effects of OXT in MPTP mice and that miR-26a/DAPK1 signaling pathway may play an important role in mediating the protection of OXT.
Collapse
Affiliation(s)
- Hasan A M M Almansoub
- Department of Pathophysiology, Key lab of a neurological disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China.,The Institute of Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, P.R. China.,Department of Biology, Faculty of Science - Marib, Sana'a University, Marib, Yemen
| | - Hui Tang
- Department of Pathophysiology, Key lab of a neurological disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China.,The Institute of Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Ying Wu
- Department of Pathophysiology, Key lab of a neurological disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China.,The Institute of Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Ding-Qi Wang
- Department of Pathophysiology, Key lab of a neurological disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China.,The Institute of Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Yacoubou Abdoul Razak Mahaman
- Department of Pathophysiology, Key lab of a neurological disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China.,The Institute of Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, P.R. China.,Department of Cognitive Impairment Ward of Neurology, The Third Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong Province, China
| | - Maibouge Tanko Mahamane Salissou
- Department of Pathophysiology, Key lab of a neurological disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China.,The Institute of Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Youming Lu
- The Institute of Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Fan Hu
- Department of Pathophysiology, Key lab of a neurological disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China.,The Institute of Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Lan-Ting Zhou
- Department of Pathophysiology, Key lab of a neurological disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China.,The Institute of Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Yusra A M Almansob
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Dan Liu
- Department of Pathophysiology, Key lab of a neurological disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China.,Department of Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| |
Collapse
|
4
|
Abd Rashed A, Abd Rahman AZ, Rathi DNG. Essential Oils as a Potential Neuroprotective Remedy for Age-Related Neurodegenerative Diseases: A Review. Molecules 2021; 26:1107. [PMID: 33669787 PMCID: PMC7922935 DOI: 10.3390/molecules26041107] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 12/13/2022] Open
Abstract
Despite the improvements in life expectancy, neurodegenerative conditions have arguably become the most dreaded maladies of older people. The neuroprotective and anti-ageing potentials of essential oils (EOs) are widely evaluated around the globe. The objective of this review is to analyse the effectiveness of EOs as neuroprotective remedies among the four common age-related neurodegenerative diseases. The literature was extracted from three databases (PubMed, Web of Science and Google Scholar) between the years of 2010 to 2020 using the medical subject heading (MeSH) terms "essential oil", crossed with "Alzheimer's disease (AD)", "Huntington's disease (HD)", "Parkinson's disease (PD)" or "amyotrophic lateral sclerosis (ALS)". Eighty three percent (83%) of the studies were focused on AD, while another 12% focused on PD. No classifiable study was recorded on HD or ALS. EO from Salvia officinalis has been recorded as one of the most effective acetylcholinesterase and butyrylcholinesterase inhibitors. However, only Cinnamomum sp. has been assessed for its effectiveness in both AD and PD. Our review provided useful evidence on EOs as potential neuroprotective remedies for age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Aswir Abd Rashed
- Nutrition, Metabolism and Cardiovascular Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, No.1, Jalan Setia Murni U13/52, Seksyen U13 Setia Alam, Shah Alam 40170, Malaysia;
| | - Ahmad Zuhairi Abd Rahman
- Cancer Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, No.1, Jalan Setia Murni U13/52, Seksyen U13 Setia Alam, Shah Alam 40170, Malaysia;
| | - Devi Nair Gunasegavan Rathi
- Nutrition, Metabolism and Cardiovascular Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, No.1, Jalan Setia Murni U13/52, Seksyen U13 Setia Alam, Shah Alam 40170, Malaysia;
| |
Collapse
|
5
|
Pang Q, Sun G, Xin T, Zhang R, Liu C. Fucoxanthin attenuates behavior deficits and neuroinflammatory response in 1-methyl-4-phenyl-1,2,3,6 -tetrahydropyridine-induced parkinson's disease in mice. Pharmacogn Mag 2020. [DOI: 10.4103/pm.pm_318_19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
6
|
