1
|
Ricci F, Saraullo S, Boccatonda A, Sorella A, Cipollone A, Simeone P, Gallina S, Santilli F, Cipollone F, D'Ardes D. Early prescription of SGLT2i for acute patient care: from current evidence to future directions. Curr Probl Cardiol 2025; 50:103081. [PMID: 40449290 DOI: 10.1016/j.cpcardiol.2025.103081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2025] [Accepted: 05/23/2025] [Indexed: 06/03/2025]
Abstract
Sodium-glucose cotransporter 2 inhibitors (SGLT2i) have emerged as transformative therapies in the management of chronic heart failure (HF), offering substantial reductions in mortality and hospitalizations. Beyond their initial classification as diuretics, SGLT2i exert a spectrum of cardioprotective effects that extend far beyond renal modulation. By activating autophagic pathways and mimicking a starvation-like state, SGLT2i enhance cellular bioenergetics and mitigate acute injury, potentially underpinning both their immediate and sustained cardiometabolic benefits when administered early in acute care settings. In acute decompensated HF, early initiation of SGLT2i enhances clinical decongestion by increasing diuresis, improving diuretic efficiency, and mitigating diuretic resistance, translating to shorter hospitalizations and reduced readmissions and mortality. In acute myocardial infarction, SGLT2i reduce the incidence of first and total HF hospitalizations, arrhythmic events, adverse cardiac remodelling, and contrast-induced acute kidney injury, while mitigating stent failure and atherosclerotic progression. Furthermore, they demonstrated efficacy in preventing new-onset and recurrent supraventricular and ventricular arrhythmias. However, the evidence remains inconclusive regarding their impact on sudden cardiac death or outcomes following cardiac arrest. In critically ill patients, SGLT2i use is associated with reduced rates of acute kidney injury and the need for renal replacement therapy, with promising implications for the management of sepsis and multi-organ dysfunction. Importantly, adverse effects such as renal impairment, electrolyte disturbances, acid-base imbalances, urinary tract infections, and dysglycemia appear infrequently in this population. This narrative review synthesizes the underlying pathophysiological mechanisms, current clinical evidence, and potential future applications of early SGLT2i therapy in acute care settings, providing insights into their expanding role in contemporary cardiovascular medicine.
Collapse
Affiliation(s)
- Fabrizio Ricci
- Department of Neuroscience, Imaging and Clinical Sciences, G. D'Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; University Cardiology Division, Heart Department, SS. Annunziata Polyclinic, Chieti, Italy; Institute for Advanced Biomedical Technologies, G. D'Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Silvio Saraullo
- Department of Neuroscience, Imaging and Clinical Sciences, G. D'Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Andrea Boccatonda
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Italy; Diagnostic and Therapeutic Interventional Ultrasound Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Policlinico Sant'Orsola-Malpighi, 40138, Bologna, Italy.
| | - Anna Sorella
- Department of Neuroscience, Imaging and Clinical Sciences, G. D'Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Alessia Cipollone
- Institute of Clinica Medica, Department of Medicine and Aging Science, G. D'Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Paola Simeone
- Institute of Clinica Medica, Department of Medicine and Aging Science, G. D'Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; Unit of Diabetology, Institute of Clinica Medica, Department of Medicine and Aging Science, G. D'Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Sabina Gallina
- Department of Neuroscience, Imaging and Clinical Sciences, G. D'Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; University Cardiology Division, Heart Department, SS. Annunziata Polyclinic, Chieti, Italy
| | - Francesca Santilli
- Institute of Clinica Medica, Department of Medicine and Aging Science, G. D'Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; Unit of Diabetology, Institute of Clinica Medica, Department of Medicine and Aging Science, G. D'Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Francesco Cipollone
- Institute of Clinica Medica, Department of Medicine and Aging Science, G. D'Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Damiano D'Ardes
- Institute of Clinica Medica, Department of Medicine and Aging Science, G. D'Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
2
|
Song M, Dai H, Zhou Q, Meng X. The immunology of diabetic cardiomyopathy. Front Endocrinol (Lausanne) 2025; 16:1542208. [PMID: 40260277 PMCID: PMC12009709 DOI: 10.3389/fendo.2025.1542208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/18/2025] [Indexed: 04/23/2025] Open
Abstract
Diabetic cardiomyopathy is a notable microvascular complication of diabetes, characterized primarily by myocardial fibrosis and functional abnormalities. Long-term hyperglycemia induces excessive activation and recruitment of immune cells and triggers the cascade of inflammatory responses, resulting in systemic and local cardiac inflammation. Emerging evidence highlights the significant roles of immunology in modulating the pathology of diabetic cardiomyopathy. As the primary effectors of inflammatory reactions, immune cells are consistently present in cardiac tissue and can be recruited under pathological hyperglycemia circumstances. A disproportionate favor to proinflammatory types of immune cells and the increased proinflammatory cytokine levels mediate fibroblast proliferation, phenotypic transformation, and collagen synthesis and ultimately rise to cardiac fibrosis and hypertrophy. Meanwhile, the severity of cardiac fibrosis is also strongly associated with the diverse phenotypes and phenotypic alterations of the immune cells, including macrophages, dendritic cells, mast cells, neutrophils, and natural killer cells in innate immunity and CD4+ T lymphocytes, CD8+ T lymphocytes, and B lymphocytes in adaptive immunity. In this review, we synthesized the current analysis of the critical role played by the immune system and its components in the progression of diabetic cardiomyopathy. Finally, we highlight preclinical and clinical immune targeting strategies and translational implications.
