1
|
Yu X, Xu M, Gao Z, Guan H, Zhu Q. Advances in antitumor effects of pterostilbene and its derivatives. Future Med Chem 2025; 17:109-124. [PMID: 39655793 DOI: 10.1080/17568919.2024.2435251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 11/20/2024] [Indexed: 01/02/2025] Open
Abstract
Pterostilbene (PT) is a naturally occurring small molecule stilbenoid that has garnered significant attention due to its potential therapeutic effects in tumor diseases. In this review, we conducted a comprehensive analysis of the antitumor effects of PT and its derivatives on various cancer types, including colon, breast, liver, lung, and pancreatic cancers in recent 20 years. We have succinctly summarized the PT derivatives that exhibit superior anti-tumor efficacy compared to PT. Additionally, we reviewed the potential structure-activity relationship (SAR) rules and clinical application methods to establish a foundation for chemical modification and clinical utilization of stilbene compounds.
Collapse
Affiliation(s)
- Xin Yu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Mengzhen Xu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ziye Gao
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Haixing Guan
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qingjun Zhu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
2
|
Vasilev H, Šmejkal K, Jusková S, Vaclavik J, Treml J. Five New Tamarixetin Glycosides from Astragalus thracicus Griseb. Including Some Substituted with the Rare 3-Hydroxy-3-methylglutaric Acid and Their Collagenase Inhibitory Effects In Vitro. ACS OMEGA 2024; 9:18023-18031. [PMID: 38680358 PMCID: PMC11044239 DOI: 10.1021/acsomega.3c09677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/11/2024] [Accepted: 03/21/2024] [Indexed: 05/01/2024]
Abstract
Along with the known kaempferol-3-O-α-l-rhamnopyranosyl-(1 → 2)-[6-O-(3-hydroxy-3-methylglutaryl)]-β-d-galactopyranoside (1), five new flavonoids, containing the rarely isolated aglycon tamarixetin, were isolated from a methanolic extract of the endemic Balkan species Astragalus thracicus Griseb. Three of the new compounds are substituted with 3-hydroxy-3-methylglutaryl residue (HMG), untypical for the genus Astragalus. The compounds were identified as tamarixetin-3-O-α-l-rhamnopyranosyl-(1 → 2)-[6-O-(3-hydroxy-3-methylglutaryl)]-β-d-galactopyranoside (2), tamarixetin-3-O-(2,6-di-O-α-l-rhamnopyranosyl)-β-d-galactopyranoside (3), tamarixetin 3-O-β-d-apiofuranosyl-(1 → 2)-β-d-galactopyranoside (4), tamarixetin-3-O-β-d-apiofuranosyl-(1 → 2)-[6-O-(3-hydroxy-3-methylglutaryl)]-β-d-galactopyranoside (5), and tamarixetin-3-O-β-d-apiofuranosyl-(1 → 2)-[α-l-rhamnopyranosyl-(1 → 6)]-β-d-galactopyranoside (6). Selected compounds from A. thracicus were tested to evaluate their anticollagenase activity. The greatest effect was observed for quercetin-3-O-β-d-apiofuranosyl-(1 → 2)-β-d-galactopyranoside, possibly due to the presence of an ortho-dihydroxy arrangement of flavonoid ring B. The effect on collagenase and elastase was further evaluated also by in silico study, and the test compounds showed some level of in silico interaction.