Naseri R, Farzaei F, Fakhri S, El-Senduny FF, Altouhamy M, Bahramsoltani R, Ebrahimi F, Rahimi R, Farzaei MH. Polyphenols for diabetes associated neuropathy: Pharmacological targets and clinical perspective. Daru 2019; 27:781-798. [PMID: 31352568 PMCID: PMC6895369 DOI: 10.1007/s40199-019-00289-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 07/01/2019] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVES Diabetic neuropathy (DNP) is a widespread and debilitating complication with complex pathophysiology that is caused by neuronal dysfunction in diabetic patients. Conventional therapeutics for DNP are quite challenging due to their serious adverse effects. Hence, there is a need to investigate novel effective and safe options. The novelty of the present study was to provide available therapeutic approaches, emerging molecular mechanisms, signaling pathways and future directions of DNP as well as polyphenols' effect, which accordingly, give new insights for paving the way for novel treatments in DNP. EVIDENCE ACQUISITION A comprehensive review was done in electronic databases including Medline, PubMed, Web of Science, Scopus, national database (Irandoc and SID), and related articles regarding metabolic pathways on the pathogenesis of DNP as well as the polyphenols' effect. The keywords "diabetic neuropathy" and "diabetes mellitus" in the title/abstract and "polyphenol" in the whole text were used. Data were collected from inception until May 2019. RESULTS DNP complications is mostly related to a poor glycemic control and metabolic imbalances mainly inflammation and oxidative stress. Several signaling and molecular pathways play key roles in the pathogenesis and progression of DNP. Among natural entities, polyphenols are suggested as multi-target alternatives affecting most of these pathogenesis mechanisms in DNP. CONCLUSION The findings revealed novel pathogenicity signaling pathways of DNP and affirmed the auspicious role of polyphenols to tackle these destructive pathways in order to prevent, manage, and treat various diseases. Graphical Abstract .
Collapse
Affiliation(s)
- Rozita Naseri
- Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fardous F El-Senduny
- Biochemistry division, Chemistry Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Miram Altouhamy
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Roodabeh Bahramsoltani
- Department of Pharmacy in Persian Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
- PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Farnaz Ebrahimi
- Pharmacy students` research committee, School of pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Roja Rahimi
- Department of Pharmacy in Persian Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
- PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
7
|
Sampath C, Kalpana R, Ansah T, Charlton C, Hale A, Channon KM, Srinivasan S, Gangula PR. Impairment of Nrf2- and Nitrergic-Mediated Gastrointestinal Motility in an MPTP Mouse Model of Parkinson's Disease. Dig Dis Sci 2019; 64:3502-3517. [PMID: 31187328 PMCID: PMC6858486 DOI: 10.1007/s10620-019-05693-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 05/31/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Gastrointestinal (GI) motility dysfunction is the most common non-motor symptom of Parkinson's disease (PD). Studies have indicated that GI motility functions are impaired before the onset of PD. AIMS To investigate the underlying mechanism of PD-induced GI dysmotility in MPTP (1-methyl 4-phenyl 1,2,3,6-tetrahydropyridine)-induced animal model. METHODS C57BL/6 mice were administered with or without a selective dopamine neurotoxin, MPTP, to induce parkinsonian symptoms. In addition to in vivo studies, in vitro experiments were also conducted in colon specimens using l-methyl-4-phenylpyridinium (MPP+), a metabolic product of MPTP. Gastric emptying, colon motility, nitrergic relaxation, and western blot experiments were performed as reported. RESULTS MPTP-induced PD mice showed decreased expression of nuclear factor erythroid 2-related factor (Nrf2) and its target phase II genes in gastric and colon neuromuscular tissues. Decreased levels of tetrahydrobiopterin (BH4, a critical cofactor for nNOS dimerization) associated with uncoupling of nNOS in gastric and colon tissues exposed to MPTP. Impaired enteric nitrergic system led to delayed gastric emptying and slower colonic motility compared to the control mice. In vitro results in colon specimens confirm that activation of Nrf2 restored MPP+-induced suppression of alpha-synuclein, tyrosine hydroxylase (TH), Nrf2, and heme oxygenase-1. In vitro exposure to L-NAME [N(w)-nitro-L-arginine methyl ester], a NOS synthase inhibitor, reduced protein expression of TH in colon tissue homogenates. CONCLUSIONS Loss of Nrf2/BH4/nNOS expression in PD impairs antioxidant gene expression, which deregulates NO synthesis, thereby contributing to the development of GI dysmotility and constipation. Nitric oxide appears to be important to maintain dopamine synthesis in the colon.