Collapse
Affiliation(s)
| | | | | | - Xiao Meng
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research of MOE, NHC, CAMS and Shandong Province, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
3
|
孙 红, 卢 国, 付 程, 徐 梦, 朱 小, 邢 国, 刘 乐, 柯 雨, 崔 乐, 陈 睿, 王 磊, 康 品, 唐 碧. [Quercetin ameliorates myocardial injury in diabetic rats by regulating L-type calcium channels]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2025; 45:531-541. [PMID: 40159968 PMCID: PMC11955902 DOI: 10.12122/j.issn.1673-4254.2025.03.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Indexed: 04/02/2025]
Abstract
OBJECTIVES To investigate the effects of quercetin on cuproptosis and L-type calcium currents in the myocardium of diabetic rats. METHODS Forty SD rats were randomized into control group and diabetic model groups. The rat models of diabetes mellitus (DM) induced by high-fat and high-sugar diet combined with streptozotocin (STZ) injection were further divided into DM model group, quercetin treatment group, and empagliflozin treatment group (n=10). Blood glucose and body weight were measured every other week, and cardiac function of the rats was evaluated using echocardiography. HE staining, Sirius red staining, and wheat germ agglutinin (WGA) analysis were used to observe the changes in myocardial histomorphology, and serum copper levels and myocardial FDX1 expression were detected. In cultured rat cardiomyocyte H9c2 cells with high-glucose exposure, the effects of quercetin and elesclomol, alone or in combination, on intracellular CK-MB and LDH levels and FDX1 expression were assessed, and the changes in L-type calcium currents were analyzed using patch-clamp technique. RESULTS The diabetic rats exhibited elevated blood glucose, reduced body weight, impaired left ventricular function, increased serum copper levels and myocardial FDX1 expression, decreased L-type calcium currents, and prolonged action potential duration. Quercetin and empagliflozin treatment significantly lowered blood glucose, improved body weight, and restored cardiac function of the diabetic rats, and compared with empagliflozin, quercetin more effectively reduced serum copper levels, downregulated FDX1 expression, and enhanced myocardial L-type calcium currents in diabetic rats. In H9c2 cells, high glucose exposure significantly increased myocardial expressions of FDX1, CK-MB and LDH, which were effectively lowered by quercetin treatment; Elesclomol further elevated FDX1, CK-MB and LDH levels in the exposed cells, and these changes were not significantly affected by the application of quercetin. CONCLUSIONS Quercetin ameliorates myocardial injury in diabetic rats possibly by suppressing myocardial cuproptosis signaling and restoring L-type calcium channel activity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - 碧 唐
- 唐 碧,硕士生导师,教授,主任医师,博士,E-mail: bitang2000@163com
| |
Collapse
|
4
|
Shmygol A, Bru-Mercier G, Sultan AS, Howarth FC. Distinct effects of obesity and diabetes on the action potential waveform and inward currents in rat ventricular myocytes. Clin Sci (Lond) 2025; 139:55-67. [PMID: 39693640 DOI: 10.1042/cs20242144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/27/2024] [Accepted: 12/18/2024] [Indexed: 12/20/2024]
Abstract
Obesity is a significant global health challenge, increasing the risk of developing type 2 diabetes mellitus (T2DM) and cardiovascular disease. Research indicates that obese individuals, regardless of their diabetic status, have an increased risk of cardiovascular complications. Studies suggest that these patients experience impaired electrical conduction in the heart, although the underlying cause-whether due to obesity-induced fat toxicity or diabetes-related factors-remains uncertain. This study investigated ventricular action potential parameters, as well as sodium (INa) and calcium (ICa, L) currents, in Zucker fatty (ZF) rats and Zucker diabetic fatty (ZDF) rats, which serve as models for obesity and T2DM, respectively. Ventricular myocytes were isolated from 25- to 30-week-old Zucker rats. Resting and action potentials were recorded using a β-escin perforated patch clamp, while INa and ICa,L were assessed with whole-cell patch clamp methods. ZF rats exhibited higher excitability and faster upstroke velocity with greater INa density, whereas ZDF rats showed decreased INa and slower action potential upstroke. No differences in ICa,L density or voltage sensitivity were found among the groups. In summary, obesity, with or without accompanying T2DM, distinctly impacts the action potential waveform, INa density, and excitability of ventricular myocytes in this rat model of T2DM.
