1
|
Pei H, Wang Y, He W, Deng L, Lan Q, Zhang Y, Yang L, Hu K, Li J, Liu A, Ao X, Teng H, Liu S, Zou L, Li R, Yang Y. Research of Multicopper Oxidase and Its Degradation of Histamine in Lactiplantibacillus plantarum LPZN19. Microorganisms 2023; 11:2724. [PMID: 38004736 PMCID: PMC10672810 DOI: 10.3390/microorganisms11112724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
In order to explore the structural changes and products of histamine degradation by multicopper oxidase (MCO) in Lactiplantibacillus plantarum LPZN19, a 1500 bp MCO gene in L. plantarum LPZN19 was cloned, and the recombinant MCO was expressed in E. coli BL21 (DE3). After purification by Ni2+-NTA affinity chromatography, the obtained MCO has a molecular weight of 58 kDa, and it also has the highest enzyme activity at 50 °C and pH 3.5, with a relative enzyme activity of 100%, and it maintains 57.71% of the relative enzyme activity at 5% salt concentration. The secondary structure of MCO was determined by circular dichroism, in which the proportions of the α-helix, β-sheet, β-turn and random coil were 2.9%, 39.7%, 21.2% and 36.1%, respectively. The 6xj0.1.A with a credibility of 68.21% was selected as the template to predict the tertiary structure of MCO in L. plantarum LPZN19, and the results indicated that the main components of the tertiary structure of MCO were formed by the further coiling and folding of a random coil and β-sheet. Histamine could change the spatial structure of MCO by increasing the content of the α-helix and β-sheet. Finally, the LC-MS/MS identification results suggest that the histamine was degraded into imidazole acetaldehyde, hydrogen peroxide and ammonia.
Collapse
Affiliation(s)
- Huijie Pei
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (H.P.); (Y.W.); (W.H.); (L.D.); (Q.L.); (Y.Z.); (L.Y.); (K.H.); (J.L.); (X.A.); (H.T.); (S.L.); (R.L.)
| | - Yilun Wang
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (H.P.); (Y.W.); (W.H.); (L.D.); (Q.L.); (Y.Z.); (L.Y.); (K.H.); (J.L.); (X.A.); (H.T.); (S.L.); (R.L.)
| | - Wei He
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (H.P.); (Y.W.); (W.H.); (L.D.); (Q.L.); (Y.Z.); (L.Y.); (K.H.); (J.L.); (X.A.); (H.T.); (S.L.); (R.L.)
| | - Lin Deng
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (H.P.); (Y.W.); (W.H.); (L.D.); (Q.L.); (Y.Z.); (L.Y.); (K.H.); (J.L.); (X.A.); (H.T.); (S.L.); (R.L.)
| | - Qinjie Lan
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (H.P.); (Y.W.); (W.H.); (L.D.); (Q.L.); (Y.Z.); (L.Y.); (K.H.); (J.L.); (X.A.); (H.T.); (S.L.); (R.L.)
| | - Yue Zhang
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (H.P.); (Y.W.); (W.H.); (L.D.); (Q.L.); (Y.Z.); (L.Y.); (K.H.); (J.L.); (X.A.); (H.T.); (S.L.); (R.L.)
| | - Lamei Yang
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (H.P.); (Y.W.); (W.H.); (L.D.); (Q.L.); (Y.Z.); (L.Y.); (K.H.); (J.L.); (X.A.); (H.T.); (S.L.); (R.L.)
| | - Kaidi Hu
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (H.P.); (Y.W.); (W.H.); (L.D.); (Q.L.); (Y.Z.); (L.Y.); (K.H.); (J.L.); (X.A.); (H.T.); (S.L.); (R.L.)
| | - Jianlong Li
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (H.P.); (Y.W.); (W.H.); (L.D.); (Q.L.); (Y.Z.); (L.Y.); (K.H.); (J.L.); (X.A.); (H.T.); (S.L.); (R.L.)
| | - Aiping Liu
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (H.P.); (Y.W.); (W.H.); (L.D.); (Q.L.); (Y.Z.); (L.Y.); (K.H.); (J.L.); (X.A.); (H.T.); (S.L.); (R.L.)
