1
|
Mahboudi S, Abbas Shojaosadati S, Maghsoudi A, Mahmoudi B. Development of a continuous fermentation process for the production of recombinant uricase enzyme by Pichia pastoris. Biotechnol Appl Biochem 2024; 71:123-131. [PMID: 37846178 DOI: 10.1002/bab.2526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 10/07/2023] [Indexed: 10/18/2023]
Abstract
Recent studies in the biopharmaceutical industry have shown an increase in the productivity and production efficiency of recombinant proteins by continuous culture. In this research, a new upstream fermentation process was developed for the production of recombinant uricase in the methylotrophic yeast Pichia pastoris. Expression of recombinant protein in this system is under the control of the AOX1 promoter and therefore requires methanol as an inducing agent and carbon/energy source. Considering the biphasic growth characteristics of conventional fed-batch fermentation, physical separation of the growth and induction stages for better control of the continuous fermentation process resulted in higher dry-cell weight (DCW) and enhanced recombinant urate oxidase activity. The DCW and recombinant uricase activity enzyme for fed-batch fermentation were 79 g/L and 6.8 u/mL. During the continuous process, in the growth fermenter at a constant dilution rate of 0.025 h-1 , DCW increased to 88.39 g/L. In the induction fermenter, at methanol feeding rates of 30, 60, and 80 mL/h, a recombinant uricase activity was 4.13, 7.2, and 0 u/mL, respectively. The optimum methanol feeding regime in continuous fermentation resulted in a 4.5-fold improvement in productivity compared with fed-batch fermentation from 0.04 u/mL/h (0.0017 mg/mL/h) to 0.18 u/mL/h (0.0078 mg/mL/h).
Collapse
Affiliation(s)
- Sanaz Mahboudi
- Department of Biotechnology, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Seyed Abbas Shojaosadati
- Department of Biotechnology, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Amir Maghsoudi
- Department of Research and Development, PersisGen Par Company, Tehran, Iran
| | - Behrouz Mahmoudi
- Department of Medical Biotechnology, Faculty of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
2
|
Chen S, Rehm B. Use Intein Cleavable Polyhydroxyalkanoate Synthase Fusions to Improve Protein Solubility. Methods Mol Biol 2022; 2406:145-153. [PMID: 35089555 DOI: 10.1007/978-1-0716-1859-2_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Recombinant E. coli producing intein-cleavable polyhydroxyalkanoate synthase fusions mediates the intracellular formation of polyhydroxyalkanoate (PHA) particles densely coated with intein-cleavable target protein fusion. These PHA particles can be efficiently purified from lysed cells. The self-cleaving intein performs as a bio-linker between the PHA synthase and the target protein. The tagless target protein can be released as pure soluble protein from the PHA particles by a simple pH reduction to 6.0. Here we describe that PHA particles serve as bioseparation resin for purification of soluble target proteins with pharmaceutical grade purity, similar to commercial affinity separation technologies. This cost-effective technique does not involve multiple complicated protein purification procedures, and we have exploited this approach to purify six target proteins: green fluorescent protein (GFP) from A. victoria, antigen Rv1626 from M. tuberculosis, the immunoglobulin G (IgG) binding ZZ domain of protein A derived from Staphylococcus aureus, human tumor necrosis factor alpha (TNFα), human granulocyte colony-stimulating factor (G-CSF), and human interferon alpha 2b (IFNα2b).
Collapse
Affiliation(s)
- Shuxiong Chen
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - Bernd Rehm
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia.