Collapse
Affiliation(s)
- Anatoliy Shmygol
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 15551, Al Ain, Abu Dhabi, UAE
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
| | - Gilles Bru-Mercier
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 15551, Al Ain, Abu Dhabi, UAE
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
| | - Ahmed S Sultan
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 15551, Al Ain, Abu Dhabi, UAE
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
| | - Frank C Howarth
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 15551, Al Ain, Abu Dhabi, UAE
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
| |
Collapse
|
5
|
Bertrand A, Lewis A, Camps J, Grau V, Rodriguez B. Multi-modal characterisation of early-stage, subclinical cardiac deterioration in patients with type 2 diabetes. Cardiovasc Diabetol 2024; 23:371. [PMID: 39427200 PMCID: PMC11491016 DOI: 10.1186/s12933-024-02465-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is a major risk factor for heart failure with preserved ejection fraction and cardiac arrhythmias. Precursors of these complications, such as diabetic cardiomyopathy, remain incompletely understood and underdiagnosed. Detection of early signs of cardiac deterioration in T2DM patients is critical for prevention. Our goal is to quantify T2DM-driven abnormalities in ECG and cardiac imaging biomarkers leading to cardiovascular disease. METHODS We quantified ECG and cardiac magnetic resonance imaging biomarkers in two matched cohorts of 1781 UK Biobank participants, with and without T2DM, and no diagnosed cardiovascular disease at the time of assessment. We performed a pair-matched cross-sectional study to compare cardiac biomarkers in both cohorts, and examined the association between T2DM and these biomarkers. We built multivariate multiple linear regression models sequentially adjusted for socio-demographic, lifestyle, and clinical covariates. RESULTS Participants with T2DM had a higher resting heart rate (66 vs. 61 beats per minute, p < 0.001), longer QTc interval (424 vs. 420ms, p < 0.001), reduced T wave amplitude (0.33 vs. 0.37mV, p < 0.001), lower stroke volume (72 vs. 78ml, p < 0.001) and thicker left ventricular wall (6.1 vs. 5.9mm, p < 0.001) despite a decreased Sokolow-Lyon index (19.1 vs. 20.2mm, p < 0.001). T2DM was independently associated with higher heart rate (beta = 3.11, 95% CI = [2.11,4.10], p < 0.001), lower stroke volume (beta = -4.11, 95% CI = [-6.03, -2.19], p < 0.001) and higher left ventricular wall thickness (beta = 0.133, 95% CI = [0.081,0.186], p < 0.001). Trends were consistent in subgroups of different sex, age and body mass index. Fewer significant differences were observed in participants of non-white ethnic background. QRS duration and Sokolow-Lyon index showed a positive association with the development of cardiovascular disease in cohorts with and without T2DM, respectively. A higher left ventricular mass and wall thickness were associated with cardiovascular outcomes in both groups. CONCLUSION T2DM prior to cardiovascular disease was linked with a higher heart rate, QTc prolongation, T wave amplitude reduction, as well as lower stroke volume and increased left ventricular wall thickness. Increased QRS duration and left ventricular wall thickness and mass were most strongly associated with future cardiovascular disease. Although subclinical, these changes may indicate the presence of autonomic dysfunction and diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Ambre Bertrand
- Computational Cardiovascular Science Group, Department of Computer Science, University of Oxford, Oxford, OX1 3QD, UK.
| | - Andrew Lewis
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK
| | - Julia Camps
- Computational Cardiovascular Science Group, Department of Computer Science, University of Oxford, Oxford, OX1 3QD, UK
| | - Vicente Grau
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, OX3 7DQ, UK
| | - Blanca Rodriguez
- Computational Cardiovascular Science Group, Department of Computer Science, University of Oxford, Oxford, OX1 3QD, UK.
| |
Collapse
|
6
|
Joshi J, Albers C, Smole N, Guo S, Smith SA. Human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) for modeling cardiac arrhythmias: strengths, challenges and potential solutions. Front Physiol 2024; 15:1475152. [PMID: 39328831 PMCID: PMC11424716 DOI: 10.3389/fphys.2024.1475152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024] Open
Abstract
Ion channels and cytoskeletal proteins in the cardiac dyad play a critical role in maintaining excitation-contraction (E-C) coupling and provide cardiac homeostasis. Functional changes in these dyad proteins, whether induced by genetic, epigenetic, metabolic, therapeutic, or environmental factors, can disrupt normal cardiac electrophysiology, leading to abnormal E-C coupling and arrhythmias. Animal models and heterologous cell cultures provide platforms to elucidate the pathogenesis of arrhythmias for basic cardiac research; however, these traditional systems do not truly reflect human cardiac electro-pathophysiology. Notably, patients with the same genetic variants of inherited channelopathies (ICC) often exhibit incomplete penetrance and variable expressivity which underscores the need to establish patient-specific disease models to comprehend the mechanistic pathways of arrhythmias and determine personalized therapies. Patient-specific induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) inherit the genetic background of the patient and reflect the electrophysiological characteristics of the native cardiomyocytes. Thus, iPSC-CMs provide an innovative and translational pivotal platform in cardiac disease modeling and therapeutic screening. In this review, we will examine how patient-specific iPSC-CMs historically evolved to model arrhythmia syndromes in a dish, and their utility in understanding the role of specific ion channels and their functional characteristics in causing arrhythmias. We will also examine how CRISPR/Cas9 have enabled the establishment of patient-independent and variant-induced iPSC-CMs-based arrhythmia models. Next, we will examine the limitations of using human iPSC-CMs with respect to in vitro arrhythmia modeling that stems from variations in iPSCs or toxicity due to gene editing on iPSC or iPSC-CMs and explore how such hurdles are being addressed. Importantly, we will also discuss how novel 3D iPSC-CM models can better capture in vitro characteristics and how all-optical platforms provide non-invasive and high- throughput electrophysiological data that is useful for stratification of emerging arrhythmogenic variants and drug discovery. Finally, we will examine strategies to improve iPSC-CM maturity, including powerful gene editing and optogenetic tools that can introduce/modify specific ion channels in iPSC-CMs and tailor cellular and functional characteristics. We anticipate that an elegant synergy of iPSCs, novel gene editing, 3D- culture models, and all-optical platforms will offer a high-throughput template to faithfully recapitulate in vitro arrhythmogenic events necessary for personalized arrhythmia monitoring and drug screening process.