| | - Xiaolin Ao
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (H.P.); (Y.W.); (W.H.); (L.D.); (Q.L.); (Y.Z.); (L.Y.); (K.H.); (J.L.); (X.A.); (H.T.); (S.L.); (R.L.)
| | - Hui Teng
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (H.P.); (Y.W.); (W.H.); (L.D.); (Q.L.); (Y.Z.); (L.Y.); (K.H.); (J.L.); (X.A.); (H.T.); (S.L.); (R.L.)
| | - Shuliang Liu
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (H.P.); (Y.W.); (W.H.); (L.D.); (Q.L.); (Y.Z.); (L.Y.); (K.H.); (J.L.); (X.A.); (H.T.); (S.L.); (R.L.)
| | - Likou Zou
- College of Resource, Sichuan Agricultural University, Chengdu 611130, China;
| | - Ran Li
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (H.P.); (Y.W.); (W.H.); (L.D.); (Q.L.); (Y.Z.); (L.Y.); (K.H.); (J.L.); (X.A.); (H.T.); (S.L.); (R.L.)
| | - Yong Yang
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (H.P.); (Y.W.); (W.H.); (L.D.); (Q.L.); (Y.Z.); (L.Y.); (K.H.); (J.L.); (X.A.); (H.T.); (S.L.); (R.L.)
| |
Collapse
|
2
|
Adigüzel AO, Könen-Adigüzel S, Cilmeli S, Mazmancı B, Yabalak E, Üstün-Odabaşı S, Kaya NG, Mazmancı MA. Heterologous expression, purification, and characterization of thermo- and alkali-tolerant laccase-like multicopper oxidase from Bacillus mojavensis TH309 and determination of its antibiotic removal potential. Arch Microbiol 2023; 205:287. [PMID: 37454356 DOI: 10.1007/s00203-023-03626-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
Laccases or laccase-like multicopper oxidases have great potential in bioremediation to oxidase phenolic or non-phenolic substrates. However, their inability to maintain stability in harsh environmental conditions and against non-substrate compounds is one of the main reasons for their limited use. The gene (mco) encoding multicopper oxidase from Bacillus mojavensis TH309 were cloned into pET14b( +), expressed in Escherichia coli, and purified as histidine tagged enzyme (BmLMCO). The molecular weight of the enzyme was about 60 kDa. The enzyme exhibited laccase-like activity toward 2,6-dimethoxyphenol (2,6-DMP), syringaldazine (SGZ), and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS). The highest enzyme activity was recorded at 80 °C and pH 8. BmLMCO showed a half-life of ~ 305, 99, 50, 46, 36, and 20 min at 40, 50, 60, 70, 80, and 90 °C, respectively. It retained more than 60% of its activity after pre-incubation in the range of pH 5-12 for 60 min. The enzyme activity significantly increased in the presence of 1 mM of Cu2+. Moreover, BmLMCO tolerated various chemicals and showed excellent compatibility with organic solvents. The Michaelis constant (Km) and the maximum velocity (Vmax) values of BmLMCO were 0.98 mM and 93.45 µmol/min, respectively, with 2,6-DMP as the substrate. BmLMCO reduced the antibacterial activity of cefprozil, gentamycin, and erythromycin by 72.3 ± 1.5%, 79.6 ± 6.4%, and 19.7 ± 4.1%, respectively. This is the first revealing shows the recombinant production of laccase-like multicopper oxidase from any B. mojavensis strains, its biochemical properties, and potential for use in bioremediation.
Collapse
Affiliation(s)
- Ali Osman Adigüzel
- Department of Molecular Biology and Genetics, Faculty of Science, Ondokuz Mayıs University, Samsun, Turkey.