| |
Collapse
|
3
|
Amaranto M, Vaccarello P, Correa EME, Barra JL, Godino A. Novel intein-based self-cleaving affinity tag for recombinant protein production in Escherichia coli. J Biotechnol 2021; 332:126-134. [PMID: 33878389 DOI: 10.1016/j.jbiotec.2021.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/06/2021] [Accepted: 04/13/2021] [Indexed: 11/28/2022]
Abstract
We evaluated several intein-based self-cleaving affinity tags for expression and single-step affinity chromatography purification of recombinant proteins produced in Escherichia coli. We used human growth hormone (hGH) as target protein that contains two internal disulfide bridges and an N-terminal phenylalanine. Use of N-terminal thiol-induced Sce VMA1 intein affinity tag resulted in purified hGH deficient in disulfide bonds. Inteins with self-cleavage inducible by pH and/or temperature shift were analyzed. N-terminal Ssp DnaX intein affinity tag resulted in a completely cleaved cytosolic protein, whereas N-terminal Ssp DnaB intein affinity tag resulted in a cytosolic fusion protein incapable of releasing hGH. Periplasmic expression of target protein was analyzed using an N-terminal signal peptide and C-terminal Ssp DnaX pH-inducible self-cleaving affinity tag. The fusion protein was properly expressed in pH 8 buffered culture medium. Fusion of a periplasmic signal peptide to the N-terminus of the POI allowed secretion to the periplasmic region and presence of the natural N-terminal amino acid of the POI following cleavage. Periplasmic expression of hGH fused to this novel C-terminal DnaX intein-based self-cleaving affinity tag made possible expression and purification of hGH protein containing disulfide bonds and free of extra amino acids.
Collapse
Affiliation(s)
- Marilla Amaranto
- Departamento de Química Biológica Ranwel Caputto, Centro de Investigaciones en Química Biológica de Córdoba, CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| | - Paula Vaccarello
- Departamento de Química Biológica Ranwel Caputto, Centro de Investigaciones en Química Biológica de Córdoba, CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| | - Elisa M E Correa
- Departamento de Química Biológica Ranwel Caputto, Centro de Investigaciones en Química Biológica de Córdoba, CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| | - José L Barra
- Departamento de Química Biológica Ranwel Caputto, Centro de Investigaciones en Química Biológica de Córdoba, CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| | - Agustina Godino
- Departamento de Química Biológica Ranwel Caputto, Centro de Investigaciones en Química Biológica de Córdoba, CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
4
|
Hofmann T, Krah S, Sellmann C, Zielonka S, Doerner A. Greatest Hits-Innovative Technologies for High Throughput Identification of Bispecific Antibodies. Int J Mol Sci 2020; 21:E6551. [PMID: 32911608 PMCID: PMC7554978 DOI: 10.3390/ijms21186551] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/15/2022] Open
Abstract
Recent years have shown a tremendous increase and diversification in antibody-based therapeutics with advances in production techniques and formats. The plethora of currently investigated bi- to multi-specific antibody architectures can be harnessed to elicit a broad variety of specific modes of actions in oncology and immunology, spanning from enhanced selectivity to effector cell recruitment, all of which cannot be addressed by monospecific antibodies. Despite continuously growing efforts and methodologies, the identification of an optimal bispecific antibody as the best possible combination of two parental monospecific binders, however, remains challenging, due to tedious cloning and production, often resulting in undesired extended development times and increased expenses. Although automated high throughput screening approaches have matured for pharmaceutical small molecule development, it was only recently that protein bioconjugation technologies have been developed for the facile generation of bispecific antibodies in a 'plug and play' manner. In this review, we provide an overview of the most relevant methodologies for bispecific screening purposes-the DuoBody concept, paired light chain single cell production approaches, Sortase A and Transglutaminase, the SpyTag/SpyCatcher system, and inteins-and elaborate on the benefits as well as drawbacks of the different technologies.
Collapse
Affiliation(s)
- Tim Hofmann
- Advanced Cell Culture Technologies, Merck Life Sciences KGaA, Frankfurter Strasse 250, D-64293 Darmstadt, Germany;
| | - Simon Krah
- Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Frankfurter Strasse 250, D-64293 Darmstadt, Germany; (S.K.); (C.S.); (S.Z.)
| | - Carolin Sellmann
- Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Frankfurter Strasse 250, D-64293 Darmstadt, Germany; (S.K.); (C.S.); (S.Z.)
| | - Stefan Zielonka
- Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Frankfurter Strasse 250, D-64293 Darmstadt, Germany; (S.K.); (C.S.); (S.Z.)
| | - Achim Doerner
- Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Frankfurter Strasse 250, D-64293 Darmstadt, Germany; (S.K.); (C.S.); (S.Z.)
