1
|
Deuse T, Schrepfer S. Progress and challenges in developing allogeneic cell therapies. Cell Stem Cell 2025; 32:513-528. [PMID: 40185072 DOI: 10.1016/j.stem.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/28/2025] [Accepted: 03/05/2025] [Indexed: 04/07/2025]
Abstract
The new era of cell therapeutics has started with autologous products to avoid immune rejection. However, therapeutics derived from allogeneic cells could be scaled and made available for a much larger patient population if immune rejection could reliably be overcome. In this review, we outline gene engineering concepts aimed at generating immune-evasive cells. First, we summarize the current state of allogeneic immune cell therapies, and second, we compile the still limited data for allogeneic cell replacement therapies. We emphasize the advances in this fast-developing field and provide an optimistic outlook for future allogeneic cell therapies.
Collapse
Affiliation(s)
- Tobias Deuse
- Department of Surgery, Division of Cardiothoracic Surgery, Transplant and Stem Cell Immunobiology (TSI)-Lab, University of California, San Francisco, San Francisco, CA, USA
| | - Sonja Schrepfer
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Deng WQ, Ye ZH, Tang Z, Zhang XL, Lu JJ. Beyond cancer: The potential application of CD47-based therapy in non-cancer diseases. Acta Pharm Sin B 2025; 15:757-791. [PMID: 40177549 PMCID: PMC11959971 DOI: 10.1016/j.apsb.2024.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/10/2024] [Accepted: 11/22/2024] [Indexed: 04/05/2025] Open
Abstract
CD47 is an immune checkpoint widely regarded as a 'don't eat me' signal. CD47-based anti-cancer therapy has received considerable attention, with a significant number of clinical trials conducted. While anti-cancer therapies based on CD47 remain a focal point of interest among researchers, it is noteworthy that an increasing number of studies have found that CD47-based therapy ameliorated the pathological status of non-cancer diseases. This review aims to provide an overview of the recent progress in comprehending the role of CD47-based therapy in non-cancer diseases, including diseases of the circulatory system, nervous system, digestive system, and so on. Furthermore, we sought to delineate the promising mechanisms of CD47-based therapy in treating non-cancer diseases. Our findings suggest that CD47-based agents may exert their effect by regulating phagocytosis, regulating T cells, dendritic cells, and neutrophils, and regulating the secretion of cytokines and chemokines. Additionally, we put forward the orientation of further research to bring to light the potential of CD47 and its binding partners as a target in non-cancer diseases.
Collapse
Affiliation(s)
- Wei-Qing Deng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Zi-Han Ye
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Zhenghai Tang
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Macao 999078, China
| | - Xiao-Lei Zhang
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macao 999078, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macao 999078, China
| |
Collapse
|
3
|
Zhang W, Yang S, Yu X, Zhu S, Wang X, Sun F, Liang S, Wang X, Zhao G, Gao B. Beneficial Actions of 4-Methylumbelliferone in Type 1 Diabetes by Promoting β Cell Renewal and Inhibiting Dedifferentiation. Biomedicines 2024; 12:2790. [PMID: 39767698 PMCID: PMC11673412 DOI: 10.3390/biomedicines12122790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/05/2024] [Accepted: 12/07/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: This study aims to investigate the effects of 4-methylumbelliferone (4-MU) on islet morphology, cell phenotype and function, and to explore possible mechanisms of β cell regeneration. Methods: The Type 1 diabetes (T1D) model was induced by continuous dose injection of streptozotocin (STZ), and mice were treated with 4-MU for 3 weeks. Plasma insulin level, islet cell phenotype and immune infiltration were determined by IPGTT, ELISA, HE and immunofluorescence. The Ins2Cre/+/Rosa26-eGFP transgenic mice model was used to detect β identity change. Primary rodent islets were incubated with 4-MU or vehicle in the presence or absence of STZ, AO/PI staining, and a scanning electron microscope (SEM), PCR and ELISA were used to evaluated islet