| | | | - Sümeyye Cilmeli
- Department of Molecular Biology and Genetics, Faculty of Science, Ondokuz Mayıs University, Samsun, Turkey
| | - Birgül Mazmancı
- Department of Biology, Faculty of Science, Mersin University, Mersin, Turkey
| | - Erdal Yabalak
- Department of Chemistry Technology, Vocational School of Technical Sciences, Mersin University, Mersin, Turkey
| | - Sevde Üstün-Odabaşı
- Department of Environmental Engineering, Ondokuz Mayıs University, Samsun, Turkey
| | - Nisa Gül Kaya
- Department of Molecular Biology and Genetics, Faculty of Science, Ondokuz Mayıs University, Samsun, Turkey
| | | |
Collapse
|
3
|
Jiang J, Deng JL, Wang ZG, Chen XY, Wang SJ, Wang YC. Characterization of a New Laccase from Vibrio sp. with pH-stability, Salt-tolerance, and Decolorization Ability. Molecules 2023; 28:molecules28073037. [PMID: 37049802 PMCID: PMC10096025 DOI: 10.3390/molecules28073037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023] Open
Abstract
Laccases have been widely used for fruit juice clarification, food modification, and paper pulp delignification. In addition, laccases exhibit remarkable performance in the degradation of toxic substances, including pesticides, organic synthetic dyes, antibiotics, and organic pollutants. Thus, the screening and development of robust laccases has attracted significant attention. In this study, Vibrio sp. LA is a strain capable of producing cold-adapted laccases. The laccase coding gene L01 was cloned from this strain and expressed in Yarrowia lipolytica, a host with good secretion ability. The secreted L01 (approximate MW of 56,000 Da) had the activity and specific activity of 18.6 U/mL and 98.6 U/mg toward ABTS, respectively. The highest activity occurred at 35 °C. At 20 °C, L01 activity was over 70% of the maximum activity in pH conditions ranging from 4.5–10.0. Several synthetic dyes were efficiently degraded by L01. Owing to its robustness, salt tolerance, and pH stability, L01 is a promising catalytic tool for potential industrial applications.
Collapse
Affiliation(s)
- Jing Jiang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
- The National Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou 215009, China
- Correspondence:
| | - Jing-Ling Deng
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
- The National Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Zhi-Gang Wang
- Training Center, Qingdao Harbour Vocational & Technical College, Qingdao 266404, China
| | - Xiao-Yu Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
- The National Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Shu-Jie Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
- The National Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yong-Chuang Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
- The National Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
4
|
Ghosh S, Gandhi M, van Hullebusch ED, Das AP. Proteomic insights into Lysinibacillus sp.-mediated biosolubilization of manganese. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:40249-40263. [PMID: 33011949 DOI: 10.1007/s11356-020-10863-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/14/2020] [Indexed: 06/11/2023]
Abstract
There has been alarming depletion of manganese (Mn) reserves owing to the ongoing extensive mining operations for catering the massive industrial demand of this element. Moreover, the mining operations have been leading to the generation of Mn-rich waste, thereby contaminating both terrestrial and aquatic bodies. The current scenario necessitates the development of alternative processes for bioremediation as well as economic recovery of Mn from mining wastes. The present investigation aims to report the bioleaching of Mn by Lysinibacillus sp. from mining waste residues in the context of mine waste remediation. Results confirmed that the native isolate had a high Mn biosolubilization potential with a solubilizing efficiency of 84% at the end of a 21-day study under optimized conditions of pulp density 2% (< 150-μm particle size), pH 6.5, and temperature 30 °C. Fourier transform infrared spectroscopy (FTIR) studies followed by liquid chromatography mass spectrometry (LC-MS) analysis were used to ascertain the change in microbial protein conformation, configuration, and protein identification. The results revealed the expression of heat shock proteins (HSP) from the family HSP which is predominantly expressed in bacteria during stress conditions. This study represents the application of native bacterial strain in Mn biosolubilization. We foresee the utility of proteomics-based studies to provide a methodological framework to the underlying mechanism of metal solubilization, thereby facilitating the two-tier benefit of recovery of Mn from alternative sources as well as bioremediation of waste having high manganese content.
Collapse
Affiliation(s)
- Shreya Ghosh
- Amity Institute of Biotechnology, Amity University, New Town, Kolkata, 700135, India
| | - Mayuri Gandhi
- Centre for Research in Nano Technology & Science (CRNTS), Sophisticated Analytical Instrument Facility (SAIF), Indian Institute of Technology Bombay, Mumbai, India
| | - Eric D van Hullebusch
- Institut de physique du globe de Paris, CNRS, Université de Paris, F-75005, Paris, France
| | - Alok Prasad Das
- Department of Life Science, Rama Devi Women's University, Bhoinagar P.O, Bhubaneswar, Odisha, 751002, India.
