1
|
Sharma A, Pandoh N, Dayal K, Raj A, Kaur K, Sandhu NK, Rai VK, Thakur S, Kurmi BD. PDE4 inhibitors in psoriasis therapy: current insights and future directions. Inflammopharmacology 2025:10.1007/s10787-025-01778-y. [PMID: 40374992 DOI: 10.1007/s10787-025-01778-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2025] [Accepted: 04/28/2025] [Indexed: 05/18/2025]
Abstract
The chronic autoimmune disease known as psoriasis creates major life-quality problems for affected patients. The disease evolves through genetic and environmental triggers that trigger continuous keratinocyte multiplication with persistent inflammation. Research into psoriasis treatment now emphasizes phosphodiesterase-4 (PDE4) inhibitors because they manage cyclic adenosine monophosphate (cAMP) signaling to reduce inflammatory cytokine production. This review examines the PDE4 inhibitor potential for psoriasis treatment through investigation of their therapeutic functions alongside their mechanism of action and clinical response, safety data, and novel treatment approaches. The review gathered detailed information about clinical research and pharmaceutical operations of PDE4 inhibitors, specifically for apremilast, roflumilast, and crisaborole. This review also analyzes experimental PDE4 inhibitors alongside the advantages that appear when combining these drugs with biologics or phototherapy, together with methotrexate. The administration of PDE4 inhibitors creates higher intracellular cAMP levels that decrease TNF-α and IL-17 production as pro-inflammatory cytokines. The research on Apremilast, as the most prominent oral PDE4 inhibitor, shows that it both improves PASI scores and maintains good safety results. These medications treat psoriasis symptoms specifically through creams and gels, thus reducing the risk of whole-body side effects. The combined administration of PDE4 inhibitors and biologics leads to better therapeutic effects, which may lower both drug resistance rates and side effects. PDE4 inhibitors function as a valuable alternative therapeutic approach to both standard immunosuppressants and biologic medications in psoriasis treatment. New drug dosage methods connected to personalized treatment plans have the potential to raise patient care effectiveness. Researchers need to study ways to improve PDE4 inhibitor formulations, along with developing new combination therapy approaches to enhance sustained psoriasis disease treatment.
Collapse
Affiliation(s)
- Amit Sharma
- IKG Punjab Technical University, Kapurthala, Punjab, 144603, India
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, Punjab, 142001, India
| | - Niyati Pandoh
- Department of Pharmacy Practice, ISF College of Pharmacy, GT Road, Moga, Punjab, 142001, India
| | - Keerti Dayal
- Department of Pharmacy Practice, ISF College of Pharmacy, GT Road, Moga, Punjab, 142001, India
| | - Aditya Raj
- Department of Pharmacy Practice, ISF College of Pharmacy, GT Road, Moga, Punjab, 142001, India
| | - Kirandeep Kaur
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, Punjab, 142001, India
| | - Navjot Kaur Sandhu
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, Punjab, 142001, India
| | - Vineet Kumar Rai
- School of Pharmaceutics Science, Siksha 'O' Anusandhan, Bhubaneswar, Odisha, 751003, India
| | - Shubham Thakur
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, Punjab, 142001, India
| | - Balak Das Kurmi
- IKG Punjab Technical University, Kapurthala, Punjab, 144603, India.
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, Punjab, 142001, India.
| |
Collapse
|
2
|
Panigrahy UP, Buchade RS, Subhadra S, Narayanan AK, Gunjal SD, Selvakumari E, Pandey NK, Wal A. Acetylresveratrol (AC-Res): An Evolving Frontier in Modulating Gene Expression. Curr Gene Ther 2025; 25:210-226. [PMID: 38860906 DOI: 10.2174/0115665232291487240603093218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND Acetylresveratrol (AC-Res), to date, is a powerful stilbene phytoalexin generated organically or as a component of a plant's defensive system, is a significant plant phenolic chemical portion and is investigated as a therapy option for a number of disorders. Owing to its inadequate stabilisation and considerable conformation rigidity, the utility of AC-Res as a medication is limited. OBJECTIVE The current review article outlined the structure of AC-Res, their methods of activity, and the latest technological progress in the administration of these molecules. It is conceivable to deduce that AC-Res has a variety of consequences for the cellular functions of infected cells. METHODS The literature survey for the present article was gathered from the authentic data published by various peer-reviewed publishers employing Google Scholar and PubMedprioritizing Scopus and Web of Science indexed journals as the search platform focusing on AC-Res pharmacological actions, particularly in the English language. RESULTS Despite its extensive spectrum of biological and therapeutic applications, AC-Res has become a source of increasing concern. Depending on the researchers, AC-Res possesses radioprotective, cardioprotective, neurological, anti-inflammatory, and anti-microbial potential. It also has anti-cancer and antioxidant properties. CONCLUSION To avoid non-specific cytotoxicity, optimization efforts are presently emphasizing the possible usage of AC-Res based on nanocrystals, nanoparticles and dendrimers, and nanocrystals. Finally, while using AC-Res in biology is still a way off, researchers agree that if they continue to explore it, AC-Res and similar parts will be recognized as actual possibilities for a variety of things in the next years.