Collapse
Affiliation(s)
- C Sampath
- Department of ODS and Research, School of Dentistry, Meharry Medical College, 1005 Dr. D.B. Todd Jr. Blvd, Nashville, TN, 37208, USA
| | - R Kalpana
- Department of ODS and Research, School of Dentistry, Meharry Medical College, 1005 Dr. D.B. Todd Jr. Blvd, Nashville, TN, 37208, USA
| | - T Ansah
- Department of Cancer Biology Physiology Pharmacology and Neuroscience, School of Medicine, Meharry Medical College, Nashville, TN, USA
| | - C Charlton
- Department of Cancer Biology Physiology Pharmacology and Neuroscience, School of Medicine, Meharry Medical College, Nashville, TN, USA
| | - A Hale
- Department of Oncology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - K M Channon
- Oxford Heart Centre, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - S Srinivasan
- Division of Digestive Diseases, Department of Medicine, Emory University, Atlanta, GA, USA
- Atlanta VA Health Care System, Decatur, Atlanta, GA, USA
| | - P R Gangula
- Department of ODS and Research, School of Dentistry, Meharry Medical College, 1005 Dr. D.B. Todd Jr. Blvd, Nashville, TN, 37208, USA.
| |
Collapse
|
8
|
Animal Models for Parkinson's Disease Research: Trends in the 2000s. Int J Mol Sci 2019; 20:ijms20215402. [PMID: 31671557 PMCID: PMC6862023 DOI: 10.3390/ijms20215402] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 12/21/2022] Open
Abstract
Parkinson’s disease (PD) is a chronic and progressive movement disorder and the second most common neurodegenerative disease. Although many studies have been conducted, there is an unmet clinical need to develop new treatments because, currently, only symptomatic therapies are available. To achieve this goal, clarification of the pathology is required. Attempts have been made to emulate human PD and various animal models have been developed over the decades. Neurotoxin models have been commonly used for PD research. Recently, advances in transgenic technology have enabled the development of genetic models that help to identify new approaches in PD research. However, PD animal model trends have not been investigated. Revealing the trends for PD research will be valuable for increasing our understanding of the positive and negative aspects of each model. In this article, we clarified the trends for animal models that were used to research PD in the 2000s, and we discussed each model based on these trends.
Collapse
|
9
|
The Neuroprotective Effects of Astaxanthin: Therapeutic Targets and Clinical Perspective. Molecules 2019; 24:molecules24142640. [PMID: 31330843 PMCID: PMC6680436 DOI: 10.3390/molecules24142640] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 12/22/2022] Open
Abstract
As the leading causes of human disability and mortality, neurological diseases affect millions of people worldwide and are on the rise. Although the general roles of several signaling pathways in the pathogenesis of neurodegenerative disorders have so far been identified, the exact pathophysiology of neuronal disorders and their effective treatments have not yet been precisely elucidated. This requires multi-target treatments, which should simultaneously attenuate neuronal inflammation, oxidative stress, and apoptosis. In this regard, astaxanthin (AST) has gained growing interest as a multi-target pharmacological agent against neurological disorders including Parkinson’s disease (PD), Alzheimer’s disease (AD), brain and spinal cord injuries, neuropathic pain (NP), aging, depression, and autism. The present review highlights the neuroprotective effects of AST mainly based on its anti-inflammatory, antioxidative, and anti-apoptotic properties that underlies its pharmacological mechanisms of action to tackle neurodegeneration. The need to develop novel AST delivery systems, including nanoformulations, targeted therapy, and beyond, is also considered.