viability, islet morphology, the specific markers of islet β cells and insulin secretion. Results: Treatment with 4-MU significantly decreased blood glucose and increased plasma insulin levels in STZ-induced diabetes. The plasma insulin level in the STZ group was 7.211 ± 2.602 ng/mL, which was significantly lower than the control group level (26.94 ± 4.300 ng/mL, p < 0.001). In contrast, the plasma insulin level in the STZ + 4-MU group was 22.29 ± 7.791 ng/mL, which was significantly higher than the STZ group (p < 0.05). The 4-MU treatment increased islet and β cells numbers and decreased α cell numbers in STZ-induced diabetes. Conclusions: Islet inflammation as indicated by insulin and CD3 was caused by infiltrates, and the β cell proliferation as indicated by insulin and Ki67 was boosted by 4-MU. β cell dedifferentiation was inhibited by 4-MU as assessed by insulin and glucagon double-positive cells and confirmed by Ins2Cre/+/Rosa26-eGFP mice. In cultured primary rodent islets, 4-MU restored islet viability, protected islet morphology, inhibited β-cell dedifferentiation, and promoted insulin secretion. The benefits of 4-MU in T1D have been proved to be associated with β cells self-replication, dedifferentiation inhibition and immune progression suppression, which help to maintain β cell mass.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Guohong Zhao
- Department of Endocrinology, Second Affiliated Hospital of Air Force Military Medical University, Xi’an 710038, China; (W.Z.); (S.Y.); (X.Y.); (S.Z.); (X.W.); (F.S.); (S.L.); (X.W.)
| | - Bin Gao
- Department of Endocrinology, Second Affiliated Hospital of Air Force Military Medical University, Xi’an 710038, China; (W.Z.); (S.Y.); (X.Y.); (S.Z.); (X.W.); (F.S.); (S.L.); (X.W.)
| |
Collapse
|
4
|
Frederiksen HR, Glantz A, Vøls KK, Skov S, Tveden-Nyborg P, Freude K, Doehn U. CRISPR-Cas9 immune-evasive hESCs are rejected following transplantation into immunocompetent mice. Front Genome Ed 2024; 6:1403395. [PMID: 38863835 PMCID: PMC11165197 DOI: 10.3389/fgeed.2024.1403395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/07/2024] [Indexed: 06/13/2024] Open
Abstract
Although current stem cell therapies exhibit promising potential, the extended process of employing autologous cells and the necessity for donor-host matching to avert the rejection of transplanted cells significantly limit the widespread applicability of these treatments. It would be highly advantageous to generate a pluripotent universal donor stem cell line that is immune-evasive and, therefore, not restricted by the individual's immune system, enabling unlimited application within cell replacement therapies. Before such immune-evasive stem cells can be moved forward to clinical trials, in vivo testing via transplantation experiments in immune-competent animals would be a favorable approach preceding preclinical testing. By using human stem cells in immune competent animals, results will be more translatable to a clinical setting, as no parts of the immune system have been altered, although in a xenogeneic setting. In this way, immune evasiveness, cell survival, and unwanted proliferative effects can be assessed before clinical trials in humans. The current study presents the generation and characterization of three human embryonic stem cell lines (hESCs) for xenogeneic transplantation in immune-competent mice. The major histocompatibility complexes I- and II-encoding genes, B2M and CIITA, have been deleted from the hESCs using CRISPR-Cas9-targeted gene replacement strategies and knockout. B2M was knocked out by the insertion of murine CD47. Human-secreted embryonic alkaline phosphatase (hSEAP) was inserted in a safe harbor site to track cells in vivo. The edited hESCs maintained their pluripotency, karyotypic normality, and stable expression of murine CD47 and hSEAP in vitro. In vivo transplantation of hESCs into immune-competent BALB/c mice was successfully monitored by measuring hSEAP in blood samples. Nevertheless, transplantation of immune-evasive hESCs resulted in complete rejection within 11 days, with clear immune infiltration of T-cells on day 8. Our results reveal that knockout of B2M and CIITA together with species-specific expression of CD47 are insufficient to prevent rejection in an immune-competent and xenogeneic context.