Collapse
Affiliation(s)
- Hristo Vasilev
- Department
of Pharmacognosy, Faculty of Pharmacy, Medical
University, 2 Dunav Street, Sofia 1000, Bulgaria
- Department
of Natural Drugs, Faculty of Pharmacy, Masaryk
University, Palackého tř. 1946/1, Brno 61200, Czech Republic
| | - Karel Šmejkal
- Department
of Natural Drugs, Faculty of Pharmacy, Masaryk
University, Palackého tř. 1946/1, Brno 61200, Czech Republic
| | - Sabina Jusková
- Department
of Natural Drugs, Faculty of Pharmacy, Masaryk
University, Palackého tř. 1946/1, Brno 61200, Czech Republic
| | - Jiri Vaclavik
- Department
of Natural Drugs, Faculty of Pharmacy, Masaryk
University, Palackého tř. 1946/1, Brno 61200, Czech Republic
| | - Jakub Treml
- Department
of Molecular Pharmacy, Faculty of Pharmacy, Masaryk University, Palackého tř. 1946/1, Brno 61200, Czech Republic
| |
Collapse
|
3
|
Islam MR, Jony MH, Thufa GK, Akash S, Dhar PS, Rahman MM, Afroz T, Ahmed M, Hemeg HA, Rauf A, Thiruvengadam M, Venkidasamy B. A clinical study and future prospects for bioactive compounds and semi-synthetic molecules in the therapies for Huntington's disease. Mol Neurobiol 2024; 61:1237-1270. [PMID: 37698833 DOI: 10.1007/s12035-023-03604-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/21/2023] [Indexed: 09/13/2023]
Abstract
A neurodegenerative disorder (ND) refers to Huntington's disease (HD) which affects memory loss, weight loss, and movement dysfunctions such as chorea and dystonia. In the striatum and brain, HD most typically impacts medium-spiny neurons. Molecular genetics, excitotoxicity, oxidative stress (OS), mitochondrial, and metabolic dysfunction are a few of the theories advanced to explicit the pathophysiology of neuronal damage and cell death. Numerous in-depth studies of the literature have supported the therapeutic advantages of natural products in HD experimental models and other treatment approaches. This article briefly discusses the neuroprotective impacts of natural compounds against HD models. The ability of the discovered natural compounds to suppress HD was tested using either in vitro or in vivo models. Many bioactive compounds considerably lessened the memory loss and motor coordination brought on by 3-nitropropionic acid (3-NP). Reduced lipid peroxidation, increased endogenous enzymatic antioxidants, reduced acetylcholinesterase activity, and enhanced mitochondrial energy generation have profoundly decreased the biochemical change. It is significant since histology showed that therapy with particular natural compounds lessened damage to the striatum caused by 3-NP. Moreover, natural products displayed varying degrees of neuroprotection in preclinical HD studies because of their antioxidant and anti-inflammatory properties, maintenance of mitochondrial function, activation of autophagy, and inhibition of apoptosis. This study highlighted about the importance of bioactive compounds and their semi-synthetic molecules in the treatment and prevention of HD.
Collapse
Affiliation(s)
- Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Maruf Hossain Jony
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Gazi Kaifeara Thufa
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Shopnil Akash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Puja Sutra Dhar
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Md Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Tahmina Afroz
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Muniruddin Ahmed
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Hassan A Hemeg
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Taibah University, Al-Medinah Al-Monawara, Saudi Arabia
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Khyber Pukhtanukha, Pakistan.
| | - Muthu Thiruvengadam
- Department of Applied Bioscience, College of Life and Environmental Science, Konkuk University, Seoul, 05029, South Korea.
| | - Baskar Venkidasamy
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, India.
| |
Collapse
|
4
|
Xiang Y, Xu Y, Li J, Jiang J, Wang Y, Li X, Ai W, Mi P, Yang Z, Zheng Z. A Review on the Mechanism and Structure-activity Relationship of Resveratrol Heteroaryl Analogues. Comb Chem High Throughput Screen 2024; 27:947-958. [PMID: 37448369 DOI: 10.2174/1386207326666230713125512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 02/19/2023] [Accepted: 03/15/2023] [Indexed: 07/15/2023]
Abstract
Resveratrol is one of the most interesting naturally-occurring nonflavonoid phenolic compounds with various biological activities, such as anticancer, neuroprotection, antibacterial, and anti-inflammatory. However, there is no clinical usage of resveratrol due to either its poor activity or poor pharmacokinetic properties. Heteroarenes-modified resveratrol is one pathway to improve its biological activities and bioavailability, and form more modification sites. In this review, we present the progress of heteroaryl analogues of resveratrol with promising biological activities in the latest five years, ranging from the synthesis to the structure-activity relationship and mechanism of actions. Finally, introducing heteroarenes into resveratrol is an effective strategy, which focuses on the selectivity of structure-activity relationship in vivo.
Collapse
Affiliation(s)
- Yijun Xiang
- Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yao Xu
- Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Jiaxin Li
- Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Jingyi Jiang
- Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yanjie Wang
- Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xiaoshun Li
- Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Wenbin Ai
- Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Pengbing Mi
- Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zehua Yang
- Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zitong Zheng
- Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| |
Collapse
|
5
|
Navacchia ML, Marchesi E, Perrone D. Bile Acid Conjugates with Anticancer Activity: Most Recent Research. Molecules 2020; 26:E25. [PMID: 33374573 PMCID: PMC7793148 DOI: 10.3390/molecules26010025] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 01/14/2023] Open
Abstract
The advantages of a treatment modality that combines two or more therapeutic agents in cancer therapy encourages the study of hybrid functional compounds for pharmacological applications. In light of this, we reviewed recent works on hybrid molecules based on bile acids. Due to their biological properties, as well as their different chemical/biochemical reactive moieties, bile acids can be considered very interesting starting molecules for conjugation with natural or synthetic bioactive molecules.