| |
Collapse
|
5
|
Decembrino D, Girhard M, Urlacher VB. Use of Copper as a Trigger for the in Vivo Activity of E. coli Laccase CueO: A Simple Tool for Biosynthetic Purposes. Chembiochem 2021; 22:1470-1479. [PMID: 33332702 PMCID: PMC8248233 DOI: 10.1002/cbic.202000775] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/15/2020] [Indexed: 12/15/2022]
Abstract
Laccases are multi-copper oxidases that catalyze the oxidation of various electron-rich substrates with concomitant reduction of molecular oxygen to water. The multi-copper oxidase/laccase CueO of Escherichia coli is responsible for the oxidation of Cu+ to the less harmful Cu2+ in the periplasm. CueO has a relatively broad substrate spectrum as laccase, and its activity is enhanced by copper excess. The aim of this study was to trigger CueO activity in vivo for the use in biocatalysis. The addition of 5 mM CuSO4 was proven effective in triggering CueO activity at need with minor toxic effects on E. coli cells. Cu-treated E. coli cells were able to convert several phenolic compounds to the corresponding dimers. Finally, the endogenous CueO activity was applied to a four-step cascade, in which coniferyl alcohol was converted to the valuable plant lignan (-)-matairesinol.
Collapse
Affiliation(s)
- Davide Decembrino
- Institute of BiochemistryHeinrich-Heine University DüsseldorfUniversitätsstrasse 140225DüsseldorfGermany
| | - Marco Girhard
- Institute of BiochemistryHeinrich-Heine University DüsseldorfUniversitätsstrasse 140225DüsseldorfGermany
| | - Vlada B. Urlacher
- Institute of BiochemistryHeinrich-Heine University DüsseldorfUniversitätsstrasse 140225DüsseldorfGermany
| |
Collapse
|
6
|
Li B, Wang Y, Xue L, Lu S. Heterologous Expression and Application of Multicopper Oxidases from Enterococcus spp. for Degradation of Biogenic Amines. Protein Pept Lett 2021; 28:183-194. [PMID: 32543357 DOI: 10.2174/0929866527666200616160859] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Biogenic amines are harmful to human health at a certain extent. As a kind of biogenic amine oxidase, multicopper oxidase can be used to degrade them. Currently, the literature about enzyme from Enterococcus spp. are limited, and recombinant multicopper oxidase might be an effective way to degrade biogenic amines. OBJECTIVE (i) Select and identify strains that can degrade biogenic amines, (ii) overexpress enzyme from Enterococcus spp., (iii) measure gene expression and probe amine-degradation differences among strains (native, E. coli DH5α, and L. delbruckii), and (iv) examine the biochemical properties of recombinant multicopper oxidase, (v) apply the recombinant enzyme into smoked horsemeat sausage. METHODS Reverse transcription PCR and high-performance liquid chromatography were performed to examine gene expression and amine degradation rate. RESULTS The results demonstrated that target enzymes were successfully overexpressed, accompanied by increased amine-degrading activity (P <0.05). Gene from E. faecalis M5B was expressed in L. delbrueckii resulted in degradation rates for phenylethylamine, putrescine, histamine and tyramine of 54%, 52%, 70% and 40%, respectively, significantly higher than achieved by other recombinant strains. CONCLUSION In this work, gene expression levels were higher in recombinant M5B than recombinant M2B, regardless of host. E. coli is more stable to express multicopper oxidase. Besides, the amine-degrading ability was markedly increased in the two recombinant strains. After prolonged incubation, the recombinant enzyme could degrade three amines, and it displayed high alkali resistance and thermostability.
