1
|
Chen Y, Zhang Z, Yao Y, Zhou X, Ling Y, Mao L, Gu Z. Methyl Canthin-6-one-2-carboxylate Inhibits the Activation of the NLRP3 Inflammasome in Synovial Macrophages by Upregulating Nrf2 Expression. Curr Issues Mol Biol 2025; 47:38. [PMID: 39852153 PMCID: PMC11763762 DOI: 10.3390/cimb47010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/05/2025] [Accepted: 01/07/2025] [Indexed: 01/26/2025] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disorder that leads to severe cartilage deterioration and synovial impairment in the joints. Previous studies have indicated that the aberrant activation of the NLRP3 inflammasome in synovial macrophages plays a significant role in the pathogenesis of RA and has been regarded as a therapeutic target for the disease. In this study, we synthesized a novel canthin-6-one alkaloid, namely methyl canthin-6-one-2-carboxylate (Cant), and assessed its effects on NLRP3 inflammasome activation in macrophages. Our data reveal that exposure to Cant significantly suppressed the transcription and secretion of multiple pro-inflammatory mediators, including IL-1β, IL-6, IL-18, TNF-α, NO, and COX2, in a dose-dependent manner. These alterations were associated with changes in the activation of various signaling pathways, including NF-kB, MAPK, and PI3K-AKT pathways. Notably, pretreatment with Cant significantly reduced LPS/ATP-induced activation of the NLRP3 inflammasome, as evidenced by the decline in the cleaved forms of IL-1β and caspase-1 in cell culture supernatants of BMDMs. Regarding the mechanisms, our data show that Cant could enhance the expression of Nrf2 in macrophages, which play an inhibitory role in ROS production. Collectively, our data demonstrate that Cant might suppress the activation of the NLRP3 inflammasome by upregulating the production of Nrf2, suggesting that Cant could serve as a candidate for the further development of anti-RA drugs.
Collapse
Affiliation(s)
- Yuanyuan Chen
- Graduate School, Dalian Medical University, Dalian 116044, China;
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong 226019, China
| | - Zongying Zhang
- Department of Immunology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226019, China; (Z.Z.); (Y.Y.); (X.Z.)
| | - Yuan Yao
- Department of Immunology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226019, China; (Z.Z.); (Y.Y.); (X.Z.)
| | - Xiaorong Zhou
- Department of Immunology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226019, China; (Z.Z.); (Y.Y.); (X.Z.)
| | - Yong Ling
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, China;
| | - Liming Mao
- Department of Immunology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226019, China; (Z.Z.); (Y.Y.); (X.Z.)
- Basic Medical Research Center, School of Medicine, Nantong University, Nantong 226019, China
| | - Zhifeng Gu
- Graduate School, Dalian Medical University, Dalian 116044, China;
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong 226019, China
| |
Collapse
|
2
|
Omoboyede V, Onile OS, Oyeyemi BF, Aruleba RT, Fadahunsi AI, Oke GA, Onile TA, Ibrahim O, Adekiya TA. Unravelling the anti-inflammatory mechanism of Allium cepa: an integration of network pharmacology and molecular docking approaches. Mol Divers 2024; 28:727-747. [PMID: 36867320 DOI: 10.1007/s11030-023-10614-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/25/2023] [Indexed: 03/04/2023]
Abstract
Allium cepa, commonly known as onion, is a widely consumed spice that possesses numerous pharmacological properties. A. cepa bioactive components are often explored in the treatment of inflammation-related complications. However, the molecular mechanism via which they exert their anti-inflammatory effects remains unknown. Therefore, this study aimed to elucidate the anti-inflammatory mechanism of A. cepa bioactive components. Consequently, the bioactive compounds of A. cepa were obtained from a database, while the potential targets of the sixty-nine compounds with desirable pharmacokinetic properties were predicted. Subsequently, the targets of inflammation were acquired from the GeneCards database. The protein-protein interaction (PPI) between the sixty-six shared targets of the bioactive compounds and inflammation was retrieved from the String database and visualized using Cytoscape v3.9.1 software. Gene Ontology (GO) analysis of the ten core targets from the PPI network revealed that A. cepa bioactive compounds could be involved in regulating biological processes such as response to oxygen-containing compounds and response to inflammation while Kyoto Encyclopaedia of Genes and Genomes (KEGG) analysis revealed that A. cepa compounds might modulate pathways including AGE-RAGE signaling pathway, interleukin (IL)-17 signalling pathway, and tumor necrosis factor signaling pathway. Molecular docking analysis showed that 1-O-(4-Coumaroyl)-beta-D-glucose, stigmasterol, campesterol, and diosgenin have high binding affinities for core targets including EGFR, ALB, MMP9, CASP3, and CCL5. This study successfully elucidated the potential anti-inflammatory mechanism of A. cepa bioactive compounds, hence, providing new insights into the development of alternative anti-inflammatory drugs.