Collapse
Affiliation(s)
- Uttam Prasad Panigrahy
- Faculty of Pharmaceutical Science, Assam Downtown University, Sankar Madhab Path, Gandhi Nagar, Panikhaiti, Guwahati, Assam, India
| | - Rahul Subhash Buchade
- SCES's Indira College of Pharmacy "Niramay", S.No.89/2A, New Pune Mumbai Highway, Tathwade, Pune, Maharashtra, India
| | - Sandhya Subhadra
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, University of Petroleum and Energy Studies Bidholi Dehradun, Uttarakhand, India
| | - Anoop Kumar Narayanan
- School of Family Health Studies, Kerala University of Health Sciences Kozhikode, Kerala, India
| | | | | | - Narendra Kumar Pandey
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Ankita Wal
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), NH19, Kanpur, Agra Highway, Kanpur, Uttar Pradesh, India
| |
Collapse
|
3
|
Tian L, Huang Y, Liu Y, Liu J, Liu Y. Parecoxib inhibits tumorigenesis and angiogenesis in hepatocellular carcinoma through ERK-VEGF/MMPs signaling pathway. IUBMB Life 2024; 76:972-986. [PMID: 38873890 DOI: 10.1002/iub.2861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 05/05/2024] [Indexed: 06/15/2024]
Abstract
Parecoxib, a well-recognized nonsteroidal anti-inflammatory drug, has been reported to possess anticancer properties in various tumor types. In this work, we aimed to investigate the potential anticancer effects of parecoxib on hepatocellular carcinoma (HCC) cells. To assess the impact of parecoxib on HCC cell proliferation, we employed Cell Counting Kit-8, colony formation, and 5-ethynyl-2'-deoxyuridine assays. Hoechst/propidium iodide (PI) double staining and flow cytometry were performed to evaluate apoptosis and cell cycle analysis. Wound healing and transwell assays were utilized to assess cell migration and invasion. Tube formation assay was employed to analyze angiogenesis. Protein levels were determined using western blotting, and mRNA expression levels were assessed using quantitative real-time polymerase chain reaction (PCR). A xenograft mouse model was used to confirm the antitumor effects of parecoxib on HCC tumors in vivo. Our data demonstrated that parecoxib effectively inhibited the proliferation of HCC cells in a dose- and time-dependent manner. In addition, parecoxib induced cell cycle arrest in the G2 phase and promoted apoptosis. Moreover, parecoxib hindered tumor migration and invasion by impeding the epithelial-mesenchymal transition process. Further investigation showed that parecoxib could significantly suppress angiogenesis through the inhibition of extracellular signal-regulated kinase (ERK)-vascular endothelial growth factor (VEGF) axis. Notably, treatment with the ERK activator phorbol myristate acetate upregulated the expression of matrix metalloproteinase (MMP)-2, MMP-9, and VEGF and reversed the function of parecoxib in HCC cells. Besides, parecoxib displayed its antitumor efficacy in vivo. Collectively, our results suggest that parecoxib ameliorates HCC progression by regulating proliferation, cell cycle, apoptosis, migration, invasion, and angiogenesis through the ERK-VEGF/MMPs signaling pathway.