Collapse
Affiliation(s)
- Jyotsna Joshi
- Department of Internal Medicine, Division of Cardiology, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Cora Albers
- Department of Internal Medicine, Division of Cardiology, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Nathan Smole
- Department of Internal Medicine, Division of Cardiology, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Shuliang Guo
- Department of Internal Medicine, Division of Cardiology, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Sakima A Smith
- Department of Internal Medicine, Division of Cardiology, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
7
|
Taheri R, Mokhtari Y, Yousefi AM, Bashash D. The PI3K/Akt signaling axis and type 2 diabetes mellitus (T2DM): From mechanistic insights into possible therapeutic targets. Cell Biol Int 2024; 48:1049-1068. [PMID: 38812089 DOI: 10.1002/cbin.12189] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 02/03/2024] [Accepted: 05/12/2024] [Indexed: 05/31/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is an immensely debilitating chronic disease that progressively undermines the well-being of various bodily organs and, indeed, most patients succumb to the disease due to post-T2DM complications. Although there is evidence supporting the activation of the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway by insulin, which is essential in regulating glucose metabolism and insulin resistance, the significance of this pathway in T2DM has only been explored in a few studies. The current review aims to unravel the mechanisms by which different classes of PI3Ks control the metabolism of glucose; and also to discuss the original data obtained from international research laboratories on this topic. We also summarized the role of the PI3K/Akt signaling axis in target tissues spanning from the skeletal muscle to the adipose tissue and liver. Furthermore, inquiries regarding the impact of disrupting this axis on insulin function and the development of insulin resistance have been addressed. We also provide a general overview of the association of impaired PI3K/Akt signaling pathways in the pathogenesis of the most prevalent diabetes-related complications. The last section provides a special focus on the therapeutic potential of this axis by outlining the latest advances in active compounds that alleviate diabetes via modulation of the PI3K/Akt pathway. Finally, we comment on the future research aspects in which the field of T2DM therapies using PI3K modulators might be developed.
Collapse
Affiliation(s)
- Rana Taheri
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yazdan Mokhtari
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir-Mohammad Yousefi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Sarkar A, Fanous KI, Marei I, Ding H, Ladjimi M, MacDonald R, Hollenberg MD, Anderson TJ, Hill MA, Triggle CR. Repurposing Metformin for the Treatment of Atrial Fibrillation: Current Insights. Vasc Health Risk Manag 2024; 20:255-288. [PMID: 38919471 PMCID: PMC11198029 DOI: 10.2147/vhrm.s391808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
Metformin is an orally effective anti-hyperglycemic drug that despite being introduced over 60 years ago is still utilized by an estimated 120 to 150 million people worldwide for the treatment of type 2 diabetes (T2D). Metformin is used off-label for the treatment of polycystic ovary syndrome (PCOS) and for pre-diabetes and weight loss. Metformin is a safe, inexpensive drug with side effects mostly limited to gastrointestinal issues. Prospective clinical data from the United Kingdom Prospective Diabetes Study (UKPDS), completed in 1998, demonstrated that metformin not only has excellent therapeutic efficacy as an anti-diabetes drug but also that good glycemic control reduced the risk of micro- and macro-vascular complications, especially in obese patients and thereby reduced the risk of diabetes-associated cardiovascular disease (CVD). Based on a long history of clinical use and an excellent safety record metformin has been investigated to be repurposed for numerous other diseases including as an anti-aging agent, Alzheimer's disease and other dementias, cancer, COVID-19 and also atrial fibrillation (AF). AF is the most frequently diagnosed cardiac arrythmia and its prevalence is increasing globally as the population ages. The argument for repurposing metformin for AF is based on a combination of retrospective clinical data and in vivo and in vitro pre-clinical laboratory studies. In this review, we critically evaluate the evidence that metformin has cardioprotective actions and assess whether the clinical and pre-clinical evidence support the use of metformin to reduce the risk and treat AF.