Collapse
|
10
|
Kim JH, Lee CH, Kim HG, Kim HR. Decreased dopamine in striatum and difficult locomotor recovery from MPTP insult after exposure to radiofrequency electromagnetic fields. Sci Rep 2019; 9:1201. [PMID: 30718744 PMCID: PMC6362053 DOI: 10.1038/s41598-018-37874-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 12/12/2018] [Indexed: 12/23/2022] Open
Abstract
Concern is growing about possible neuronal effects of human exposure to radiofrequency electromagnetic fields because of the increasing usage of cell phones and the close proximity of these devices to the brain when in use. We found that exposure to a radiofrequency electromagnetic field (RF-EMF) of 835 MHz (4.0 W/kg specific absorption rate [SAR] for 5 h/day for 12 weeks) affects striatal neurons in C57BL/6 mice. The number of synaptic vesicles (SVs) in striatal presynaptic boutons was significantly decreased after RF-EMF exposure. The expression levels of synapsin I and II were also significantly decreased in the striatum of the RF-EMF-exposed group. RF-EMF exposure led to a reduction in dopamine concentration in the striatum and also to a decrease in the expression of tyrosine hydroxylase in striatal neurons. Furthermore, in behavioral tests, exposure to RF-EMF impeded the recovery of locomotor activities after repeated treatments with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). These results suggest that the observed decrease in dopamine concentration in the striatum was caused by both a reduction in the number of dopaminergic neurons and a decline in the number of SVs. The decreased dopamine neuron numbers and concentration seen after RF-EMF exposure would have caused the difficult recovery after MPTP treatment. In summary, our results strongly suggest that exposing the brain to RF-EMF can decrease the number of SVs and dopaminergic neurons in the striatum. These primary changes impair the recovery of locomotor activities following MPTP damage to the striatum.
Collapse
Affiliation(s)
- Ju Hwan Kim
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan, Chungnam, Republic of Korea
| | - Choong-Hyun Lee
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan, Chungnam, Republic of Korea
| | - Hyung-Gun Kim
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan, Chungnam, Republic of Korea
| | - Hak Rim Kim
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan, Chungnam, Republic of Korea.
| |
Collapse
|
11
|
Vidyadhara DJ, Sasidharan A, Kutty BM, Raju TR, Alladi PA. Admixing MPTP-resistant and MPTP-vulnerable mice enhances striatal field potentials and calbindin-D28K expression to avert motor behaviour deficits. Behav Brain Res 2018; 360:216-227. [PMID: 30529402 DOI: 10.1016/j.bbr.2018.12.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 12/04/2018] [Accepted: 12/06/2018] [Indexed: 10/27/2022]
Abstract
Asian-Indians are less vulnerable to Parkinson's disease (PD) than the Caucasians. Their admixed populace has even lesser risk. Studying this phenomenon using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-susceptible C57BL/6J, MPTP-resistant CD-1 and their resistant crossbred mice revealed differences in the nigrostriatal cyto-molecular features. Here, we investigated the electrophysiological and behavioural correlates for differential MPTP-susceptibility and their outcome upon admixing. We recorded local field potentials (LFPs) from dorsal striatum and assessed motor co-ordination using rotarod and grip strength measures. Nigral calbindin-D28K expression, a regulator of striatal activity through nigrostriatal projections was evaluated using immunohistochemistry. The crossbreds had significantly higher baseline striatal LFPs. MPTP significantly increased the neuronal activity in delta (0.5-4 Hz) and low beta (12-16 Hz) ranges in C57BL/6J; significant increase across frequency bands till high beta (0.5-30 Hz) in CD-1, and caused no alterations in crossbreds. MPTP further depleted the already low nigral calbindin-D28K expression in C57BL/6J. While in crossbreds, it was further up-regulated. MPTP affected the rotarod and grip strength performance of the C57BL/6J, while the injected CD-1 and crossbreds performed well. The increased striatal β-oscillations are comparable to that in PD patients. Higher power in CD-1 may be compensatory in nature, which were also reported in pre-symptomatic monkeys. Concurrent up-regulation of nigral calbindin-D28K may assist maintenance of striatal activity by buffering calcium overload in nigra. Thus, preserved motor behaviour in PD reminiscent conditions in CD-1 and crossbreds complement compensated/unaffected striatal LFPs. Similar electrophysiological correlates and cytomorphological features are envisaged in human phenomenon of differential PD prevalence, which are modulated upon admixing.