Collapse
MESH Headings
- Humans
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/genetics
- Liver Neoplasms/pathology
- Liver Neoplasms/drug therapy
- Liver Neoplasms/metabolism
- Liver Neoplasms/genetics
- Animals
- Isoxazoles/pharmacology
- Mice
- Cell Proliferation/drug effects
- Neovascularization, Pathologic/drug therapy
- Neovascularization, Pathologic/pathology
- Neovascularization, Pathologic/metabolism
- Vascular Endothelial Growth Factor A/metabolism
- Vascular Endothelial Growth Factor A/genetics
- Apoptosis/drug effects
- Cell Movement/drug effects
- Xenograft Model Antitumor Assays
- Mice, Nude
- Signal Transduction/drug effects
- Mice, Inbred BALB C
- Gene Expression Regulation, Neoplastic/drug effects
- Carcinogenesis/drug effects
- MAP Kinase Signaling System/drug effects
- Matrix Metalloproteinase 9/metabolism
- Matrix Metalloproteinase 9/genetics
- Male
- Cell Line, Tumor
- Angiogenesis
Collapse
Affiliation(s)
- Li Tian
- Department of Hepatobiliary Surgery, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - YuQi Huang
- Department of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
| | - Yan Liu
- Department of Hepatobiliary Surgery, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - JiangWei Liu
- Department of Hepatobiliary Surgery, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Yan Liu
- Department of Hepatobiliary Surgery, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| |
Collapse
|
4
|
Riazi-Tabrizi N, Khalaj-Kondori M, Safaei S, Amini M, Hassanian H, Maghsoudi M, Hasani S, Baradaran B. NRF2 Suppression Enhances the Susceptibility of Pancreatic Cancer Cells, Miapaca-2 to Paclitaxel. Mol Biotechnol 2024; 66:2441-2454. [PMID: 37740817 DOI: 10.1007/s12033-023-00872-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 09/04/2023] [Indexed: 09/25/2023]
Abstract
Pancreatic cancer is one of the most deadly diseases, with a very high metastasis and low survival rate. High levels of NRF2 have been detected in numerous malignancies, including head, neck, lung, and colon cancers, promoting the expansion and survival of cancer cells and chemical resistance to stressful conditions and affecting the response to treatment. To evaluate the possibility that modulation of NRF2 expression could be effective in treating pancreatic cancer cells, we explored the effect of knockdown of the NRF2 gene by NRF2-specific siRNA and its influence in combination with paclitaxel on pancreatic cancer cells. Miapaca-2 cell line, due to the high expression of the NRF2 gene, was selected for this study. Then, Miapaca-2 cells in different groups were treated with NRF2 siRNA and paclitaxel separately and in combination. After that, cell viability was measured by MTT assay and apoptosis induction by Annexin V-FITC/PI staining test. Cell cycle and autophagy were examined by flow cytometry, and cell migration was assessed by wound-healing assay. Finally, the expression of genes involved in apoptosis, Bax, Caspase-3, Caspase-9, and genes related to migration pathway, MMP-2, and MMP-9 in different groups were measured using qRT-PCR. Combined use of NRF2-specific siRNA with paclitaxel significantly reduced NRF2 gene expression in pancreatic cancer cells. NRF2 siRNA transfection significantly reduced cell viability. In addition, paclitaxel combination therapy with NRF2 siRNA strengthens the anti-tumor effects, such as inhibiting cell migration and provoking apoptosis, and autophagy and the cell cycle arrest in the G2 phase. NRF2 suppression augmented the expression of Bax, Caspase-3, and Caspase-9 genes and lowered the expression of Bcl-2, MMP-2, and MMP-9 genes, which play crucial roles in the pathways of apoptosis and cell migration, respectively. NRF2 siRNA enhances the susceptibility of Miapaca-2 cells to paclitaxel in pancreatic cancer cells. Thereby, suppressing NRF2 in combination with paclitaxel can be a new and efficacious treatment approach in treating pancreatic cancer.