Collapse
Affiliation(s)
- Aparajita Sarkar
- Department of Medical Education, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Kareem Imad Fanous
- Department of Medical Education, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Isra Marei
- Department of Pharmacology & Medical Education, Weill Cornell Medicine- Qatar, Doha, Qatar
| | - Hong Ding
- Department of Pharmacology & Medical Education, Weill Cornell Medicine- Qatar, Doha, Qatar
| | - Moncef Ladjimi
- Department of Biochemistry & Medical Education, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Ross MacDonald
- Health Sciences Library, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Morley D Hollenberg
- Department of Physiology & Pharmacology, and Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Todd J Anderson
- Department of Cardiac Sciences and Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Michael A Hill
- Dalton Cardiovascular Research Center & Department of Medical Pharmacology & Physiology, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Chris R Triggle
- Department of Pharmacology & Medical Education, Weill Cornell Medicine- Qatar, Doha, Qatar
| |
Collapse
|
9
|
Lou S, Zhu W, Yu T, Zhang Q, Wang M, Jin L, Xiong Y, Xu J, Wang Q, Chen G, Liang G, Hu X, Luo W. Compound SJ-12 attenuates streptozocin-induced diabetic cardiomyopathy by stabilizing SERCA2a. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167140. [PMID: 38548092 DOI: 10.1016/j.bbadis.2024.167140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/29/2024] [Accepted: 03/20/2024] [Indexed: 04/01/2024]
Abstract
Heart failure (HF) is one of the major causes of death among diabetic patients. Although studies have shown that curcumin analog C66 can remarkably relieve diabetes-associated cardiovascular and kidney complications, the role of SJ-12, SJ-12, a novel curcumin analog, in diabetic cardiomyopathy and its molecular targets are unknown. 7-week-old male C57BL/6 mice were intraperitoneally injected with single streptozotocin (STZ) (160 mg/kg) to develop diabetic cardiomyopathy (DCM). The diabetic mice were then treated with SJ-12 via gavage for two months. Body weight, fast blood glucose, cardiac utrasonography, myocardial injury markers, pathological morphology of the heart, hypertrophic and fibrotic markers were assessed. The potential target of SJ-12 was evaluated via RNA-sequencing analysis. The O-GlcNAcylation levels of SP1 were detected via immunoprecipitation. SJ-12 effectively suppressed myocardial hypertrophy and fibrosis, thereby preventing heart dysfunction in mice with STZ-induced heart failure. RNA-sequencing analysis revealed that SJ-12 exerted its therapeutic effects through the modulation of the calcium signaling pathway. Furthermore, SJ-12 reduced the O-GlcNAcylation levels of SP1 by inhibiting O-linked N-acetylglucosamine transferase (OGT). Also, SJ-12 stabilized Sarcoplasmic/Endoplasmic Reticulum Calcium ATPase 2a (SERCA2a), a crucial regulator of calcium homeostasis, thus reducing hypertrophy and fibrosis in mouse hearts and cultured cardiomyocytes. However, the anti-fibrotic effects of SJ-12 were not detected in SERCA2a or OGT-silenced cardiomyocytes, indicating that SJ-12 can prevent DCM by targeting OGT-dependent O-GlcNAcylation of SP1.These findings indicate that SJ-12 can exert cardioprotective effects in STZ-induced mice by reducing the O-GlcNAcylation levels of SP1, thus stabilizing SERCA2a and reducing myocardial fibrosis and hypertrophy. Therefore, SJ-12 can be used for the treatment of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Shuaijie Lou
- Medical Research Center, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China
| | - Weiwei Zhu
- Medical Research Center, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Tianxiang Yu
- Medical Research Center, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China
| | - Qianhui Zhang
- Medical Research Center, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China
| | - Minxiu Wang
- Medical Research Center, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China
| | - Leiming Jin
- Medical Research Center, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China
| | - Yongqiang Xiong
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Jiachen Xu
- Medical Research Center, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China
| | - Qinyan Wang
- Medical Research Center, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China
| | - Gaozhi Chen
- Medical Research Center, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China
| | - Guang Liang
- Medical Research Center, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China; School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China.
| | - Xiang Hu
- Medical Research Center, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China; Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| | - Wu Luo
- Medical Research Center, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
10
|
Tudoran C, Tudoran M, Giurgi-Oncu C, Abu-Awwad A, Abu-Awwad SA, Voiţă-Mekereş F. Associations between Oral Glucose-Lowering Agents and Increased Risk for Life-Threatening Arrhythmias in Patients with Type 2 Diabetes Mellitus-A Literature Review. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1760. [PMID: 37893478 PMCID: PMC10608201 DOI: 10.3390/medicina59101760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/02/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023]
Abstract
Background and Objectives: The relationship between type 2 diabetes mellitus (T2DM) and cardiovascular (CV) morbidity and mortality is well-established. Ventricular arrhythmias (VA) are frequently diagnosed in patients with T2DM, especially in those with associated coronary syndrome, non-ischemic dilated cardiomyopathy (NIDCM), and heart failure (HF). In these patients, VA and sudden cardiac arrest (SCA) are considered responsible for more than 50% of CV deaths. Newly developed glucose-lowering agents (GLA) seem not only to ameliorate CV morbidity and mortality, but also to reduce the risk of VA and SCA. Materials and Methods: We researched the medical literature on Pub-Med, Clarivate, and Google Scholar for original articles published in the last five years that debated the possible effects of various GLA on ventricular arrhythmias. Results: We identified nineteen original articles, nine of them debating the antiarrhythmic effects of sodium-glucose cotransporter-2 inhibitors (SGLT2i); Conclusions: The results concerning the impact of various GLA on VA/SCA were heterogeneous depending on the pharmacological class studied, with some of them having neutral, positive, or negative effects. Although it appears that SGLT2i reduces the prevalence of atrial fibrillation and SCA, their effect on VA is not conclusive.