Collapse
Affiliation(s)
- Victor Omoboyede
- Department of Biochemistry, School of Life Sciences (SLS), Federal University of Technology Akure, P.M.B 704, Akure, Nigeria.
- Computer-Aided Therapeutics Laboratory (CATL), Federal University of Technology Akure, P.M.B 704, Akure, Nigeria.
| | - Olugbenga Samson Onile
- Biotechnology Programme, Department of Biological Sciences, Elizade University, P.M.B, 002 Ilara-Mokin, Ilara-Mokin, 340271, Nigeria.
| | - Bolaji Fatai Oyeyemi
- Molecular Biology Group, Department of Science Laboratory Technology, The Federal Polytechnic, Ado-Ekiti, Ekiti, Nigeria
| | - Raphael Taiwo Aruleba
- Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Cape Town, 7701, South Africa
| | - Adeyinka Ignatius Fadahunsi
- Biotechnology Programme, Department of Biological Sciences, Elizade University, P.M.B, 002 Ilara-Mokin, Ilara-Mokin, 340271, Nigeria
| | - Grace Ayomide Oke
- Department of Food Science and Technology, Federal University of Technology Akure, P.M.B 704, Akure, Nigeria
| | - Tolulope Adelonpe Onile
- Microbiology Programme, Department of Biological Sciences, Elizade University, Ilara Mokin, P.M.B, 002, Ilara-Mokin, 340271, Nigeria
| | - Ochapa Ibrahim
- Faculty of Pharmaceutical Sciences, Ahmadu Bello University, Zaria, Kaduna, Nigeria
| | - Tayo Alex Adekiya
- Department of Pharmaceutical Sciences, Howard University, Washington, DC, 20059, USA
| |
Collapse
|
3
|
Zerikiotis S, Efentakis P, Dapola D, Agapaki A, Seiradakis G, Kostomitsopoulos N, Skaltsounis AL, Tseti I, Triposkiadis F, Andreadou I. Synergistic Pulmonoprotective Effect of Natural Prolyl Oligopeptidase Inhibitors in In Vitro and In Vivo Models of Acute Respiratory Distress Syndrome. Int J Mol Sci 2023; 24:14235. [PMID: 37762537 PMCID: PMC10531912 DOI: 10.3390/ijms241814235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a highly morbid inflammatory lung disease with limited pharmacological interventions. The present study aims to evaluate and compare the potential pulmonoprotective effects of natural prolyl oligopeptidase (POP) inhibitors namely rosmarinic acid (RA), chicoric acid (CA), epigallocatechin-3-gallate (EGCG) and gallic acid (GA), against lipopolysaccharide (LPS)-induced ARDS. Cell viability and expression of pro-inflammatory mediators were measured in RAW264.7 cells and in primary murine lung epithelial and bone marrow cells. Nitric oxide (NO) production was also assessed in unstimulated and LPS-stimulated RAW264.7 cells. For subsequent in vivo experiments, the two natural products (NPs) with the most favorable effects, RA and GA, were selected. Protein, cell content and lipid peroxidation levels in bronchoalveolar lavage fluid (BALF), as well as histopathological changes and respiratory parameters were evaluated in LPS-challenged mice. Expression of key mediators involved in ARDS pathophysiology was detected by Western blotting. RA and GA favorably reduced gene expression of pro-inflammatory mediators in vitro, while GA decreased NO production in macrophages. In LPS-challenged mice, RA and GA co-administration improved respiratory parameters, reduced cell and protein content and malondialdehyde (MDA) levels in BALF, decreased vascular cell adhesion molecule-1 (VCAM-1) and the inducible nitric oxide synthase (iNOS) protein expression, activated anti-apoptotic mechanisms and down-regulated POP in the lung. Conclusively, these synergistic pulmonoprotective effects of RA and GA co-administration could render them a promising prophylactic/therapeutic pharmacological intervention against ARDS.
Collapse
Affiliation(s)
- Stelios Zerikiotis
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, 157 71 Athens, Greece; (S.Z.); (P.E.); (D.D.); (G.S.)
| | - Panagiotis Efentakis
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, 157 71 Athens, Greece; (S.Z.); (P.E.); (D.D.); (G.S.)
| | - Danai Dapola
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, 157 71 Athens, Greece; (S.Z.); (P.E.); (D.D.); (G.S.)
| | - Anna Agapaki
- Histochemistry Facility, Biomedical Research Foundation of the Academy of Athens, 115 27 Athens, Greece;
| | - Georgios Seiradakis
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, 157 71 Athens, Greece; (S.Z.); (P.E.); (D.D.); (G.S.)