Collapse
Affiliation(s)
- Negin Riazi-Tabrizi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Mohammad Khalaj-Kondori
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| | - Sahar Safaei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamidreza Hassanian
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohadeseh Maghsoudi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Shima Hasani
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
5
|
Trautmann D, Suazo F, Torres K, Simón L. Antitumor Effects of Resveratrol Opposing Mechanisms of Helicobacter pylori in Gastric Cancer. Nutrients 2024; 16:2141. [PMID: 38999888 PMCID: PMC11243391 DOI: 10.3390/nu16132141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024] Open
Abstract
Gastric cancer is an aggressive and multifactorial disease. Helicobacter pylori (H. pylori) is identified as a significant etiological factor in gastric cancer. Although only a fraction of patients infected with H. pylori progresses to gastric cancer, bacterial infection is critical in the pathology and development of this malignancy. The pathogenic mechanisms of this bacterium involve the disruption of the gastric epithelial barrier and the induction of chronic inflammation, oxidative stress, angiogenesis and metastasis. Adherence molecules, virulence (CagA and VacA) and colonization (urease) factors are important in its pathogenicity. On the other hand, resveratrol is a natural polyphenol with anti-inflammatory and antioxidant properties. Resveratrol also inhibits cancer cell proliferation and angiogenesis, suggesting a role as a potential therapeutic agent against cancer. This review explores resveratrol as an alternative cancer treatment, particularly against H. pylori-induced gastric cancer, due to its ability to mitigate the pathogenic effects induced by bacterial infection. Resveratrol has shown efficacy in reducing the proliferation of gastric cancer cells in vitro and in vivo. Moreover, the synergistic effects of resveratrol with chemotherapy and radiotherapy underline its therapeutic potential. However, further research is needed to fully describe its efficacy and safety in treating gastric cancer.
Collapse
Affiliation(s)
- Daniela Trautmann
- Nutrition and Dietetic School, Universidad Finis Terrae, Santiago 7501015, Chile
| | - Francesca Suazo
- Nutrition and Dietetic School, Universidad Finis Terrae, Santiago 7501015, Chile
| | - Keila Torres
- Nutrition and Dietetic School, Universidad Finis Terrae, Santiago 7501015, Chile
- Department of Hematology and Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Layla Simón
- Nutrition and Dietetic School, Universidad Finis Terrae, Santiago 7501015, Chile
| |
Collapse
|
6
|
Boța M, Vlaia L, Jîjie AR, Marcovici I, Crişan F, Oancea C, Dehelean CA, Mateescu T, Moacă EA. Exploring Synergistic Interactions between Natural Compounds and Conventional Chemotherapeutic Drugs in Preclinical Models of Lung Cancer. Pharmaceuticals (Basel) 2024; 17:598. [PMID: 38794168 PMCID: PMC11123751 DOI: 10.3390/ph17050598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
In the current work, the synergy between natural compounds and conventional chemotherapeutic drugs is comprehensively reviewed in light of current preclinical research findings. The prognosis for lung cancer patients is poor, with a 5-year survival rate of 18.1%. The use of natural compounds in combination with conventional chemotherapeutic drugs has gained significant attention as a potential novel approach in the treatment of lung cancer. The present work highlights the importance of finding more effective therapies to increase survival rates. Chemotherapy is a primary treatment option for lung cancer but it has limitations such as reduced effectiveness because cancer cells become resistant. Natural compounds isolated from medicinal plants have shown promising anticancer or chemopreventive properties and their synergistic effect has been observed when combined with conventional therapies. The combined use of an anti-cancer drug and a natural compound exhibits synergistic effects, enhancing overall therapeutic actions against cancer cells. In conclusion, this work provides an overview of the latest preclinical research on medicinal plants and plant-derived compounds as alternative or complementary treatment options for lung cancer chemotherapy and discusses the potential of natural compounds in treating lung cancer with minimal side effects.
Collapse
Affiliation(s)
- Mihaela Boța
- Department II—Pharmaceutical Technology, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania; (M.B.); (L.V.)
| | - Lavinia Vlaia
- Department II—Pharmaceutical Technology, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania; (M.B.); (L.V.)