Collapse
Affiliation(s)
- Cristina Tudoran
- Department VII, Internal Medicine II, Discipline of Cardiology, University of Medicine and Pharmacy “Victor Babes” Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania;
- Center of Molecular Research in Nephrology and Vascular Disease, Faculty of the University of Medicine and Pharmacy “Victor Babes” Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
- County Emergency Hospital “Pius Brinzeu”, L. Rebreanu, Nr. 156, 300723 Timisoara, Romania; (C.G.-O.); (A.A.-A.); (S.-A.A.-A.)
| | - Mariana Tudoran
- County Emergency Hospital “Pius Brinzeu”, L. Rebreanu, Nr. 156, 300723 Timisoara, Romania; (C.G.-O.); (A.A.-A.); (S.-A.A.-A.)
| | - Catalina Giurgi-Oncu
- County Emergency Hospital “Pius Brinzeu”, L. Rebreanu, Nr. 156, 300723 Timisoara, Romania; (C.G.-O.); (A.A.-A.); (S.-A.A.-A.)
- Discipline of Psychiatry, Department of Neuroscience, University of Medicine and Pharmacy “Victor Babes” Timisoara, Eftimie Murgu Place Nr. 2, 300041 Timisoara, Romania
| | - Ahmed Abu-Awwad
- County Emergency Hospital “Pius Brinzeu”, L. Rebreanu, Nr. 156, 300723 Timisoara, Romania; (C.G.-O.); (A.A.-A.); (S.-A.A.-A.)
- Department XV, Discipline of Orthopedics—Traumatology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
- Research Center University Professor Doctor Teodor Șora, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Simona-Alina Abu-Awwad
- County Emergency Hospital “Pius Brinzeu”, L. Rebreanu, Nr. 156, 300723 Timisoara, Romania; (C.G.-O.); (A.A.-A.); (S.-A.A.-A.)
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Florica Voiţă-Mekereş
- Department of Morphological Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 1 Universitatii Street, 410087 Oradea, Romania;
| |
Collapse
|
11
|
Meloni A, Pistoia L, Ricchi P, Positano V, Longo F, Borsellino Z, Cecinati V, Messina G, Corigliano E, Rosso R, Righi R, Peritore G, Renne S, Vallone A, Cademartiri F. Pancreatic T2* Magnetic Resonance Imaging for Prediction of Cardiac Arrhythmias in Transfusion-Dependent Thalassemia. J Clin Med 2023; 12:6015. [PMID: 37762955 PMCID: PMC10531669 DOI: 10.3390/jcm12186015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
We assessed the value of pancreatic T2* magnetic resonance imaging (MRI) for predicting cardiac events from a large prospective database of transfusion-dependent thalassemia (TDT) patients. We considered 813 TDT patients (36.47 ± 10.71 years, 54.6% females) enrolled in the Extension-Myocardial Iron Overload in Thalassemia Network. MRI was used to measure hepatic, pancreatic, and cardiac iron overload (IO), to assess biventricular function and atrial dimensions, and to detect replacement myocardial fibrosis. The mean follow-up was 50.51 ± 19.75 months. Cardiac complications were recorded in 21 (2.6%) patients: one with heart failure (HF) and 20 with arrhythmias. The single patient who developed HF had, at the baseline MRI, a reduced pancreas T2*. Out of the 20 recorded arrhythmias, 17 were supraventricular. Pancreatic T2* values were a significant predictor of future arrhythmia-related events (hazard ratio = 0.89; p = 0.015). Pancreas T2* remained significantly associated with future arrhythmias after adjusting for any other univariate predictor (age and male sex, diabetes, history of previous arrhythmias, or left atrial area index). According to the receiver-operating characteristic curve analysis for arrhythmias, a pancreas T2* < 6.73 ms was the optimal cut-off value. In TDT, pancreatic iron levels had significant prognostic power for arrhythmias. Regular monitoring and the development of targeted interventions to manage pancreatic IO may help improve patient outcomes.
Collapse
Affiliation(s)
- Antonella Meloni
- Department of Radiology, Fondazione Gabriele Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (A.M.); (L.P.); (V.P.)
- Unità Operativa Complessa Bioingegneria, Fondazione Gabriele Monasterio CNR-Regione Toscana, 56124 Pisa, Italy
| | - Laura Pistoia
- Department of Radiology, Fondazione Gabriele Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (A.M.); (L.P.); (V.P.)