Collapse
Affiliation(s)
- Binbin Li
- College of Food Science, Shihezi University, Shihezi 832000, China
| | - Yuan Wang
- College of Food Science, Shihezi University, Shihezi 832000, China
| | - Linlin Xue
- College of Food Science, Shihezi University, Shihezi 832000, China
| | - Shiling Lu
- College of Food Science, Shihezi University, Shihezi 832000, China
| |
Collapse
|
7
|
Li B, Lu S. The Importance of Amine-degrading Enzymes on the Biogenic Amine Degradation in Fermented Foods: A review. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.09.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
8
|
Shafiei M, Afzali F, Karkhane AA, Ebrahimi SM, Haghbeen K, Aminzadeh S. Cohnella sp. A01 laccase: thermostable, detergent resistant, anti-environmental and industrial pollutants enzyme. Heliyon 2019; 5:e02543. [PMID: 31687608 PMCID: PMC6819783 DOI: 10.1016/j.heliyon.2019.e02543] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 06/17/2019] [Accepted: 09/26/2019] [Indexed: 01/30/2023] Open
Abstract
Laccase (EC 1.10.3.2; benzenediol; oxygen oxidoreductases) is a multi-copper oxidase that catalyzes the oxidation of phenols, polyphenols, aromatic amines, and different non-phenolic substrates with concomitant reduction of O2 to H2O. Enzymatic oxidation techniques have the potential of implementation in different areas of industrial fields. In this study, the Cohnella sp. A01 laccase gene was cloned into pET-26 (b+) vector and was transformed to E. coli BL21. Then it was purified using His tag affinity (Ni sepharose resin) chromatography. The estimated molecular weight was approximately 60 kDa using SDS-PAGE. The highest enzyme activity and best pH for 2,6-dimethoxyphenol (DMP) oxidation were recorded as 8 at 90 °C respectively. The calculated half-life and kinetic values including Km, Vmax, turn over number (kcat), and catalytic efficiency (kcat/Km) of the enzyme were 106 min at 90 °C and 686 μM, 10.69 U/ml, 20.3 S−, and 0.029 s−1 μM−1, respectively. The DMP was available as the substrate in all the calculations. Enzyme activity enhanced in the presence of Cu2+, NaCl, SDS, n-hexane, Triton X-100, tween 20, and tween 80, significantly. The binding residues were predicted and mapped upon the modeled tertiary structure of identified laccase. The remaining activity and structural properties of Cohnella sp. A01 laccase in extreme conditions such as high temperatures and presence of metals, detergents, and organic solvents suggest the potential of this enzyme in biotechnological and industrial applications. This process has been patented in Iranian Intellectual Property Centre under License No: 91325.
Collapse
Affiliation(s)
- Masoomeh Shafiei
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Iran
| | - Farzaneh Afzali
- Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Iran
| | - Ali Asghar Karkhane
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Iran
| | - S Mehdi Ebrahimi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modarres University, Iran
| | - Kamahldin Haghbeen
- Institute of Agricultural Biotechnology, National Institute of Genetic Engineering and Biotechnology, Iran
| | - Saeed Aminzadeh
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Iran
| |
Collapse
|
9
|
Enhanced expression of a recombinant multicopper oxidase, CueO, from Escherichia coli and its laccase activity towards aromatic substrates. Polym Degrad Stab 2019. [DOI: 10.1016/j.polymdegradstab.2019.02.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Chauhan PS, Goradia B, Saxena A. Bacterial laccase: recent update on production, properties and industrial applications. 3 Biotech 2017; 7:323. [PMID: 28955620 PMCID: PMC5602783 DOI: 10.1007/s13205-017-0955-7] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 09/07/2017] [Indexed: 01/17/2023] Open
Abstract
Laccases (benzenediol: oxygen oxidoreductase, EC 1.10.3.2) are multi-copper enzymes which catalyze the oxidation of a wide range of phenolic and non-phenolic aromatic compounds in the presence or absence of a mediator. Till date, laccases have mostly been isolated from fungi and plants, whereas laccase from bacteria has not been well studied. Bacterial laccases have several unique properties that are not characteristics of fungal laccases such as stability at high temperature and high pH. Bacteria produce these enzymes either extracellularly or intracellularly and their activity is in a wide range of temperature and pH. It has application in pulp biobleaching, bioremediation, textile dye decolorization, pollutant degradation, biosensors, etc. Hence, comprehensive information including sources, production conditions, characterization, cloning and biotechnological applications is needed for the effective understanding and application of these enzymes at the industrial level. The present review provides exhaustive information of bacterial laccases reported till date.