Collapse
Affiliation(s)
- Henriette Reventlow Frederiksen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Søren Skov
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pernille Tveden-Nyborg
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristine Freude
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ulrik Doehn
- Cell Therapy Research, Novo Nordisk A/S, Maaloev, Denmark
| |
Collapse
|
5
|
Isenberg JS, Montero E. Tolerating CD47. Clin Transl Med 2024; 14:e1584. [PMID: 38362603 PMCID: PMC10870051 DOI: 10.1002/ctm2.1584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/22/2024] [Accepted: 01/30/2024] [Indexed: 02/17/2024] Open
Abstract
Cluster of differentiation 47 (CD47) occupies the outer membrane of human cells, where it binds to soluble and cell surface receptors on the same and other cells, sculpting their topography and resulting in a pleiotropic receptor-multiligand interaction network. It is a focus of drug development to temper and accentuate CD47-driven immune cell liaisons, although consideration of on-target CD47 effects remain neglected. And yet, a late clinical trial of a CD47-blocking antibody was discontinued, existent trials were restrained, and development of CD47-targeting agents halted by some pharmaceutical companies. At this point, if CD47 can be exploited for clinical advantage remains to be determined. Herein an airing is made of the seemingly conflicting actions of CD47 that reflect its position as a junction connecting receptors and signalling pathways that impact numerous human cell types. Prospects of CD47 boosting and blocking are considered along with potential therapeutic implications for autoimmune diseases and cancer.
Collapse
Affiliation(s)
- Jeffrey S. Isenberg
- Department of Diabetes Complications & MetabolismArthur Riggs Diabetes & Metabolism Research InstituteCity of Hope National Medical CenterDuarteCaliforniaUSA
| | - Enrique Montero
- Department of Molecular & Cellular EndocrinologyArthur Riggs Diabetes & Metabolism Research InstituteCity of Hope National Medical CenterDuarteCaliforniaUSA
| |
Collapse
|
6
|
Su X, Jin W, Liu L, Zhu Z, Li C. Regulation of CD47 expression on CD14 + monocytes by interferon-α in PBC patients. Front Immunol 2023; 14:1256995. [PMID: 38111586 PMCID: PMC10725903 DOI: 10.3389/fimmu.2023.1256995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/13/2023] [Indexed: 12/20/2023] Open
Abstract
Background Primary biliary cholangitis (PBC) is a chronic intrahepatic cholestatic autoimmune liver disease characterized by inflammatory injury of small and medium-sized bile ducts in the liver. The pathogenesis of PBC has yet to be entirely understood. CD47/signal-regulatory protein alpha (SIRPα) is closely related to developing autoimmune diseases by promoting inflammatory response. However, the effect of CD47/SIRPα on inflammatory response in PBC patients is still unclear. Objective We investigated the expression of CD47/SIRPα and the effect of inflammatory cytokines on the CD47 expression, analyzed potential autoantibodies against CD47 and the effect of anti-CD47 antibody on the inflammatory response in PBC, provided laboratory basis for the study of the pathogenesis and targets for non-invasive diagnosis and treatment on PBC. Methods The expression levels of CD47 and SIRPα on peripheral blood mononuclear cells (PBMC) were measured in 14 patients with PBC (the PBC group) and 13 healthy subjects (the Control group) by flow cytometry (FCM). The PBMC derived from healthy subjects were stimulated with healthy subjects' serum, PBC patients' serum, IFN-α or TNF-α, and the CD47 expression level on CD14+ monocytes was detected by FCM. The level of serum anti-CD47 antibody or IFN-α in PBC patients and healthy subjects was analyzed by ELISA. FCM was used to examine the TNF-α expression level in CD14+ monocytes of healthy subjects stimulated with isotype control antibody, anti-CD47 antibody, LPS or LPS combined with CD47 antibody. Results The CD47 expression