- Unità Operativa Semplice a Valenza Dipartimentale Ricerca Clinica, Fondazione Gabriele Monasterio CNR-Regione Toscana, 56124 Pisa, Italy
| | - Paolo Ricchi
- Unità Operativa Semplice Dipartimentale Malattie Rare del Globulo Rosso, Azienda Ospedaliera di Rilievo Nazionale “Antonio Cardarelli”, 80131 Napoli, Italy;
| | - Vincenzo Positano
- Department of Radiology, Fondazione Gabriele Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (A.M.); (L.P.); (V.P.)
- Unità Operativa Complessa Bioingegneria, Fondazione Gabriele Monasterio CNR-Regione Toscana, 56124 Pisa, Italy
| | - Filomena Longo
- Unità Operativa Day Hospital della Talassemia e delle Emoglobinopatie, Azienda Ospedaliero-Universitaria “S. Anna”, 44124 Cona, Italy;
| | - Zelia Borsellino
- Unità Operativa Complessa Ematologia con Talassemia, ARNAS Civico “Benfratelli-Di Cristina”, 90134 Palermo, Italy;
| | - Valerio Cecinati
- Struttura Semplice di Microcitemia, Ospedale “Santissima Annunziata”, 74123 Taranto, Italy;
| | - Giuseppe Messina
- Centro Microcitemie, Grande Ospedale Metropolitano “Bianchi-Melacrino-Morelli”, 89100 Reggio Calabria, Italy;
| | - Elisabetta Corigliano
- Ematologia Microcitemia, Ospedale San Giovanni di Dio—ASP Crotone, 88900 Crotone, Italy;
| | - Rosamaria Rosso
- Unità Operativa Talassemie ed Emoglobinopatie, Azienda Ospedaliero-Universitaria Policlinico “Vittorio Emanuele”, 95100 Catania, Italy;
| | - Riccardo Righi
- Diagnostica per Immagini e Radiologia Interventistica, Ospedale del Delta, 44023 Lagosanto, Italy;
| | - Giuseppe Peritore
- Unità Operativa Complessa di Radiologia, ARNAS Civico “Benfratelli-Di Cristina”, 90127 Palermo, Italy;
| | - Stefania Renne
- Struttura Complessa di Cardioradiologia-UTIC, Presidio Ospedaliero “Giovanni Paolo II”, 88046 Lamezia Terme, Italy;
| | - Antonino Vallone
- Reparto di Radiologia, Azienda Ospedaliera “Garibaldi” Presidio Ospedaliero Nesima, 95126 Catania, Italy;
| | - Filippo Cademartiri
- Department of Radiology, Fondazione Gabriele Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (A.M.); (L.P.); (V.P.)
| |
Collapse
|
12
|
Lorenzo-Almorós A, Casado Cerrada J, Álvarez-Sala Walther LA, Méndez Bailón M, Lorenzo González Ó. Atrial Fibrillation and Diabetes Mellitus: Dangerous Liaisons or Innocent Bystanders? J Clin Med 2023; 12:jcm12082868. [PMID: 37109205 PMCID: PMC10142815 DOI: 10.3390/jcm12082868] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/27/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Atrial fibrillation (AF) is the most common arrhythmia in adults and diabetes mellitus (DM) is a major risk factor for cardiovascular diseases. However, the relationship between both pathologies has not been fully documented and new evidence supports the existence of direct and independent links. In the myocardium, a combination of structural, electrical, and autonomic remodeling may lead to AF. Importantly, patients with AF and DM showed more dramatic alterations than those with AF or DM alone, particularly in mitochondrial respiration and atrial remodeling, which alters conductivity, thrombogenesis, and contractile function. In AF and DM, elevations of cytosolic Ca2⁺ and accumulation of extra cellular matrix (ECM) proteins at the interstitium can promote delayed afterdepolarizations. The DM-associated low-grade inflammation and deposition/infiltration of epicardial adipose tissue (EAT) enforce abnormalities in Ca2+ handling and in excitation-contraction coupling, leading to atrial myopathy. This atrial enlargement and the reduction in passive emptying volume and fraction can be key for AF maintenance and re-entry. Moreover, the stored EAT can prolong action of potential durations and progression from paroxysmal to persistent AF. In this way, DM may increase the risk of thrombogenesis as a consequence of increased glycation and oxidation of fibrinogen and plasminogen, impairing plasmin conversion and resistance to fibrinolysis. Additionally, the DM-associated autonomic remodeling may also initiate AF and its re-entry. Finally, further evidence of DM influence on AF development and maintenance are based on the anti-arrhythmogenic effects of certain anti-diabetic drugs like SGLT2 inhibitors. Therefore, AF and DM may share molecular alterations related to Ca2+ mobility, mitochondrial function and ECM composition that induce atrial remodeling and defects in autonomic stimulation and conductivity. Likely, some specific therapies could work against the associated cardiac damage to AF and/or DM.