Collapse
Affiliation(s)
- D J Vidyadhara
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, India
| | - Arun Sasidharan
- Axxonet Brain Research Laboratory (ABRL), Axxonet System Technologies Pvt. Ltd., Bengaluru, 560029, India
| | - Bindu M Kutty
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, India
| | - T R Raju
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, India
| | - Phalguni Anand Alladi
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, India.
| |
Collapse
|
12
|
Segura-Uribe JJ, Farfán-García ED, Guerra-Araiza C, Ciprés-Flores FJ, García-dela Torre P, Soriano-Ursúa MA. Differences in brain regions of three mice strains identified by label-free micro-Raman. SPECTROSCOPY LETTERS 2018; 51:356-366. [DOI: 10.1080/00387010.2018.1473883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 05/03/2018] [Indexed: 02/07/2023]
Affiliation(s)
- Julia Jeanett Segura-Uribe
- Departamento de Fisiología, Departamento de Bioquímica y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades. Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Eunice Dalet Farfán-García
- Departamento de Fisiología, Departamento de Bioquímica y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Christian Guerra-Araiza
- Unidad de Investigación Médica en Farmacología, Hospital de Especialidades. Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Fabiola Jimena Ciprés-Flores
- Departamento de Fisiología, Departamento de Bioquímica y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Paola García-dela Torre
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades. Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Marvin Antonio Soriano-Ursúa
- Departamento de Fisiología, Departamento de Bioquímica y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
13
|
Apigenin as neuroprotective agent: Of mice and men. Pharmacol Res 2018; 128:359-365. [DOI: 10.1016/j.phrs.2017.10.008] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/13/2017] [Accepted: 10/16/2017] [Indexed: 01/05/2023]
|
14
|
Friedemann T, Ying Y, Wang W, Kramer ER, Schumacher U, Fei J, Schröder S. Neuroprotective Effect of Coptis chinensis in MPP+ and MPTP-Induced Parkinson’s Disease Models. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016; 44:907-25. [DOI: 10.1142/s0192415x16500506] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The rhizome of Coptis chinensis is commonly used in traditional Chinese medicine alone or in combination with other herbs to treat diseases characterized by causing oxidative stress including inflammatory diseases, diabetes mellitus and neurodegenerative diseases. In particular, there is emerging evidence that Coptis chinensis is effective in the treatment of neurodegenerative diseases associated with oxidative stress. Hence, the aim of this study was to investigate the neuroprotective effect of Coptis chinensis in vitro and in vivo using MPP[Formula: see text] and MPTP models of Parkinson’s disease. MPP[Formula: see text] treated human SH-SY5Y neuroblastoma cells were used as a cell model of Parkinson’s disease. A 24[Formula: see text]h pre-treatment of the cells with the watery extract of Coptis chinensis significantly increased cell viability, as well as the intracellular ATP concentration and attenuated apoptosis compared to the MPP[Formula: see text] control. Further experiments with the main alkaloids of Coptidis chinensis, berberine, coptisine, jaterorrhizine and palmatine revealed that berberine and coptisine were the main active compounds responsible for the observed neuroprotective effect. However, the full extract of Coptis chinensis was more effective than the tested single alkaloids. In the MPTP-induced animal model of Parkinson’s disease, Coptis chinensis dose-dependently improved motor functions and increased tyrosine hydroxylase-positive neurons in the substantia nigra compared to the MPTP control. Based on the results of this work, Coptis chinensis and its main alkaloids could be considered potential candidates for the development of new treatment options for Parkinson’s disease.