| | - Nikolaos Kostomitsopoulos
- Laboratory Animal Facility, Centre of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 115 27 Athens, Greece;
| | - Alexios-Leandros Skaltsounis
- Section of Pharmacognosy and Natural Product Chemistry Faculty of Pharmacy, National and Kapodistrian University of Athens, 157 71 Athens, Greece;
| | | | - Filippos Triposkiadis
- Department of Cardiology, University General Hospital of Larissa, 413 34 Larissa, Greece;
- Faculty of Health Sciences, University of Thessaly, 413 34 Larissa, Greece
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, 157 71 Athens, Greece; (S.Z.); (P.E.); (D.D.); (G.S.)
| |
Collapse
|
4
|
Sturdivant J, Williams SS, Ina M, Weksler M, McDougal A, Clancy D, deLong MA, Girouard N, Zaretskaia M, Brennan K, Glendenning A, Foley B, Lin CW, White JC, Kopczynski C, Kelly CR. Discovery and Preclinical Development of Novel Intraocular Pressure-Lowering Rho Kinase Inhibitor: Corticosteroid Conjugates. J Ocul Pharmacol Ther 2023; 39:117-127. [PMID: 36602977 DOI: 10.1089/jop.2022.0129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Purpose: A new class of ocular steroids designed to mitigate steroid-induced intraocular pressure (IOP) elevation while maintaining anti-inflammatory activity was developed. Herein is described the discovery and preclinical characterization of ROCK'Ster compound 1. Methods: Codrugs consisting of a Rho kinase inhibitor (ROCKi) and a corticosteroid were synthesized. Compounds were initially screened in vitro for ROCKi activity and anti-inflammatory activity against the proinflammatory interleukin 23 and bacterial lipopolysaccharide (LPS) pathways. Selected compounds were then screened for solubility, chemical stability, and ex vivo corneal metabolism. Lead compound 1 was evaluated for IOP lowering in the Dutch Belted rabbit and for anti-inflammatory efficacy in both a postcataract surgery model and an allergic eye disease (AED) mouse model. Results: Several ROCK'Sters were found to be potent inhibitors of ROCK (Kis < 50 nM), have high anti-inflammatory activity in vitro (IC50s < 50 nM), display sufficient stability in topical ophthalmic formulations, and have a moderate rate of corneal metabolism. Compound 1 (0.1% and 0.25%, quater in die [QID]-4 times a day) demonstrated IOP-lowering capability without inducing hyperemia in our rabbit model. When compared with the marketed steroids, Durezol® and Pred Forte®, compound 1 (0.1%, 0.25%) demonstrated noninferiority in clinical scoring in a rabbit model of inflammation after surgery. In addition, anti-inflammatory outcomes were observed with compound 1 (0.1%) relative to Lotemax® or vehicle control in an AED mouse model. Conclusion: ROCK'Ster compound 1 is a novel compound suitable for topical ocular dosing that possesses IOP-lowering capability along with similar anti-inflammatory activity compared with marketed steroids.
Collapse
Affiliation(s)
- Jill Sturdivant
- Research & Development, Aerie Pharmaceuticals, Inc., Durham, North Carolina, USA
| | - Stuart S Williams
- Research & Development, Aerie Pharmaceuticals, Inc., Durham, North Carolina, USA
| | - Maria Ina
- Research & Development, Aerie Pharmaceuticals, Inc., Durham, North Carolina, USA
| | - Meredith Weksler
- Research & Development, Aerie Pharmaceuticals, Inc., Durham, North Carolina, USA
| | - Alan McDougal
- Research & Development, Aerie Pharmaceuticals, Inc., Durham, North Carolina, USA
| | - Daphne Clancy
- Research & Development, Aerie Pharmaceuticals, Inc., Durham, North Carolina, USA
| | - Mitchell A deLong
- Research & Development, Aerie Pharmaceuticals, Inc., Durham, North Carolina, USA
| | - Natalie Girouard
- Research & Development, Aerie Pharmaceuticals, Inc., Durham, North Carolina, USA
| | - Maria Zaretskaia
- Research & Development, Aerie Pharmaceuticals, Inc., Durham, North Carolina, USA
| | - Karen Brennan
- Research & Development, Aerie Pharmaceuticals, Inc., Durham, North Carolina, USA
| | - Angela Glendenning
- Research & Development, Aerie Pharmaceuticals, Inc., Durham, North Carolina, USA
| | - Briana Foley
- Research & Development, Aerie Pharmaceuticals, Inc., Durham, North Carolina, USA
| | - Cheng-Wen Lin
- Research & Development, Aerie Pharmaceuticals, Inc., Durham, North Carolina, USA
| | - Jeffrey C White
- Research & Development, Aerie Pharmaceuticals, Inc., Durham, North Carolina, USA
| | - Casey Kopczynski
- Research & Development, Aerie Pharmaceuticals, Inc., Durham, North Carolina, USA
| | - Curtis R Kelly
- Research & Development, Aerie Pharmaceuticals, Inc., Durham, North Carolina, USA
| |
Collapse
|
5
|
Alqahtani J, Formisano C, Chianese G, Luciano P, Stornaiuolo M, Perveen S, Taglialatela-Scafati O. Glycosylated Phenols and an Unprecedented Diacid from the Saudi Plant Cissus rotundifolia. JOURNAL OF NATURAL PRODUCTS 2020; 83:3298-3304. [PMID: 33176095 DOI: 10.1021/acs.jnatprod.0c00597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Bioassay-guided investigation of the Saudi medicinal and edible plant Cissus rotundifolia yielded seven metabolites, including the new sucrose diester cissuxinoside (1) and the unprecedented cissoic acid (2), belonging to unusual classes of secondary metabolites. Their chemical structures were elucidated through a combination of HR-MS and NMR data. The absolute configuration of cissoic acid was assigned by comparison of experimental and TDDFT-calculated electronic circular dichroism spectra. In addition, three rare C-glycosyl flavones (3-5) were fully characterized, and for 3 and 4 NMR data are reported here for the first time. This study identified 1-O-(4-coumaroyl)-β-d-glucopyranose (7) as the main compound responsible for the glucose uptake stimulation effect exerted by the extract.