- Formulation and Technology of Drugs Research Center, “Victor Babeş” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania
| | - Alex-Robert Jîjie
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania; (I.M.); (F.C.); (C.A.D.); (E.-A.M.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babeş” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania
| | - Iasmina Marcovici
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania; (I.M.); (F.C.); (C.A.D.); (E.-A.M.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babeş” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania
| | - Flavia Crişan
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania; (I.M.); (F.C.); (C.A.D.); (E.-A.M.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babeş” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania
| | - Cristian Oancea
- Discipline of Pneumology, Department of Infectious Diseases, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania;
| | - Cristina Adriana Dehelean
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania; (I.M.); (F.C.); (C.A.D.); (E.-A.M.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babeş” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania
| | - Tudor Mateescu
- Department of Thoracic Surgery, Clinical Hospital for Infectious Diseases and Pneumophthiology Dr. Victor Babes, 13 Gheorghe Adam Street, RO-300310 Timisoara, Romania;
| | - Elena-Alina Moacă
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania; (I.M.); (F.C.); (C.A.D.); (E.-A.M.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babeş” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania
| |
Collapse
|
7
|
Marko M, Pawliczak R. Resveratrol and Its Derivatives in Inflammatory Skin Disorders-Atopic Dermatitis and Psoriasis: A Review. Antioxidants (Basel) 2023; 12:1954. [PMID: 38001807 PMCID: PMC10669798 DOI: 10.3390/antiox12111954] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/26/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Atopic dermatitis (AD) and psoriasis are inflammatory skin diseases whose prevalence has increased worldwide in recent decades. These disorders contribute to patients' decreased quality of life (QoL) and constitute a socioeconomic burden. New therapeutic options for AD and psoriasis based on natural compounds are being investigated. These include resveratrol (3,5,40-trihydroxystilbene) and its derivatives, which are produced by many plant species, including grapevines. Resveratrol has gained interest since the term "French Paradox", which refers to improved cardiovascular outcomes despite a high-fat diet in the French population, was introduced. Resveratrol and its derivatives have demonstrated various health benefits. In addition to anti-cancer, anti-aging, and antibacterial effects, there are also anti-inflammatory and antioxidant effects that can affect the molecular pathways of inflammatory skin disorders. A comprehensive understanding of these mechanisms may help develop new therapies. Numerous in vivo and in vitro studies have been conducted on the therapeutic properties of natural compounds. However, regarding resveratrol and its derivatives in treating AD and psoriasis, there are still many unexplained mechanisms and a need for clinical trials. Considering this, in this review, we discuss and summarize the most critical research on resveratrol and its derivatives in animal and cell models mimicking AD and psoriasis.
Collapse
Affiliation(s)
| | - Rafał Pawliczak
- Department of Immunopathology, Faculty of Medicine, Division of Biomedical Science, Medical University of Lodz, 7/9 Zeligowskiego St., 90-752 Lodz, Poland
| |
Collapse
|
8
|
El-Bestawy EM, Tolba AM, Rashad WA. Morphological, ultrastructural, and biochemical changes induced by sodium fluoride in the tongue of adult male albino rat and the ameliorative effect of resveratrol. Anat Cell Biol 2022; 55:483-496. [PMID: 36168808 PMCID: PMC9747341 DOI: 10.5115/acb.22.088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/05/2022] [Accepted: 06/21/2022] [Indexed: 01/02/2023] Open
Abstract
Little knowledge is available about the effects of fluoride exposure on the tongue. This study evaluated the effects of sodium fluoride (NaF) on the tongue ultrastructure and detected the ameliorative effects of resveratrol. Forty adult albino rats were separated into 4 groups: the control group was given a balanced diet and purified water. The NaF treated group: received 10 mg/kg/d dissolved in 2.5 ml distilled water once daily for 30 days orally. The NaF+resveratrol group: received NaF 10 mg/kg/d orally together with resveratrol in a dose of 30 mg/kg daily for 30 days. The resveratrol group was subjected to resveratrol in a dose of 30 mg/kg/d by oral gavage for 30 days. Sections were stained with hematoxylin & eosin, and Masson's trichrome. Tumor necrosis factor α immunohistochemical study and electron microscopic examinations were done. The oxidative stress markers malondialdehyde, antioxidant reduced glutathione, and the total antioxidant capacity were measured. The NaF group revealed ulceration, necrotic muscle fibers, distorted papillae and a significant increase in malondialdehyde level, and a significant decrease in glutathione and the total antioxidant levels. In the NaF+resveratrol group, pathological changes were less, and the oxidant levels were decreased by the administration of resveratrol with NaF. In conclusion, NaF adversely affects the ultrastructure of the adult rat tongue and resveratrol can ameliorate this effect.