Collapse
Affiliation(s)
- Prakram Singh Chauhan
- School of Biological Sciences, G. B. Pant, University of Agricultural and Technology, Pantnagar, Uttarakhand 263145 India
| | - Bindi Goradia
- Marine Biotechnology and Ecology Division, Council of Scientific and Industrial Research – Central Salt & Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar, Gujarat 364 021 India
| | - Arunika Saxena
- Department of Chemistry, Samrat Prithviraj Chauhan Government College, Beawar Road, Ajmer, Rajasthan 305001 India
| |
Collapse
|
11
|
Yang S, Long Y, Yan H, Cai H, Li Y, Wang X. Gene cloning, identification, and characterization of the multicopper oxidase CumA fromPseudomonassp. 593. Biotechnol Appl Biochem 2016; 64:347-355. [DOI: 10.1002/bab.1501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 04/10/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Sheng Yang
- The Faculty of Life Sciences; Hubei University; Wuhan People's Republic of China
- Hubei Collaborative innovation Center for Green Transformation of Bio-Resources; Hubei University; Wuhan People's Republic of China
| | - Yan Long
- College of Life Sciences; Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education); State Key Laboratory of Virology; Wuhan University; Wuhan People's Republic of China
| | - Hong Yan
- The Faculty of Life Sciences; Hubei University; Wuhan People's Republic of China
- Hubei Collaborative innovation Center for Green Transformation of Bio-Resources; Hubei University; Wuhan People's Republic of China
| | - Huawan Cai
- The Faculty of Life Sciences; Hubei University; Wuhan People's Republic of China
- Hubei Collaborative innovation Center for Green Transformation of Bio-Resources; Hubei University; Wuhan People's Republic of China
| | - Yadong Li
- The Faculty of Life Sciences; Hubei University; Wuhan People's Republic of China
- Hubei Collaborative innovation Center for Green Transformation of Bio-Resources; Hubei University; Wuhan People's Republic of China
| | - Xingguo Wang
- The Faculty of Life Sciences; Hubei University; Wuhan People's Republic of China
- Hubei Collaborative innovation Center for Green Transformation of Bio-Resources; Hubei University; Wuhan People's Republic of China
| |
Collapse
|
12
|
Bourguignon T, Šobotník J, Brabcová J, Sillam-Dussès D, Buček A, Krasulová J, Vytisková B, Demianová Z, Mareš M, Roisin Y, Vogel H. Molecular Mechanism of the Two-Component Suicidal Weapon of Neocapritermes taracua Old Workers. Mol Biol Evol 2015; 33:809-19. [PMID: 26609080 DOI: 10.1093/molbev/msv273] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In termites, as in many social insects, some individuals specialize in colony defense, developing diverse weaponry. As workers of the termite Neocapritermes taracua (Termitidae: Termitinae) age, their efficiency to perform general tasks decreases, while they accumulate defensive secretions and increase their readiness to fight. This defensive mechanism involves self-sacrifice through body rupture during which an enzyme, stored as blue crystals in dorsal pouches, converts precursors produced by the labial glands into highly toxic compounds. Here, we identify both components of this activated defense system and describe the molecular basis responsible for the toxicity of N. taracua worker autothysis. The blue crystals are formed almost exclusively by a specific protein named BP76. By matching N. taracua transcriptome databases with amino acid sequences, we identified BP76 to be a laccase. Following autothysis, the series of hydroquinone precursors produced by labial glands get mixed with BP76, resulting in the conversion of relatively harmless hydroquinones into toxic benzoquinone analogues. Neocapritermes taracua workers therefore rely on a two-component activated defense system, consisting of two separately stored secretions that can react only after suicidal body rupture, which produces a sticky and toxic cocktail harmful to opponents.
Collapse
Affiliation(s)
- Thomas Bourguignon
- School of Biological Sciences, University of Sydney, Sydney, NSW, Australia Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic
| | - Jan Šobotník
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic
| | - Jana Brabcová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - David Sillam-Dussès
- Institute of Research for Development-Sorbonne Universités, iEES-Paris, Bondy, France University Paris 13-Sorbonne Paris Cité, LEEC, Villetaneuse, France
| | - Aleš Buček
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jana Krasulová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Blahoslava Vytisková
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic
| | - Zuzana Demianová
- IMP-the Research Institute of Molecular Pathology, Vienna, Austria
| | - Michael Mareš
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Yves Roisin
- Evolutionary Biology and Ecology, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
13
|
Fernandes TAR, Silveira WBD, Passos FML, Zucchi TD. Laccases from <i>Actinobacteria</i>—What We Have and What to Expect. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/aim.2014.46035] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|