Collapse
Affiliation(s)
- Jawaher Alqahtani
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131 Napoli, Italy
- Department of Pharmacognosy, College of Pharmacy, King Saud University. P.O. Box 22452, Riyadh 11495, Kingdom of Saudi Arabia
| | - Carmen Formisano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Giuseppina Chianese
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Paolo Luciano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Mariano Stornaiuolo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Shagufta Perveen
- Department of Pharmacognosy, College of Pharmacy, King Saud University. P.O. Box 22452, Riyadh 11495, Kingdom of Saudi Arabia
| | - Orazio Taglialatela-Scafati
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| |
Collapse
|
6
|
Han S, Gao H, Chen S, Wang Q, Li X, Du LJ, Li J, Luo YY, Li JX, Zhao LC, Feng J, Yang S. Procyanidin A1 Alleviates Inflammatory Response induced by LPS through NF-κB, MAPK, and Nrf2/HO-1 Pathways in RAW264.7 cells. Sci Rep 2019; 9:15087. [PMID: 31636354 PMCID: PMC6803657 DOI: 10.1038/s41598-019-51614-x] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 10/03/2019] [Indexed: 12/16/2022] Open
Abstract
Inflammation is a complex physiological process that poses a serious threat to people’s health. However, the potential molecular mechanisms of inflammation are still not clear. Moreover, there is lack of effective anti-inflammatory drugs that meet the clinical requirement. Procyanidin A1 (PCA1) is a monomer component isolated from Procyanidin and shows various pharmacological activities. This study further demonstrated the regulatory role of PCA1 on lipopolysaccharide (LPS)-stimulated inflammatory response and oxidative stress in RAW264.7 cells. Our data showed that PCA1 dramatically attenuated the production of pro-inflammatory cytokines such as NO, iNOS, IL-6, and TNF-α in RAW264.7 cells administrated with LPS. PCA1 blocked IκB-α degradation, inhibited IKKα/β and IκBα phosphorylation, and suppressed nuclear translocation of p65 in RAW264.7 cells induced by LPS. PCA1 also suppressed the phosphorylation of JNK1/2, p38, and ERK1/2 in LPS-stimulated RAW264.7 cells. In addition, PCA1 increased the expression of HO-1, reduced the expression of Keap1, and promoted Nrf2 into the nuclear in LPS-stimulated RAW264.7 cells. Cellular thermal shift assay indicated that PCA1 bond to TLR4. Meanwhile, PCA1 inhibited the production of intracellular ROS and alleviated the depletion of mitochondrial membrane potential in vitro. Collectively, our data indicated that PCA1 exhibited a significant anti-inflammatory effect, suggesting that it is a potential agent for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Shan Han
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China.,Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530020, China
| | - Hongwei Gao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China.,Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530020, China
| | - Shaoru Chen
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, 44272, USA
| | - Qinqin Wang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China.,Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530020, China
| | - Xinxing Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China.,Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530020, China
| | - Li-Jun Du
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jun Li
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Ying-Ying Luo
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Jun-Xiu Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China.,Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530020, China
| | - Li-Chun Zhao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China. .,Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530020, China.
| | - Jianfang Feng
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China. .,Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530020, China.