Collapse
Affiliation(s)
- Thomas Friedemann
- HanseMerkur Center for Traditional Chinese Medicine at the University Medical Center Hamburg-Eppendorf, Hamburg 20246, Martinistr. 52, Germany
| | - Yue Ying
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Weigang Wang
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Edgar R. Kramer
- Development and Maintenance of the Nervous System, Centre for Molecular Neurobiology Hamburg (ZMNH), Falkenried 94, Hamburg 20251, Germany
- Institute of Applied Physiology, Ulm University, 89081 Ulm Albert-Einstein-Allee 11, Germany
| | - Udo Schumacher
- Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Martinistr. 52, Germany
| | - Jian Fei
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Sven Schröder
- HanseMerkur Center for Traditional Chinese Medicine at the University Medical Center Hamburg-Eppendorf, Hamburg 20246, Martinistr. 52, Germany
| |
Collapse
|
15
|
Qi X, Davis B, Chiang YH, Filichia E, Barnett A, Greig NH, Hoffer B, Luo Y. Dopaminergic neuron-specific deletion of p53 gene is neuroprotective in an experimental Parkinson's disease model. J Neurochem 2016; 138:746-57. [PMID: 27317935 DOI: 10.1111/jnc.13706] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 06/09/2016] [Accepted: 06/15/2016] [Indexed: 01/06/2023]
Abstract
p53, a stress response gene, is involved in diverse cell death pathways and its activation has been implicated in the pathogenesis of Parkinson's disease (PD). However, whether the neuronal p53 protein plays a direct role in regulating dopaminergic (DA) neuronal cell death is unknown. In this study, in contrast to the global inhibition of p53 function by pharmacological inhibitors and in traditional p53 knock-out (KO) mice, we examined the effect of DA specific p53 gene deletion in DAT-p53KO mice. These DAT-p53KO mice did not exhibit apparent changes in the general structure and neuronal density of DA neurons during late development and in aging. However, in DA-p53KO mice treated with the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), we found that the induction of Bax and p53 up-regulated modulator of apoptosis (PUMA) mRNA and protein levels by MPTP were diminished in both striatum and substantia nigra of these mice. Notably, deletion of the p53 gene in DA neurons significantly reduced dopaminergic neuronal loss in substantia nigra, dopaminergic neuronal terminal loss at striatum and, additionally, decreased motor deficits in mice challenged with MPTP. In contrast, there was no difference in astrogliosis between WT and DAT-p53KO mice in response to MPTP treatment. These findings demonstrate a specific contribution of p53 activation in DA neuronal cell death by MPTP challenge. Our results further support the role of programmed cell death mediated by p53 in this animal model of PD and identify Bax, BAD and PUMA genes as downstream targets of p53 in modulating DA neuronal death in the in vivo MPTP-induced PD model. We deleted p53 gene in dopaminergic neurons in late developmental stages and found that DA specific p53 deletion is protective in acute MPTP animal model possibly through blocking MPTP-induced BAX and PUMA up-regulation. Astrocyte activation measured by GFAP positive cells and GFAP gene up-regulation in the striatum shows no difference between wt and DA-p53 ko mice.