Collapse
Affiliation(s)
- Maria Luisa Navacchia
- Institute of Organic Synthesis and Photoreactivity, National Research Council, Piero Gobetti 101, 40129 Bologna, Italy
| | - Elena Marchesi
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Luigi Borsari 46, 44121 Ferrara, Italy;
| | - Daniela Perrone
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Luigi Borsari 46, 44121 Ferrara, Italy;
| |
Collapse
|
6
|
Nair MS, Shukla A. Molecular modeling, simulation and principal component analysis of binding of resveratrol and its analogues with DNA. J Biomol Struct Dyn 2019; 38:3087-3097. [PMID: 31476951 DOI: 10.1080/07391102.2019.1662849] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Structure-based drug designing has become a significant subject of research, and several clinically promising DNA binding compounds were evolved using this technique. The interaction of an octamer DNA sequence d(CCAATTGG)2 with a natural stilbene, resveratrol and its analogues have been studied using molecular docking method. Out of the ten compounds studied, seven compounds were found to bind to the minor groove of AATT segment of the sequence. Pterostilbene, a natural analogue of resveratrol, showed the lowest binding energy. Rhaponticin, a natural analogue of resveratrol and digalloylresveratrol, a synthetic ester of resveratrol bind to the major groove of the AATT segment while dihydroresveratrol binds to the minor groove of GC terminal base pair. ADMET (Absorption, distribution, metabolism, excretion and toxicity) study showed that all compounds obey Lipinski rule and are accepted as orally active drugs based on different physicochemical descriptors. Molecular dynamics simulations were performed for the complex with lowest binding energy and trajectory analysis were performed. Principal component analysis has been performed to underline the prominent motions in alone DNA and when it is bound to pterostilbene. AbbreviationsADMETAbsorption, distribution, metabolism, excretion and toxicityDIGDigalloyl resveratrolDNADeoxyribonucleic acidELElectrostatic energyENPOLARNonpolar solvation energyESURFSurface areaGBGeneralized BornHBAHydrogen bond acceptorsHBDHydrogen bond donorsLGALamarckian genetic algorithmMDMolecular dynamicsPBPoisson-BoltzmannPCAPrincipal component analysisPTPterostilbeneRMSDRoot mean square deviationSASimulated annealingTLX3T-cell leukemia homeobox 3VDWvan der WaalsCommunicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Maya S Nair
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, India
| | - Aishwarya Shukla
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, India
| |
Collapse
|
7
|
Intagliata S, Modica MN, Santagati LM, Montenegro L. Strategies to Improve Resveratrol Systemic and Topical Bioavailability: An Update. Antioxidants (Basel) 2019; 8:E244. [PMID: 31349656 PMCID: PMC6719186 DOI: 10.3390/antiox8080244] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/18/2019] [Accepted: 07/22/2019] [Indexed: 12/22/2022] Open
Abstract
In recent years, a great deal of attention has been paid to natural compounds due to their many biological effects. Polyphenols are a class of plant derivatives that have been widely investigated for preventing and treating many oxidative stress-related pathological conditions, such as neurodegenerative and cardiovascular diseases, cancer, diabetes mellitus and inflammation. Among these polyphenols, resveratrol (RSV) has attracted considerable interest owing to its high antioxidant and free radical scavenging activities. However, the poor water solubility and rapid metabolism of RSV lead to low bioavailability, thus limiting its clinical efficacy. After discussing the main biochemical mechanisms involved in RSV biological activities, this review will focus on the strategies attempted to improve RSV effectiveness, both for systemic and for topical administration. In particular, technological approaches involving RSV incorporation into different delivery systems such as liposomes, polymeric and lipid nanoparticles, microemulsions and cyclodextrins will be illustrated, highlighting their potential clinical applications. In addition, chemical modifications of this antioxidant aimed at improving its physicochemical properties will be described along with the results of in vitro and in vivo studies.