| | - Shilin Yang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China.,Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530020, China
| |
Collapse
|
7
|
Kawano M, Takagi R, Saika K, Matsui M, Matsushita S. Dopamine regulates cytokine secretion during innate and adaptive immune responses. Int Immunol 2019; 30:591-606. [PMID: 30165447 DOI: 10.1093/intimm/dxy057] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 08/23/2018] [Indexed: 12/12/2022] Open
Abstract
Dopamine (DA) is synthesized by various immune cells. DA receptors (DARs), which comprise five isoforms, are expressed on the surface of these cells. Therefore, it is likely that DA plays a role in regulating innate and adaptive responses. However, the underlying molecular mechanism(s) is largely unknown. Here, we found that, during innate immune responses, DA suppressed secretion of IFN-γ, TNF-α and IL-1β, but promoted secretion of IL-10 and CXCL1 by lipopolysaccharide (LPS)-stimulated mouse splenocytes, suggesting that DA regulates cytokine secretion. Immune subset studies indicated that DA suppressed secretion of IFN-γ, TNF-α and IL-1β by NK cells, as well as secretion of TNF-α by neutrophils and monocytes; however, DA up-regulated IL-10 secretion by neutrophils, monocytes, B cells, macrophages (Mφs) and dendritic cells within the splenocyte population. In addition, DA up-regulated secretion of CXCL1 by LPS-stimulated NK cells and Mφs. Meanwhile, treatment with DAR agonists or antagonists suppressed secretion of inflammatory cytokines from LPS-stimulated splenocytes. Pre-treatment of LPS-stimulated splenocytes with the PI3K inhibitor wortmannin reversed DA-mediated suppression of IFN-γ secretion, indicating that DA regulates IFN-γ secretion via the inositol 1,4,5-trisphosphate signaling pathway in these cells. Administration of DA and LPS to mice immunized with chicken ovalbumin (OVA) increased secretion of IL-5 by mouse lung lymphocytes, suggesting that DA promotes OVA-specific Th2-mediated immune responses by these cells. Taken together, these findings indicate that DA regulates cytokine secretion during innate and adaptive immune responses.
Collapse
Affiliation(s)
- Masaaki Kawano
- Department of Allergy and Immunology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Rie Takagi
- Department of Allergy and Immunology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Kikue Saika
- Department of Allergy and Immunology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Masanori Matsui
- Department of Microbiology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Sho Matsushita
- Department of Allergy and Immunology, Faculty of Medicine, Saitama Medical University, Saitama, Japan.,Allergy Center, Saitama Medical University, Saitama, Japan
| |
Collapse
|
8
|
Jeong YE, Lee MY. Anti-Inflammatory Activity of Populus deltoides Leaf Extract via Modulating NF-κB and p38/JNK Pathways. Int J Mol Sci 2018; 19:ijms19123746. [PMID: 30477268 PMCID: PMC6320835 DOI: 10.3390/ijms19123746] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 11/16/2018] [Accepted: 11/21/2018] [Indexed: 12/14/2022] Open
Abstract
Populus deltoides, known as eastern cottonwood, has been commonly used as a medicinal plant. The aim of the present study was to investigate the mechanism underlying the anti-inflammatory activity of P. deltoides leaf extract (PLE). PLE effectively inhibited the expression of inducible nitric oxide synthase (iNOS) and nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells, but not that of cyclooxygenase-2 (COX-2) and prostaglandin E2. Proinflammatory tumor necrosis factor alpha (TNF-α) levels were also reduced by the extract. PLE inhibited the phosphorylation of nuclear factor-kappa B (NF-κB) and inhibitor of Kappa Bα (IκBα), and blunted LPS-triggered enhanced nuclear translocation of NF-κB p65. In mitogen-activated protein kinase (MAPK) signaling, PLE effectively decreased the phosphorylation of p38 and c-Jun N-terminal protein kinase (JNK), but not of extracellular signal-regulated kinase 1/2 (ERK1/2). Taken together, these results suggest that anti-inflammatory activity of P. deltoides leaf extract might be driven by iNOS and NO inhibition mediated by modulation of the NF-κB and p38/JNK signaling pathways.
Collapse
Affiliation(s)
- Ye Eun Jeong
- Department of Medical Science, College of Medical Science, Soonchunhyang University, Asan, Chungnam 31538, Korea.
| | - Mi-Young Lee
- Department of Medical Biotechnology, College of Medical Science, Soonchunhyang University, Asan, Chungnam 31538, Korea.