level on the CD14+ monocytes in PBC patients was statistically higher than that in the Control group (P<0.01). Compared with the Control group (PBMC+healthy serum), the CD47 expression on CD14+ monocyte stimulated with the PBC patients' serum (PBMC+PBC patients' serum) was increased (P<0.001); the CD47 expression on CD14+ monocyte stimulated with IFN-α (PBMC + IFN-α) increased gradually with the increased concentration of IFN-α (P<0.05). However, there was no similar trend on CD14+ monocyte stimulated with the TNF-α (PBMC+TNF-α) (P>0.05). The levels of serum anti-CD47 antibody and IFN-α in the PBC patients were higher than those in healthy subjects (P<0.05). The TNF-α expression level in CD14+ monocyte stimulated with the LPS (PBMC+LPS) or anti-CD47 antibody+LPS group (PBMC+LPS+anti-CD47 antibody) was significantly increased than that in the Control group (PBMC+isotype control antibody) (P<0.01 and P<0.001, respectively). The TNF-α expression level in CD14+ monocyte stimulated with the anti-CD47 antibody + LPS was higher than that with the LPS (P< 0.05). Conclusion The CD47 may be related to the pathogenesis of PBC by inflammatory response. The CD47/SIRPα signal were imbalanced in PBC patients. The presence of serum anti-CD47 antibodies in PBC patients provides a laboratory basis for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Xi Su
- Department of Laboratory Medicine, Hunan Provincial People’s Hospital (the First- Affiliated Hospital of Hunan Normal University), Changsha, China
- Department of Laboratory Medicine, the First- Affiliated Hospital of Hunan Normal University (Hunan Provincial People’s Hospital), Changsha, China
| | - Wenwen Jin
- Department of Laboratory Medicine, Hunan Provincial People’s Hospital (the First- Affiliated Hospital of Hunan Normal University), Changsha, China
- Department of Laboratory Medicine, the First- Affiliated Hospital of Hunan Normal University (Hunan Provincial People’s Hospital), Changsha, China
| | - Lizhi Liu
- Department of Laboratory Medicine, the First- Affiliated Hospital of Hunan Normal University (Hunan Provincial People’s Hospital), Changsha, China
| | - Zifei Zhu
- Department of Laboratory Medicine, Hunan Provincial People’s Hospital (the First- Affiliated Hospital of Hunan Normal University), Changsha, China
- Research Office of Clinical Laboratory, Clinical Translational Medicine Research Institute of Hunan Provincial People’s Hospital (the First-affiliated Hospital of Hunan Normal University), Changsha, China
| | - Cunyan Li
- Department of Laboratory Medicine, Hunan Provincial People’s Hospital (the First- Affiliated Hospital of Hunan Normal University), Changsha, China
- Research Office of Clinical Laboratory, Clinical Translational Medicine Research Institute of Hunan Provincial People’s Hospital (the First-affiliated Hospital of Hunan Normal University), Changsha, China
| |
Collapse
|
7
|
Yang S, Zhao M, Jia S. Macrophage: Key player in the pathogenesis of autoimmune diseases. Front Immunol 2023; 14:1080310. [PMID: 36865559 PMCID: PMC9974150 DOI: 10.3389/fimmu.2023.1080310] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/09/2023] [Indexed: 02/16/2023] Open
Abstract
The macrophage is an essential part of the innate immune system and also serves as the bridge between innate immunity and adaptive immune response. As the initiator and executor of the adaptive immune response, macrophage plays an important role in various physiological processes such as immune tolerance, fibrosis, inflammatory response, angiogenesis and phagocytosis of apoptotic cells. Consequently, macrophage dysfunction is a vital cause of the occurrence and development of autoimmune diseases. In this review, we mainly discuss the functions of macrophages in autoimmune diseases, especially in systemic lupus erythematosus (SLE), rheumatic arthritis (RA), systemic sclerosis (SSc) and type 1 diabetes (T1D), providing references for the treatment and prevention of autoimmune diseases.