Collapse
Affiliation(s)
| | - Maria N Modica
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy
| | | | - Lucia Montenegro
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy.
| |
Collapse
|
8
|
Leláková V, Šmejkal K, Jakubczyk K, Veselý O, Landa P, Václavík J, Bobáľ P, Pížová H, Temml V, Steinacher T, Schuster D, Granica S, Hanáková Z, Hošek J. Parallel in vitro and in silico investigations into anti-inflammatory effects of non-prenylated stilbenoids. Food Chem 2019; 285:431-440. [PMID: 30797367 DOI: 10.1016/j.foodchem.2019.01.128] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 12/07/2018] [Accepted: 01/25/2019] [Indexed: 12/25/2022]
Abstract
Stilbenoids represent a large group of bioactive compounds, which occur in food and medicinal plants. Twenty-five stilbenoids were screened in vitro for their ability to inhibit COX-1, COX-2 and 5-LOX. Piceatannol and pinostilbene showed activity comparable to the zileuton and ibuprofen, respectively. The anti-inflammatory potential of stilbenoids was further evaluated using THP-1 human monocytic leukemia cell line. Tests of the cytotoxicity on the THP-1 and HCT116 cell lines showed very low toxic effects. The tested stilbenoids were evaluated for their ability to attenuate the LPS-stimulated activation of NF-κB/AP-1. Most of the tested substances reduced the activity of NF-κB/AP-1 and later attenuated the expression of TNF-α. The effects of selected stilbenoids were further investigated on inflammatory signaling pathways. Non-prenylated stilbenoids regulated attenuation of NF-ĸB/AP-1 activity upstream by inhibiting the phosphorylation of MAPKs. A docking study used to in silico analyze the tested compounds confirmed their interaction with NF-ĸB, COX-2 and 5-LOX.
Collapse
Affiliation(s)
- Veronika Leláková
- Department of Natural Drugs, University of Veterinary and Pharmaceutical Sciences Brno, Palackého třída 1946/1, 61242 Brno, Czech Republic; Department of Molecular Biology and Pharmaceutical Biotechnology, University of Veterinary and Pharmaceutical Sciences Brno, Palackého třída 1946/1, 61242 Brno, Czech Republic
| | - Karel Šmejkal
- Department of Natural Drugs, University of Veterinary and Pharmaceutical Sciences Brno, Palackého třída 1946/1, 61242 Brno, Czech Republic.
| | - Karolina Jakubczyk
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic
| | - Ondřej Veselý
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic; Department of Quality of Agricultural Products, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcka129, 165 21 Prague 6 - Suchdol, Czech Republic
| | - Přemysl Landa
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic
| | - Jiří Václavík
- Department of Natural Drugs, University of Veterinary and Pharmaceutical Sciences Brno, Palackého třída 1946/1, 61242 Brno, Czech Republic
| | - Pavel Bobáľ
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackého třída 1946/1, 61242 Brno, Czech Republic
| | - Hana Pížová
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackého třída 1946/1, 61242 Brno, Czech Republic
| | - Veronika Temml
- Department of Pharmacy/Pharmacognosy and Center for Molecular Biosciences (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Theresa Steinacher
- Department of Pharmacy/Pharmaceutical Chemistry and Center for Molecular Biosciences (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Daniela Schuster
- Institute of Pharmacy, Department of Pharmaceutical and Medicinal Chemistry, Paracelsus Medical University Salzburg, Strubergasse 21, 5020 Salzburg, Austria
| | - Sebastian Granica
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Zuzana Hanáková
- Department of Natural Drugs, University of Veterinary and Pharmaceutical Sciences Brno, Palackého třída 1946/1, 61242 Brno, Czech Republic
| | - Jan Hošek
- Department of Molecular Biology and Pharmaceutical Biotechnology, University of Veterinary and Pharmaceutical Sciences Brno, Palackého třída 1946/1, 61242 Brno, Czech Republic
| |
Collapse
|
9
|
Fahim AT, Abd El-Fattah AA, Sadik NAH, Ali BM. Resveratrol and dimethyl fumarate ameliorate testicular dysfunction caused by chronic unpredictable mild stress-induced depression in rats. Arch Biochem Biophys 2019; 665:152-165. [DOI: 10.1016/j.abb.2019.03.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/15/2019] [Accepted: 03/16/2019] [Indexed: 02/07/2023]
|
10
|
Latruffe N, Vervandier-Fasseur D. Strategic Syntheses of Vine and Wine Resveratrol Derivatives to Explore their Effects on Cell Functions and Dysfunctions. Diseases 2018; 6:diseases6040110. [PMID: 30545015 PMCID: PMC6313602 DOI: 10.3390/diseases6040110] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/06/2018] [Accepted: 12/07/2018] [Indexed: 02/07/2023] Open
Abstract
Trans-resveratrol, the most well-known polyphenolic stilbenoid, is found in grapes and accordingly in wine and it is considered to be beneficial for human health, especially towards the aging-linked cell alterations by providing numerous biological activities, such as anti-oxidant, antitumoral, antiviral, anti-inflammatory, neuroprotective, and platelet anti-aggregation properties. Although trans-resveratrol is a promising molecule, it cannot be considered as a drug, due to its weak bio-availability and fast metabolism. To overcome these weaknesses, several research teams have undertaken the synthesis of innovative trans-resveratrol derivatives, with the aim to increase its solubility in water and pharmacological activities towards cell targets. The aim of this review is to show the chronological evolution over the last 25 years of different strategies to develop more efficient trans-resveratrol derivatives towards organism physiology and, therefore, to enhance various pharmacological activities. While the literature on the development of new synthetic derivatives is impressive, this review will focus on selected strategies regarding the substitution of trans-resveratrol phenyl rings, first with hydroxy, methoxy, and halogen groups, and next with functionalized substituents. The effects on cell functions and dysfunctions of interesting resveratrol analogs will be addressed in this review.