Collapse
Affiliation(s)
- Xin Qi
- Department of Physiology & Biophysics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Brandon Davis
- Department of Neurological Surgery, Case Western Reserve University, Cleveland, Ohio, USA
| | - Yung-Hsiao Chiang
- Division of Neurosurgery, Department of Surgery, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Emily Filichia
- Department of Neurological Surgery, Case Western Reserve University, Cleveland, Ohio, USA
| | - Austin Barnett
- Department of Neurological Surgery, Case Western Reserve University, Cleveland, Ohio, USA
| | - Nigel H Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute of Aging, Baltimore, Maryland, USA
| | - Barry Hoffer
- Department of Neurological Surgery, Case Western Reserve University, Cleveland, Ohio, USA
| | - Yu Luo
- Department of Neurological Surgery, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
16
|
The Role of Dopamine and Its Dysfunction as a Consequence of Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:9730467. [PMID: 26770661 PMCID: PMC4684895 DOI: 10.1155/2016/9730467] [Citation(s) in RCA: 185] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 07/21/2015] [Accepted: 08/26/2015] [Indexed: 01/11/2023]
Abstract
Dopamine is a neurotransmitter that is produced in the substantia nigra, ventral tegmental area, and hypothalamus of the brain. Dysfunction of the dopamine system has been implicated in different nervous system diseases. The level of dopamine transmission increases in response to any type of reward and by a large number of strongly additive drugs. The role of dopamine dysfunction as a consequence of oxidative stress is involved in health and disease. Introduce new potential targets for the development of therapeutic interventions based on antioxidant compounds. The present review focuses on the therapeutic potential of antioxidant compounds as a coadjuvant treatment to conventional neurological disorders is discussed.
Collapse
|
17
|
Aryal B, Lee JK, Kim HR, Kim HG. Alteration of striatal tetrahydrobiopterin in iron-induced unilateral model of Parkinson's disease. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2014; 18:129-34. [PMID: 24757374 PMCID: PMC3994299 DOI: 10.4196/kjpp.2014.18.2.129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 01/19/2014] [Accepted: 02/05/2014] [Indexed: 01/12/2023]
Abstract
It has been suggested that transition metal ions such as iron can produce an oxidative injuries to nigrostriatal dopaminergic neurons, like Parkinson's disease (PD) and subsequent compensative increase of tetrahydrobiopterin (BH4) during the disease progression induces the aggravation of dopaminergic neurodegeneration in striatum. It had been established that the direct administration of BH4 into neuron would induce the neuronal toxicity in vitro. To elucidate a role of BH4 in pathogenesis in the PD in vivo, we assessed the changes of dopamine (DA) and BH4 at striatum in unilateral intranigral iron infused PD rat model. The ipsistriatal DA and BH4 levels were significantly increased at 0.5 to 1 d and were continually depleting during 2 to 7 d after intranigral iron infusion. The turnover rate of BH4 was higher than that of DA in early phase. However, the expression level of GTP-cyclohydrolase I mRNA in striatum was steadily increased after iron administration. These results suggest that the accumulation of intranigral iron leads to generation of oxidative stress which damage to dopaminergic neurons and causes increased release of BH4 in the dopaminergic neuron. The degenerating dopaminergic neurons decrease the synthesis and release of both BH4 and DA in vivo that are relevance to the progression of PD. Based on these data, we propose that the increase of BH4 can deteriorate the disease progression in early phase of PD, and the inhibition of BH4 increase could be a strategy for PD treatment.
Collapse
Affiliation(s)
- Bijay Aryal
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan 330-714, Korea
| | - Jin-Koo Lee
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan 330-714, Korea. ; Translational Research Center, Institute of Bio-Science Technology, Dankook University, Cheonan 330-714, Korea
| | - Hak Rim Kim
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan 330-714, Korea. ; Translational Research Center, Institute of Bio-Science Technology, Dankook University, Cheonan 330-714, Korea
| | - Hyung-Gun Kim
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan 330-714, Korea. ; Translational Research Center, Institute of Bio-Science Technology, Dankook University, Cheonan 330-714, Korea
| |
Collapse
|