| |
Collapse
|
9
|
Teng Y, Feng C, Liu Y, Jin H, Gao Y, Li T. Anti-inflammatory effect of tranexamic acid against trauma-hemorrhagic shock-induced acute lung injury in rats. Exp Anim 2018; 67:313-320. [PMID: 29398669 PMCID: PMC6083028 DOI: 10.1538/expanim.17-0143] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
It has been demonstrated that tranexamic acid (TXA), a synthetic derivative of lysine,
alleviates lung damage in a trauma-hemorrhagic shock (T/HS) model. Nevertheless, the
mechanism of TXA against acute lung injury (ALI) has not deeply elaborated. In this study,
we generated a T/HS rat model based on previous research, and TXA (50 mg/kg and 100 mg/kg)
was intravenously injected into these rats prior to or post T/HS. The results revealed
that the decreased survival rate and impaired lung permeability of the rats caused by T/HS
were improved by TXA pretreatment or posttreatment. T/HS-triggered over-generation of
interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in bronchoalveolar fluid and
serum was inhibited by TXA, and the enzymatic activity of myeloperoxidase (MPO) in lung
tissues was suppressed by TXA as well. Furthermore, TXA treatment deactivated the poly
ADP-ribose polymerase-1 (PARP1)/nuclear factor κB (NF-κB) signaling pathway in the lungs
of T/HS rats, as evidenced by increased IκBα expression, and decreased cleaved PARP1,
p-p65 (Ser276), p-p65 (Ser529), p-IκBα (ser32/ser36), and intercellular adhesion
molecule-1. While the expression level of total p65 did not change after T/HS, its DNA
binding activity was strengthened. Both TXA pretreatment and posttreatment suppressed this
effect on the DNA binding activity of NF-κB. Taken together, our results reveal that
administration of TXA effectively relieves T/HS-induced ALI, at least in part, by
attenuating the abnormal pulmonary inflammation.
Collapse
Affiliation(s)
- Yue Teng
- Department of Emergency Medicine, Chinese PLA General Hospital, 28 Fuxing Road, Beijing 100853, P.R. China.,Department of Emergency Medicine, General Hospital of Shenyang Military Area Command, 83 Wenhua Road, Shenyang 110016, P.R. China
| | - Cong Feng
- Department of Emergency Medicine, Chinese PLA General Hospital, 28 Fuxing Road, Beijing 100853, P.R. China
| | - Yunen Liu
- Department of Emergency Medicine, General Hospital of Shenyang Military Area Command, 83 Wenhua Road, Shenyang 110016, P.R. China.,Laboratory of Rescue Center for Severe Wound and Trauma PLA, 83 Wenhua Road, Shenyang 110016, P.R. China.,Liaoning Key Laboratory of Severe Wound and Trauma and Organ Protection, 83 Wenhua Road, Shenyang 110016, P.R. China
| | - Hongxu Jin
- Department of Emergency Medicine, General Hospital of Shenyang Military Area Command, 83 Wenhua Road, Shenyang 110016, P.R. China
| | - Yan Gao
- Department of Emergency Medicine, General Hospital of Shenyang Military Area Command, 83 Wenhua Road, Shenyang 110016, P.R. China
| | - Tanshi Li
- Department of Emergency Medicine, Chinese PLA General Hospital, 28 Fuxing Road, Beijing 100853, P.R. China
| |
Collapse
|
10
|
Umehara M, Yamamoto T, Ito R, Nonaka S, Yanae K, Sai M. Effects of phenolic constituents of Luffa cylindrica on UVB-damaged mouse skin and on dome formation by MDCK I cells. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.11.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
11
|
Yang X, Huo F, Liu B, Liu J, Chen T, Li J, Zhu Z, Lv B. Crocin Inhibits Oxidative Stress and Pro-inflammatory Response of Microglial Cells Associated with Diabetic Retinopathy Through the Activation of PI3K/Akt Signaling Pathway. J Mol Neurosci 2017; 61:581-589. [PMID: 28238066 DOI: 10.1007/s12031-017-0899-8] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 02/10/2017] [Indexed: 01/24/2023]
Abstract
Diabetic retinopathy (DR) is a serious microvascular complication of diabetes mellitus that is closely associated with the degeneration and loss of retinal ganglion cells (RGCs) caused by diabetic microangiopathy and subsequent oxidative stress and an inflammatory response. Microglial cells are classed as neurogliocytes and play a significant role in neurodegenerative diseases. Over-activated microglial cells may cause neurotoxicity and induce the death and apoptosis of RGCs. Crocin is one of the two most pharmacologically bioactive constituents in saffron. In the present study, we focused on the role of microglial cells in DR, suggesting that DR may cause the over-activation of microglial cells and induce oxidative stress and the release of pro-inflammatory factors. Microglial cells BV-2 and N9 were cultured, and high-glucose (HG) and free fatty acid (FFA) were used to simulate diabetes. The results showed that HG-FFA co-treatment caused the up-regulated expression of CD11b and Iba-1, indicating that BV-2 and N9 cells were over-activated. Moreover, oxidative stress markers and pro-inflammatory factors were significantly enhanced by HG-FFA treatment. We found that crocin prevented the oxidative stress and pro-inflammatory response induced by HG-FFA co-treatment. Moreover, using the PI3K/Akt inhibitor LY294002, we revealed that PI3K/Akt signaling plays a significant role in blocking oxidative stress, suppressing the pro-inflammatory response, and maintaining the neuroprotective effects of crocin. In total, these results provide a new insight into DR and DR-induced oxidative stress and the inflammatory response, which provide a potential therapeutic target for neuronal damage, vision loss, and other DR-induced complications.