Collapse
Affiliation(s)
- Norbert Latruffe
- Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism, EA 7270, Université de Bourgogne Franche-Comté, 6, boulevard Gabriel, 21078 DIJON CEDEX, France.
| | - Dominique Vervandier-Fasseur
- Institut de Chimie Moléculaire de l'Université de Bourgogne, ICMUB-UMR CNRS 6302, Université de Bourgogne Franche-Comté, 9, avenue A. Savary, 21078 DIJON CEDEX, France.
| |
Collapse
|
11
|
Yazir Y, Demirtaş Şahin T, Furat Rençber S, Gacar G, Halbutoğulları ZS, Utkan T, Aricioglu F. Restorative effect of resveratrol on expression of endothelial and neuronal nitric oxide synthase in cavernous tissues of chronic unpredictable mild stress-exposed rats: an impact of inflammation. Int J Impot Res 2018; 30:318-326. [DOI: 10.1038/s41443-018-0048-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/24/2018] [Accepted: 05/26/2018] [Indexed: 11/09/2022]
|
12
|
Synthesis and evaluation of bile acid amides of
$$\alpha $$
α
-cyanostilbenes as anticancer agents. Mol Divers 2017; 22:305-321. [DOI: 10.1007/s11030-017-9797-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 11/20/2017] [Indexed: 01/02/2023]
|
13
|
Shi Y, Zhou J, Jiang B, Miao M. Resveratrol and inflammatory bowel disease. Ann N Y Acad Sci 2017; 1403:38-47. [PMID: 28945937 DOI: 10.1111/nyas.13426] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/31/2017] [Accepted: 06/07/2017] [Indexed: 12/19/2022]
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disease of the gastrointestinal tract, comprising ulcerative colitis (UC) and Crohn's disease (CD). Progression of IBD leads to long-term impairment of intestinal structure and function. The pathogenesis of IBD is complex, involving environmental, immunological, genetic, microbial, and psychological factors. The conventional therapies and many existing biopharmaceuticals for IBD have limited efficacy or adverse effects. As a promising safe and effective therapy for IBD, resveratrol has been studied widely, as it has shown anti-inflammatory and antioxidant activity. Resveratrol's mechanism of action involves multiple immune responses and signaling pathways; it is absorbed quickly and metabolized into various derivatives. However, the poor water solubility and low bioavailability of resveratrol limit its clinical applications. Further research should attempt to improve the stability and oral bioavailability of resveratrol by modification and various delivery systems.
Collapse
Affiliation(s)
- Yaning Shi
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, P. R. China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Jie Zhou
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, P. R. China
| | - Bo Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Ming Miao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| |
Collapse
|
14
|
Wang L, Wu Y, Chen Y, Zou J, Li X. Biotransformation of Resveratrol: New Prenylated trans-Resveratrol Synthesized by Aspergillus sp. SCSIOW2. Molecules 2016; 21:molecules21070883. [PMID: 27399656 PMCID: PMC6274042 DOI: 10.3390/molecules21070883] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 06/24/2016] [Accepted: 07/04/2016] [Indexed: 01/26/2023] Open
Abstract
Arahypin-16 (1), a new prenylated resveratrol with a unique dihydrobenzofuran ring, has been isolated as a microbial metabolite of resveratrol (2) from whole-cell fermentation of Aspergillus sp. SCSIOW2. The stereochemistry of 1 was determined by ECD calculations. 1 showed about half of the extracellular radical scavenging effect (IC50 = 161.4 μM) compared with resveratrol (IC50 = 80.5 μM), while on biomembranes it exhibited the same range of protection effects against free radicals generated from AAPH (IC50 = 78.6 μM and 87.9 μM).
Collapse
Affiliation(s)
- Liyan Wang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| | - Yanhua Wu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| | - Yongtao Chen
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| | - Jiaxin Zou
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| | - Xiaofan Li
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|