| |
Collapse
|
5
|
Woods D, Vangaveti S, Egbanum I, Sweeney AM, Li Z, Bacot-Davis V, LeSassier DS, Stanger M, Hardison GE, Li H, Belfort M, Lennon CW. Conditional DnaB Protein Splicing Is Reversibly Inhibited by Zinc in Mycobacteria. mBio 2020; 11:e01403-20. [PMID: 32665276 PMCID: PMC7360933 DOI: 10.1128/mbio.01403-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 06/09/2020] [Indexed: 11/20/2022] Open
Abstract
Inteins, as posttranslational regulatory elements, can tune protein function to environmental changes by conditional protein splicing (CPS). Translated as subdomains interrupting host proteins, inteins splice to scarlessly join flanking sequences (exteins). We used DnaB-intein1 (DnaBi1) from a replicative helicase of Mycobacterium smegmatis to build a kanamycin intein splicing reporter (KISR) that links splicing of DnaBi1 to kanamycin resistance. Using expression in heterologous Escherichia coli, we observed phenotypic classes of various levels of splicing-dependent resistance (SDR) and related these to the insertion position of DnaBi1 within the kanamycin resistance protein (KanR). The KanR-DnaBi1 construct demonstrating the most stringent SDR was used to probe for CPS of DnaB in the native host environment, M. smegmatis We show here that zinc, important during mycobacterial pathogenesis, inhibits DnaB splicing in M. smegmatis Using an in vitro reporter system, we demonstrated that zinc potently and reversibly inhibited DnaBi1 splicing, as well as splicing of a comparable intein from Mycobacterium leprae Finally, in a 1.95 Å crystal structure, we show that zinc inhibits splicing through binding to the very cysteine that initiates the splicing reaction. Together, our results provide compelling support for a model whereby mycobacterial DnaB protein splicing, and thus DNA replication, is responsive to environmental zinc.IMPORTANCE Inteins are present in a large fraction of prokaryotes and localize within conserved proteins, including the mycobacterial replicative helicase DnaB. In addition to their extensive protein engineering applications, inteins have emerged as environmentally responsive posttranslational regulators of the genes that encode them. While several studies have shown compelling evidence of conditional protein splicing (CPS), examination of splicing in the native host of the intein has proven to be challenging. Here, we demonstrated through a number of measures, including the use of a splicing-dependent sensor capable of monitoring intein activity in the native host, that zinc is a potent and reversible inhibitor of mycobacterial DnaB splicing. This work also expands our knowledge of site selection for intein insertion within nonnative proteins, demonstrating that splicing-dependent host protein activation correlates with proximity to the active site. Additionally, we surmise that splicing regulation by zinc has mycobacteriocidal and CPS application potential.
Collapse
Affiliation(s)
- Daniel Woods
- Department of Biological Sciences, University at Albany, Albany, New York, USA
| | - Sweta Vangaveti
- The RNA Institute, University at Albany, Albany, New York, USA
| | - Ikechukwu Egbanum
- Department of Biological Sciences, University at Albany, Albany, New York, USA
| | - Allison M Sweeney
- Department of Biology, Murray State University, Murray, Kentucky, USA
| | - Zhong Li
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Valjean Bacot-Davis
- Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | | | - Matthew Stanger
- Department of Biological Sciences, University at Albany, Albany, New York, USA
| | | | - Hongmin Li
- Department of Biological Sciences, University at Albany, Albany, New York, USA
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Marlene Belfort
- Department of Biological Sciences, University at Albany, Albany, New York, USA
- The RNA Institute, University at Albany, Albany, New York, USA
| | | |
Collapse
|
6
|
Balkhi SS, Hojati Z. The Effects of Self-cleavage Intein-ELK16 Tag in the Transcript Steric Hindrance of IFN. Indian J Clin Biochem 2020; 36:159-166. [PMID: 33867706 DOI: 10.1007/s12291-020-00872-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 01/11/2020] [Indexed: 11/28/2022]
Abstract
Intervening proteins (Inteins) are identified as protein domains in a precursor protein structure. Inteins can excise itself from precursor protein and join the remaining portions which result in forming an active protein. In this study, the transcript expression level of recombinant human Interferon beta (rhIFNβ) connected to the self-cleavage Intein-ELK16 (LELELKLKLELELKLK) tag was measured by real-time PCR in HEK293T cell line. First, the sequence of Mycobacterium tuberculosis RecA (Mtu recA) was obtained from the InBase database to do appropriate changes including adding the restriction sites, kozak sequence, signal peptide and ELK16 sequence by SnapGene software. The RNA secondary structure were also examined using the online RNA Fold 2.2 web server. Next, the construct was inserted into pUC19 plasmid. The sequence of rhIFNβ was also cloned into pBudCE4.1 vector. In the next step, the rhIFNβ was ligated into the construct (self-cleavage tag of ELK16) using T4 DNA ligase and the recombinant construct was transfected into HEK293T cell line. Finally, expression of the cassette was evaluated by real-time PCR. The analysis of secondary RNA structure indicates a minimum free energy of MEF - 261.10 kcal/mol. Our results indicate that IFNβ was upregulated (37.8-fold, p < 0.0001) in cells which transfected by rhIFNβ-ELK16 compared to the mock and un-transfected conditions. Altogether, our results show that the presence of mini self-cleavage Intein-ELK16 tag along with the rhIFNβ had no interference in transcription of rhIFNβ in the HEK293T cell line.