Collapse
Affiliation(s)
- Emtethal M. El-Bestawy
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Sharqia Governorate, Egypt
| | - Asmaa M. Tolba
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Sharqia Governorate, Egypt
| | - Walaa A. Rashad
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Sharqia Governorate, Egypt
| |
Collapse
|
9
|
Emmanuel Chimeh E, Nicodemus Emeka N, Florence Nkechi N, Amaechi Linda O, Oka Samon A, Emmanuel Chigozie A, Parker Elijah J, Barine Innocent N, Ezike Tobechukwu C, Nwachukwu Philip A, Hope Chimbuezie N, Chidimma Peace E, Onyinye Mary-Jane O, Godspower Chima N, Theresa Chinyere E, Alotaibi Saqer S, Albogami Sarah M, Gaber El-Saber B. Bioactive Compounds, anti-inflammatory, anti-nociceptive and antioxidant potentials of ethanolic leaf fraction of Sida linifolia L. (Malvaceae). ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
10
|
Lim C, Lee P, Shim S, Jang SW. HS‑1793 inhibits cell proliferation in lung cancer by interfering with the interaction between p53 and MDM2. Oncol Lett 2022; 24:290. [PMID: 35928802 PMCID: PMC9344265 DOI: 10.3892/ol.2022.13410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/16/2022] [Indexed: 12/05/2022] Open
Abstract
The transcription factor or tumor suppressor protein p53 regulates numerous cellular functions, including cell proliferation, invasion, migration, senescence and apoptosis, in various types of cancer. HS-1793 is an analog of resveratrol, which exhibits anti-cancer effects on various types of cancer, including breast, prostate, colon and renal cancer, and multiple myeloma. However, to the best of our knowledge, the role of HS-1793 in lung cancer remains to be examined. The present study aimed to investigate the anti-cancer effect of HS-1793 on lung cancer and to determine its association with p53. The results revealed that HS-1793 reduced cell proliferation in lung cancer and increased p53 stability, thereby elevating the expression levels of the target genes p21 and mouse double minute 2 homolog (MDM2). When the levels of MDM2, a negative regulator of p53, are increased under normal conditions, MDM2 binds and degrades p53; however, HS-1793 inhibited this binding, confirming that p53 protein stability was increased. In conclusion, the findings of the present study provide new evidence that HS-1793 may inhibit lung cancer proliferation by disrupting the p53-MDM2 interaction.
Collapse
Affiliation(s)
- Chungun Lim
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138‑736, Republic of Korea
| | - Peter Lee
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138‑736, Republic of Korea
| | - Sungbo Shim
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju, North Chungcheong 28644, Republic of Korea
| | - Sung-Wuk Jang
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138‑736, Republic of Korea
| |
Collapse
|
11
|
Tecellioğlu M, Türkmen NB, Ciftçi O, Taşlıdere A, Ekmekyapar T, Yüce H, Öztanır MN, Özcan C. The Beneficial Effects of Resveratrol on Experimental Autoimmune Encephalomyelitis (EAE) in C57BL/6J Mouse Model. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022040093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Kaur A, Tiwari R, Tiwari G, Ramachandran V. Resveratrol: A Vital Therapeutic Agent with Multiple Health Benefits. Drug Res (Stuttg) 2021; 72:5-17. [PMID: 34412126 DOI: 10.1055/a-1555-2919] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Resveratrol (RSV), the most effective stilbene phytoalexin synthesized naturally or induced in plants as part of their defense mechanism, is a key component of natural phenolic compounds and is being considered as a treatment option for a variety of diseases. RSV was discovered in the skin of red grapes, mulberries, peanuts, pines, and Polygonum cuspidatum weed root extracts. It was first extracted from white hellebore (Veratrum grandiflorum O. Loes) roots in 1940, then from Polygonum cuspidatum roots in 1963. However, RSV's use as a drug is limited due to its initial conformational strength and poor stability. The research focused on a set of RSV biological activity data. RSV has been the subject of growing concern, despite its wide range of biological and therapeutic applications. According to the literature, RSV has antioxidant, anti-cancer, cardioprotective, neuroprotective, anti- inflammatory, anti-microbial, immunomodulatory, and radioprotective properties. The current analysis summarized biological applications of RSV, their mechanisms of action, and recent scientific development in the area of their delivery. It is possible to infer that RSV has many effects on infected cells' cellular functions.