Collapse
Affiliation(s)
- Shuang Yang
- Dapartment of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ming Zhao
- Dapartment of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China.,Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
| | - Sujie Jia
- Department of Pharmacy, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| |
Collapse
|
8
|
Brom VC, Burger C, Wirtz DC, Schildberg FA. The Role of Immune Checkpoint Molecules on Macrophages in Cancer, Infection, and Autoimmune Pathologies. Front Immunol 2022; 13:837645. [PMID: 35418973 PMCID: PMC8995707 DOI: 10.3389/fimmu.2022.837645] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/02/2022] [Indexed: 12/13/2022] Open
Abstract
Immune checkpoint inhibitors have revolutionized immunotherapy against various cancers over the last decade. The use of checkpoint inhibitors results in remarkable re-activation of patients’ immune system, but is also associated with significant adverse events. In this review, we emphasize the importance of cell-type specificity in the context of immune checkpoint-based interventions and particularly focus on the relevance of macrophages. Immune checkpoint blockade alters the dynamic macrophage phenotypes and thereby substantially manipulates therapeutical outcome. Considering the macrophage-specific immune checkpoint biology, it seems feasible to ameliorate the situation of patients with severe side effects and even increase the probability of survival for non-responders to checkpoint inhibition. Apart from malignancies, investigating immune checkpoint molecules on macrophages has stimulated their fundamental characterization and use in other diseases as well, such as acute and chronic infections and autoimmune pathologies. Although the macrophage-specific effect of checkpoint molecules has been less studied so far, the current literature shows that a macrophage-centered blockade of immune checkpoints as well as a stimulation of their expression represents promising therapeutic avenues. Ultimately, the therapeutic potential of a macrophage-focused checkpoint therapy might be maximized by diagnostically assessing individual checkpoint expression levels on macrophages, thereby personalizing an effective treatment approach for each patient having cancer, infection, or autoimmune diseases.
Collapse
Affiliation(s)
- Victoria C Brom
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Christof Burger
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Dieter C Wirtz
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Frank A Schildberg
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
9
|
Leslie KA, Richardson SJ, Russell MA, Morgan NG. Expression of CD47 in the pancreatic β-cells of people with recent-onset type 1 diabetes varies according to disease endotype. Diabet Med 2021; 38:e14724. [PMID: 34654058 DOI: 10.1111/dme.14724] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/13/2021] [Indexed: 02/06/2023]
Abstract
AIMS We are studying the dialogue between β-cells and the immune system in type 1 diabetes and have identified a cell surface receptor, signal regulatory protein-alpha (SIRPα) as an important component in the regulation of β-cell survival. SIRPα interacts with another protein, CD47, to mediate signalling. In the present work, we have studied the expression and role of CD47 in human islet cells in type 1 diabetes. METHODS Clonal EndoC-βH1 cells were employed for functional studies. Cells were exposed to pro-inflammatory cytokines and their viability monitored by flow cytometry after staining with propidium iodide. Targeted knockdown of CD47 or SIRPα was achieved with small interference RNA molecules and the expression of relevant proteins studied by Western blotting or immunocytochemistry. Human pancreas sections were selected from the Exeter Archival Diabetes Biobank and used to examine the expression of CD47 by immunofluorescence labelling. Image analysis was employed to quantify expression. RESULTS CD47 is abundantly expressed in both α and β cells in human pancreas. In type 1 diabetes, the levels of CD47 are increased in α cells across all age groups, whereas the expression in β-cells varies according to disease endotype. Knockdown of either CD47 or SIRPα in EndoC-βH1 cells resulted in a loss of viability. CONCLUSIONS We conclude that the CD47 plays a previously unrecognised role in the regulation of β-cell viability. This system is dysregulated in type 1 diabetes suggesting that it may be targeted therapeutically to slow disease progression.