Collapse
Affiliation(s)
- Sayed Sharif Balkhi
- Division of Genetics, Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, 81746-73441 Iran
| | - Zohreh Hojati
- Division of Genetics, Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, 81746-73441 Iran
| |
Collapse
|
7
|
Fernandes JAL, Prandini THR, Castro MDCA, Arantes TD, Giacobino J, Bagagli E, Theodoro RC. Evolution and Application of Inteins in Candida species: A Review. Front Microbiol 2016; 7:1585. [PMID: 27777569 PMCID: PMC5056185 DOI: 10.3389/fmicb.2016.01585] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 09/21/2016] [Indexed: 11/13/2022] Open
Abstract
Inteins are invasive intervening sequences that perform an autocatalytic splicing from their host proteins. Among eukaryotes, these elements are present in many fungal species, including those considered opportunistic or primary pathogens, such as Candida spp. Here we reviewed and updated the list of Candida species containing inteins in the genes VMA, THRRS and GLT1 and pointed out the importance of these elements as molecular markers for molecular epidemiological researches and species-specific diagnosis, since the presence, as well as the size of these inteins, is polymorphic among the different species. Although absent in Candida albicans, these elements are present in different sizes, in some environmental Candida spp. and also in most of the non-albicans Candida spp. considered emergent opportunistic pathogens. Besides, the possible role of these inteins in yeast physiology was also discussed in the light of the recent findings on the importance of these elements as post-translational modulators of gene expression, reinforcing their relevance as alternative therapeutic targets for the treatment of non-albicans Candida infections, because, once the splicing of an intein is inhibited, its host protein, which is usually a housekeeping protein, becomes non-functional.
Collapse
Affiliation(s)
- José A L Fernandes
- Institute of Tropical Medicine of Rio Grande do Norte, Universidade Federal do Rio Grande do Norte Natal, Brazil
| | - Tâmara H R Prandini
- Department of Microbiology and Immunology, Institute of Biosciences, Universidade Estadual Paulista Julio de Mesquita Filho Botucatu, Brazil
| | - Maria da Conceiçao A Castro
- Institute of Tropical Medicine of Rio Grande do Norte, Universidade Federal do Rio Grande do Norte Natal, Brazil
| | - Thales D Arantes
- Institute of Tropical Medicine of Rio Grande do Norte, Universidade Federal do Rio Grande do NorteNatal, Brazil; Post-graduation Program in Biochemistry, Universidade Federal do Rio Grande do NorteNatal, Brazil
| | - Juliana Giacobino
- Department of Microbiology and Immunology, Institute of Biosciences, Universidade Estadual Paulista Julio de Mesquita Filho Botucatu, Brazil
| | - Eduardo Bagagli
- Department of Microbiology and Immunology, Institute of Biosciences, Universidade Estadual Paulista Julio de Mesquita Filho Botucatu, Brazil
| | - Raquel C Theodoro
- Institute of Tropical Medicine of Rio Grande do Norte, Universidade Federal do Rio Grande do Norte Natal, Brazil
| |
Collapse
|