Collapse
Affiliation(s)
- Arshpreet Kaur
- Institute of Pharmacy, Pranveer Singh Institute of Technology, Bhauti, Kanpur, Uttar Pradesh, India
| | - Ruchi Tiwari
- Institute of Pharmacy, Pranveer Singh Institute of Technology, Bhauti, Kanpur, Uttar Pradesh, India
| | - Gaurav Tiwari
- Institute of Pharmacy, Pranveer Singh Institute of Technology, Bhauti, Kanpur, Uttar Pradesh, India
| | - Vadivelan Ramachandran
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| |
Collapse
|
13
|
Wen T, Song L, Hua S. Perspectives and controversies regarding the use of natural products for the treatment of lung cancer. Cancer Med 2021; 10:2396-2422. [PMID: 33650320 PMCID: PMC7982634 DOI: 10.1002/cam4.3660] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022] Open
Abstract
Lung cancer is the leading cause of cancer‐related mortality both in men and women and accounts for 18.4% of all cancer‐related deaths. Although advanced therapy methods have been developed, the prognosis of lung cancer patients remains extremely poor. Over the past few decades, clinicians and researchers have found that chemical compounds extracted from natural products may be useful for treating lung cancer. Drug formulations derived from natural compounds, such as paclitaxel, doxorubicin, and camptothecin, have been successfully used as chemotherapeutics for lung cancer. In recent years, hundreds of new natural compounds that can be used to treat lung cancer have been found through basic and sub‐clinical research. However, there has not been a corresponding increase in the number of drugs that have been used in a clinical setting. The probable reasons may include low solubility, limited absorption, unfavorable metabolism, and severe side effects. In this review, we present a summary of the natural compounds that have been proven to be effective for the treatment of lung cancer, as well as an understanding of the mechanisms underlying their pharmacological effects. We have also highlighted current controversies and have attempted to provide solutions for the clinical translation of these compounds.
Collapse
Affiliation(s)
- Tingting Wen
- Department of Respiratory Medicine, Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Lei Song
- Department of Respiratory Medicine, Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Shucheng Hua
- Department of Respiratory Medicine, Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, P.R. China
| |
Collapse
|
14
|
Ma Z, Fan Y, Wu Y, Kebebe D, Zhang B, Lu P, Pi J, Liu Z. Traditional Chinese medicine-combination therapies utilizing nanotechnology-based targeted delivery systems: a new strategy for antitumor treatment. Int J Nanomedicine 2019; 14:2029-2053. [PMID: 30962686 PMCID: PMC6435121 DOI: 10.2147/ijn.s197889] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cancer is a major public health problem, and is now the world’s leading cause of death. Traditional Chinese medicine (TCM)-combination therapy is a new treatment approach and a vital therapeutic strategy for cancer, as it exhibits promising antitumor potential. Nano-targeted drug-delivery systems have remarkable advantages and allow the development of TCM-combination therapies by systematically controlling drug release and delivering drugs to solid tumors. In this review, the anticancer activity of TCM compounds is introduced. The combined use of TCM for antitumor treatment is analyzed and summarized. These combination therapies, using a single nanocarrier system, namely codelivery, are analyzed, issues that require attention are determined, and future perspectives are identified. We carried out a systematic review of >280 studies published in PubMed since 1985 (no patents involved), in order to provide a few basic considerations in terms of the design principles and management of targeted nanotechnology-based TCM-combination therapies.
Collapse
Affiliation(s)
- Zhe Ma
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China, ; .,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China, ;
| | - Yuqi Fan
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China, ; .,School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Yumei Wu
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China, ; .,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China, ;
| | - Dereje Kebebe
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China, ; .,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China, ; .,School of Pharmacy, Institute of Health Sciences, Jimma University, Jimma, Ethiopia
| | - Bing Zhang
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China, ; .,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China, ;
| | - Peng Lu
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China, ; .,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China, ;
| | - Jiaxin Pi
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China, ; .,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China, ;
| | - Zhidong Liu
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China, ; .,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China, ;
| |
Collapse
|
15
|
Resveratrol Enhances Apoptotic and Oxidant Effects of Paclitaxel through TRPM2 Channel Activation in DBTRG Glioblastoma Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4619865. [PMID: 30984336 PMCID: PMC6431513 DOI: 10.1155/2019/4619865] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/25/2018] [Accepted: 01/03/2019] [Indexed: 01/06/2023]
Abstract
Numerous studies have reported a strong association between increased production of reactive oxygen species (ROS) and the pathobiology of several diseases, and cancer in particular. Therefore, manipulation of cellular oxidative stress levels represents an important therapeutic target. Recently, resveratrol (RESV), a naturally occurring phytochemical, has been shown to sensitize several cell lines to the anticancer effects of other chemotherapeutic agents, including paclitaxel (PAX). However, the molecular mechanisms of action of RESV through oxidative sensitive TRPM2 channel activation remain unclear. The aim of this study was to evaluate the effect of combination therapy of RESV and PAX on activation of TRPM2 in DBTRG glioblastoma cells. DBTRG cells were divided into four treatment groups: control, RESV (50 μM), PAX (50 μM), and PAX + RESV for 24 hours. Our data shows that markers for apoptosis, mitochondrial membrane depolarization and mitochondrial function, intracellular steady-state ROS levels, caspase 3 activity, TRPM2 current density, and Ca2+ florescence intensity were significantly increased in DBTRG cells following treatment with PAX and RESV, respectively, although cell viability was also decreased by these treatments. These biochemical markers were further increased to favor the anticancer effects of PAX in DBTRG cells in combination with RESV. The PAX and RESV-mediated increase in current density and Ca2+ florescence intensity was decreased with a TRPM2 blocker. This suggests that for this combination therapy to have a substantial effect on apoptosis and cell viability, the TRPM2 channel must be stimulated.