Collapse
Affiliation(s)
- Kaiyven Afi Leslie
- Islet Biology Group (IBEx), Exeter Centre of Excellence in Diabetes (EXCEED), University of Exeter College of Medicine and Health, Exeter, UK
| | - Sarah J Richardson
- Islet Biology Group (IBEx), Exeter Centre of Excellence in Diabetes (EXCEED), University of Exeter College of Medicine and Health, Exeter, UK
| | - Mark A Russell
- Islet Biology Group (IBEx), Exeter Centre of Excellence in Diabetes (EXCEED), University of Exeter College of Medicine and Health, Exeter, UK
| | - Noel G Morgan
- Islet Biology Group (IBEx), Exeter Centre of Excellence in Diabetes (EXCEED), University of Exeter College of Medicine and Health, Exeter, UK
| |
Collapse
|
10
|
Sharp RC, Brown ME, Shapiro MR, Posgai AL, Brusko TM. The Immunoregulatory Role of the Signal Regulatory Protein Family and CD47 Signaling Pathway in Type 1 Diabetes. Front Immunol 2021; 12:739048. [PMID: 34603322 PMCID: PMC8481641 DOI: 10.3389/fimmu.2021.739048] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/31/2021] [Indexed: 12/11/2022] Open
Abstract
Background The pathogenesis of type 1 diabetes (T1D) involves complex genetic susceptibility that impacts pathways regulating host immunity and the target of autoimmune attack, insulin-producing pancreatic β-cells. Interactions between risk variants and environmental factors result in significant heterogeneity in clinical presentation among those who develop T1D. Although genetic risk is dominated by the human leukocyte antigen (HLA) class II and insulin (INS) gene loci, nearly 150 additional risk variants are significantly associated with the disease, including polymorphisms in immune checkpoint molecules, such as SIRPG. Scope of Review In this review, we summarize the literature related to the T1D-associated risk variants in SIRPG, which include a protein-coding variant (rs6043409, G>A; A263V) and an intronic polymorphism (rs2281808, C>T), and their potential impacts on the immunoregulatory signal regulatory protein (SIRP) family:CD47 signaling axis. We discuss how dysregulated expression or function of SIRPs and CD47 in antigen-presenting cells (APCs), T cells, natural killer (NK) cells, and pancreatic β-cells could potentially promote T1D development. Major Conclusions We propose a hypothesis, supported by emerging genetic and functional immune studies, which states a loss of proper SIRP:CD47 signaling may result in increased lymphocyte activation and cytotoxicity and enhanced β-cell destruction. Thus, we present several novel therapeutic strategies for modulation of SIRPs and CD47 to intervene in T1D.
Collapse
MESH Headings
- Animals
- Antigen-Presenting Cells/immunology
- Antigen-Presenting Cells/metabolism
- Antigens, Differentiation/genetics
- Antigens, Differentiation/metabolism
- CD47 Antigen/metabolism
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/therapy
- Genetic Association Studies
- Humans
- Immunotherapy
- Insulin-Secreting Cells/immunology
- Insulin-Secreting Cells/metabolism
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Polymorphism, Genetic
- Receptors, Cell Surface/metabolism
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Signal Transduction
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Robert C. Sharp
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Matthew E. Brown
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Melanie R. Shapiro
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Amanda L. Posgai
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Todd M. Brusko
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, United States
- Department of Pediatrics, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
11
|
Roberts DD, Isenberg JS. CD47 and thrombospondin-1 regulation of mitochondria, metabolism, and diabetes. Am J Physiol Cell Physiol 2021; 321:C201-C213. [PMID: 34106789 DOI: 10.1152/ajpcell.00175.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Thrombospondin-1 (TSP1) is the prototypical member of a family of secreted proteins that modulate cell behavior by engaging with molecules in the extracellular matrix and with receptors on the cell surface. CD47 is widely displayed on many, if not all, cell types and is a high-affinity TSP1 receptor. CD47 is a marker of self that limits innate immune cell activities, a feature recently exploited to enhance cancer immunotherapy. Another major role for CD47 in health and disease is to mediate TSP1 signaling. TSP1 acting through CD47 contributes to mitochondrial, metabolic, and endocrine dysfunction. Studies in animal models found that elevated TSP1 expression, acting in part through CD47, causes mitochondrial and metabolic dysfunction. Clinical studies established that abnormal TSP1 expression positively correlates with obesity, fatty liver disease, and diabetes. The unabated increase in these conditions worldwide and the availability of CD47 targeting drugs justify a closer look into how TSP1 and CD47 disrupt metabolic balance and the potential for therapeutic intervention.
Collapse
Affiliation(s)
- David D Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | | |
Collapse
|