Collapse
Affiliation(s)
- Xinguang Yang
- Shaanxi Ophthalmic Medical Center, Xi'an No. 4 Hospital, Guangren Hospital Affiliated to School of Medicine of Xi'an Jiaotong University, No. 21 Jiefang Road, Xi'an, Shaanxi, 710004, People's Republic of China
| | - Fuquan Huo
- Department of Physiology and Pathophysiology, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Bei Liu
- Shaanxi Ophthalmic Medical Center, Xi'an No. 4 Hospital, Guangren Hospital Affiliated to School of Medicine of Xi'an Jiaotong University, No. 21 Jiefang Road, Xi'an, Shaanxi, 710004, People's Republic of China
| | - Jing Liu
- Shaanxi Ophthalmic Medical Center, Xi'an No. 4 Hospital, Guangren Hospital Affiliated to School of Medicine of Xi'an Jiaotong University, No. 21 Jiefang Road, Xi'an, Shaanxi, 710004, People's Republic of China
| | - Tao Chen
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, People's Republic of China
| | - Junping Li
- Department of Anatomy, Histology and Embryology, Ningxia Medical University, Yinchuan, Ningxia, 750004, People's Republic of China
| | - Zhongqiao Zhu
- Shaanxi Ophthalmic Medical Center, Xi'an No. 4 Hospital, Guangren Hospital Affiliated to School of Medicine of Xi'an Jiaotong University, No. 21 Jiefang Road, Xi'an, Shaanxi, 710004, People's Republic of China.
| | - Bochang Lv
- Shaanxi Ophthalmic Medical Center, Xi'an No. 4 Hospital, Guangren Hospital Affiliated to School of Medicine of Xi'an Jiaotong University, No. 21 Jiefang Road, Xi'an, Shaanxi, 710004, People's Republic of China.
| |
Collapse
|
12
|
Hydroxycinnamic Acids and Their Derivatives: Cosmeceutical Significance, Challenges and Future Perspectives, a Review. Molecules 2017; 22:molecules22020281. [PMID: 28208818 PMCID: PMC6155946 DOI: 10.3390/molecules22020281] [Citation(s) in RCA: 205] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 02/08/2017] [Indexed: 12/13/2022] Open
Abstract
Bioactive compounds from natural sources, due to their widely-recognized benefits, have been exploited as cosmeceutical ingredients. Among them, phenolic acids emerge with a very interesting potential. In this context, this review analyzes hydroxycinnamic acids and their derivatives as multifunctional ingredients for topical application, as well as the limitations associated with their use in cosmetic formulations. Hydroxycinnamic acids and their derivatives display antioxidant, anti-collagenase, anti-inflammatory, antimicrobial and anti-tyrosinase activities, as well as ultraviolet (UV) protective effects, suggesting that they can be exploited as anti-aging and anti-inflammatory agents, preservatives and hyperpigmentation-correcting ingredients. Due to their poor stability, easy degradation and oxidation, microencapsulation techniques have been employed for topical application, preventing them from degradation and enabling a sustained release. Based on the above findings, hydroxycinnamic acids present high cosmetic potential, but studies addressing the validation of their benefits in cosmetic formulations are still scarce. Furthermore, studies dealing with skin permeation are scarcely available and need to be conducted in order to predict the topical bioavailability of these compounds after application.