Collapse
|
16
|
Salehi B, Mishra AP, Nigam M, Sener B, Kilic M, Sharifi-Rad M, Fokou PVT, Martins N, Sharifi-Rad J. Resveratrol: A Double-Edged Sword in Health Benefits. Biomedicines 2018; 6:E91. [PMID: 30205595 PMCID: PMC6164842 DOI: 10.3390/biomedicines6030091] [Citation(s) in RCA: 610] [Impact Index Per Article: 87.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/03/2018] [Accepted: 09/07/2018] [Indexed: 12/18/2022] Open
Abstract
Resveratrol (3,5,4'-trihydroxy-trans-stilbene) belongs to polyphenols' stilbenoids group, possessing two phenol rings linked to each other by an ethylene bridge. This natural polyphenol has been detected in more than 70 plant species, especially in grapes' skin and seeds, and was found in discrete amounts in red wines and various human foods. It is a phytoalexin that acts against pathogens, including bacteria and fungi. As a natural food ingredient, numerous studies have demonstrated that resveratrol possesses a very high antioxidant potential. Resveratrol also exhibit antitumor activity, and is considered a potential candidate for prevention and treatment of several types of cancer. Indeed, resveratrol anticancer properties have been confirmed by many in vitro and in vivo studies, which shows that resveratrol is able to inhibit all carcinogenesis stages (e.g., initiation, promotion and progression). Even more, other bioactive effects, namely as anti-inflammatory, anticarcinogenic, cardioprotective, vasorelaxant, phytoestrogenic and neuroprotective have also been reported. Nonetheless, resveratrol application is still being a major challenge for pharmaceutical industry, due to its poor solubility and bioavailability, as well as adverse effects. In this sense, this review summarized current data on resveratrol pharmacological effects.
Collapse
Affiliation(s)
- Bahare Salehi
- Medical Ethics and Law Research Center, Shahid Beheshti University of Medical Sciences, Tehran 88777539, Iran.
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran 22439789, Iran.
| | - Abhay Prakash Mishra
- Department of Pharmaceutical Chemistry, H. N. B. Garhwal (A Central) University, Srinagar Garhwal 246174, Uttarakhand, India.
| | - Manisha Nigam
- Department of Biochemistry, H. N. B. Garhwal (A Central) University, Srinagar Garhwal 246174, Uttarakhand, India.
| | - Bilge Sener
- Gazi University Faculty of Pharmacy Department of Pharmacognosy, Ankara 06330, Turkey.
| | - Mehtap Kilic
- Gazi University Faculty of Pharmacy Department of Pharmacognosy, Ankara 06330, Turkey.
| | - Mehdi Sharifi-Rad
- Department of Medical Parasitology, Zabol University of Medical Sciences, Zabol 61663335, Iran.
| | - Patrick Valere Tsouh Fokou
- Antimicrobial and Biocontrol Agents Unit, Department of Biochemistry, Faculty of Science, University of Yaounde 1, Ngoa Ekelle, Annex Fac. Sci, P.O. Box. 812, Yaounde-Cameroon.
| | - Natália Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, Porto 4200-319, Portugal.
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto 4200-135, Portugal.
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran 11369, Iran.
- Department of Chemistry, Richardson College for the Environmental Science Complex, The University of Winnipeg, Winnipeg, MB R3B 2G3, Canada.
| |
Collapse
|