Collapse
|
13
|
Eom SH, Lee EH, Park K, Kwon JY, Kim PH, Jung WK, Kim YM. Eckol fromEisenia bicyclisInhibits Inflammation Through the Akt/NF-κB Signaling inPropionibacterium acnes-Induced Human Keratinocyte Hacat Cells. J Food Biochem 2016. [DOI: 10.1111/jfbc.12312] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Sung-Hwan Eom
- Korea Food Research Institute; Sungnam 13539 Republic of Korea
| | - Eun-Hye Lee
- Department of Food Science and Technology; Pukyong National University; Busan 48513 Republic of Korea
| | - Kunbawui Park
- Food Safety and Processing Research Division; National Institute of Fisheries Science; Busan 46083 Republic of Korea
| | - Ji-Young Kwon
- Food Safety and Processing Research Division; National Institute of Fisheries Science; Busan 46083 Republic of Korea
| | - Poong-Ho Kim
- Food Safety and Processing Research Division; National Institute of Fisheries Science; Busan 46083 Republic of Korea
| | - Won-Kyo Jung
- Department of Biomedical Engineering; Pukyong National University; Busan 48513 Republic of Korea
- Marine-Integrated Bionics Research Center, Pukyong National University; Busan 48513 Republic of Korea
| | - Young-Mog Kim
- Department of Food Science and Technology; Pukyong National University; Busan 48513 Republic of Korea
- Marine-Integrated Bionics Research Center, Pukyong National University; Busan 48513 Republic of Korea
| |
Collapse
|
14
|
Hwang YJ, Lee SJ, Park JY, Chun W, Nam SJ, Park JM, Park SC, Choi DH, Kang CD. Apocynin Suppresses Lipopolysaccharide-Induced Inflammatory Responses Through the Inhibition of MAP Kinase Signaling Pathway in RAW264.7 Cells. Drug Dev Res 2016; 77:271-7. [DOI: 10.1002/ddr.21321] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 07/10/2016] [Indexed: 01/07/2023]
Affiliation(s)
- Young-Jae Hwang
- Department of Internal Medicine; Kangwon National University School of Medicine; Chuncheon Korea
| | - Sung Joon Lee
- Department of Internal Medicine; Kangwon National University School of Medicine; Chuncheon Korea
| | - Jin-Young Park
- Department of Pharmacology, College of Medicine; Kangwon National University; Chuncheon Korea
| | - Wanjoo Chun
- Department of Pharmacology, College of Medicine; Kangwon National University; Chuncheon Korea
| | - Seung-Joo Nam
- Department of Internal Medicine; Kangwon National University School of Medicine; Chuncheon Korea
| | - Jin Myung Park
- Department of Internal Medicine; Kangwon National University School of Medicine; Chuncheon Korea
| | - Sung Chul Park
- Department of Internal Medicine; Kangwon National University School of Medicine; Chuncheon Korea
| | - Dae Hee Choi
- Department of Internal Medicine; Kangwon National University School of Medicine; Chuncheon Korea
| | - Chang Don Kang
- Department of Internal Medicine; Kangwon National University School of Medicine; Chuncheon Korea
| |
Collapse
|
15
|
Vo VA, Lee JW, Park JH, Kwon JH, Lee HJ, Kim SS, Kwon YS, Chun W. N-(p-Coumaryol)-Tryptamine Suppresses the Activation of JNK/c-Jun Signaling Pathway in LPS-Challenged RAW264.7 Cells. Biomol Ther (Seoul) 2014; 22:200-6. [PMID: 25009700 PMCID: PMC4060082 DOI: 10.4062/biomolther.2014.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 03/17/2014] [Accepted: 03/24/2014] [Indexed: 01/01/2023] Open
Abstract
N-(p-Coumaryol) tryptamine (CT), a phenolic amide, has been reported to exhibit anti-oxidant and anti-inflammatory activities. However, the underlying mechanism by which CT exerts its pharmacological properties has not been clearly demonstrated. The objective of this study is to elucidate the anti-inflammatory mechanism of CT in lipopolysaccharide (LPS)-challenged RAW264.7 macrophage cells. CT significantly inhibited LPS-induced extracellular secretion of pro-inflammatory mediators such as nitric oxide (NO) and PGE2, and protein expressions of iNOS and COX-2. In addition, CT significantly suppressed LPS-induced secretion of pro-inflammatory cytokines such as TNF-α and IL-1β. To elucidate the underlying anti-inflammatory mechanism of CT, involvement of MAPK and Akt signaling pathways was examined. CT significantly attenuated LPS-induced activation of JNK/c-Jun, but not ERK and p38, in a concentration-dependent manner. Interestingly, CT appeared to suppress LPS-induced Akt phosphorylation. However, JNK inhibition, but not Akt inhibition, resulted in the suppression of LPS-induced responses, suggesting that JNK/c-Jun signaling pathway significantly contributes to LPS-induced inflammatory responses and that LPS-induced Akt phosphorylation might be a compensatory response to a stress condition. Taken together, the present study clearly demonstrates CT exerts anti-inflammatory activity through the suppression of JNK/c-Jun signaling pathway in LPS-challenged RAW264.7 macrophage cells.
Collapse
Affiliation(s)
- Van Anh Vo
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon 200-701
| | - Jae-Won Lee
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon 200-701
| | - Jun-Ho Park
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon 200-701
| | - Jae-Hyun Kwon
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon 200-701
- Department of Radiology, Dongguk University Ilsan Hospital, Ilsan 410-773, Republic of Korea
| | - Hee Jae Lee
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon 200-701
| | - Sung-Soo Kim
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon 200-701
| | - Yong-Soo Kwon
- College of Pharmacy, Kangwon National University, Chuncheon 200-701
| | - Wanjoo Chun
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon 200-701
| |
Collapse
|