Collapse
Affiliation(s)
- Ana Lorenzo-Almorós
- Internal Medicine Department, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain
- Department of Medicine, School of Medicine, Universidad Complutense de Madrid, 28007 Madrid, Spain
| | - Jesús Casado Cerrada
- Internal Medicine Department, Hospital Universitario de Getafe, 28095 Madrid, Spain
| | - Luis-Antonio Álvarez-Sala Walther
- Internal Medicine Department, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain
- Department of Medicine, School of Medicine, Universidad Complutense de Madrid, 28007 Madrid, Spain
| | - Manuel Méndez Bailón
- Internal Medicine Department, Hospital Universitario Clinico San Carlos, 28040 Madrid, Spain
| | - Óscar Lorenzo González
- Laboratory of Diabetes and Vascular Pathology, Instituto de Investigaciones Sanitarias-Fundación Jiménez Díaz, Universidad Autónoma, 28040 Madrid, Spain
- Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM) Network, 28040 Madrid, Spain
| |
Collapse
|
13
|
Menzele A, Aboalgasm H, Ballo R, Gwanyanya A. Hyperglycaemia-induced impairment of the autorhythmicity and gap junction activity of mouse embryonic stem cell-derived cardiomyocyte-like cells. Histochem Cell Biol 2022; 159:329-337. [PMID: 36547741 DOI: 10.1007/s00418-022-02170-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2022] [Indexed: 12/24/2022]
Abstract
Diabetes mellitus with hyperglycaemia is a major risk factor for malignant cardiac dysrhythmias. However, the underlying mechanisms remain unclear, especially during the embryonic developmental phase of the heart. This study investigated the effect of hyperglycaemia on the pulsatile activity of stem cell-derived cardiomyocytes. Mouse embryonic stem cells (mESCs) were differentiated into cardiac-like cells through embryoid body (EB) formation, in either baseline glucose or high glucose conditions. Action potentials (APs) were recorded using a voltage-sensitive fluorescent dye and gap junction activity was evaluated using scrape-loading lucifer yellow dye transfer assay. Molecular components were detected using immunocytochemistry and immunoblot analyses. High glucose decreased the spontaneous beating rate of EBs and shortened the duration of onset of quinidine-induced asystole. Furthermore, it altered AP amplitude, but not AP duration, and had no impact on neither the expression of the hyperpolarisation-activated cyclic nucleotide-gated isoform 4 (HCN4) channel nor on the EB beating rate response to ivabradine nor isoprenaline. High glucose also decreased both the intercellular spread of lucifer yellow within an EB and the expression of the cardiac gap junction protein connexin 43 as well as upregulated the expression of transforming growth factor beta 1 (TGF-β1) and phosphorylated Smad3. High glucose suppressed the autorhythmicity and gap junction conduction of mESC-derived cardiomyocytes, via mechanisms probably involving TGF-β1/Smad3 signalling. The results allude to glucotoxicity related proarrhythmic effects, with potential clinical implications in foetal diabetic cardiac disease.
Collapse
Affiliation(s)
- Amanda Menzele
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, 7925, South Africa
| | - Hamida Aboalgasm
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, 7925, South Africa
| | - Robea Ballo
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, 7925, South Africa
| | - Asfree Gwanyanya
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, 7925, South Africa.
| |
Collapse
|
14
|
Zheng D, Wu Q, Zeng P, Li S, Cai Y, Chen S, Luo X, Kuang S, Rao F, Lai Y, Zhou M, Wu F, Yang H, Deng C. Advanced glycation end products induce senescence of atrial myocytes and increase susceptibility of atrial fibrillation in diabetic mice. Aging Cell 2022; 21:e13734. [PMID: 36278684 PMCID: PMC9741501 DOI: 10.1111/acel.13734] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 09/07/2022] [Accepted: 10/02/2022] [Indexed: 12/14/2022] Open
Abstract
Diabetes mellitus (DM) is a common chronic metabolic disease caused by significant accumulation of advanced glycation end products (AGEs). Atrial fibrillation (AF) is a common cardiovascular complication of DM. Here, we aim to clarify the role and mechanism of atrial myocyte senescence in the susceptibility of AF in diabetes. Rapid transesophageal atrial pacing was used to monitor the susceptibility of mice to AF. Whole-cell patch-clamp was employed to record the action potential (AP) and ion channels in single HL-1 cell and mouse atrial myocytes. More importantly, anti-RAGE antibody and RAGE-siRNA AAV9 were used to investigate the relationship among diabetes, aging, and AF. The results showed that elevated levels of p16 and retinoblastoma (Rb) protein in the atrium were associated with increased susceptibility to AF in diabetic mice. Mechanistically, AGEs increased p16/Rb protein expression and the number of SA-β-gal-positive cells, prolonged the action potential duration (APD), reduced protein levels of Cav1.2, Kv1.5, and current density of ICa,L , IKur in HL-1 cells. Anti-RAGE antibody or RAGE-siRNA AAV9 reversed these effects in vitro and in vivo, respectively. Furthermore, downregulating p16 or Rb by siRNA prevented AGEs-mediated reduction of Cav1.2 and Kv1.5 proteins expression. In conclusion, AGEs accelerated atrial electrical remodeling and cellular senescence, contributing to increased AF susceptibility by activating the p16/Rb pathway. Inhibition of RAGE or the p16/Rb pathway may be a potential therapeutic target for AF in diabetes.
Collapse
Affiliation(s)
- Dan‐Lin Zheng
- Guangdong Provincial Key Laboratory of Clinical PharmacologyResearch Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhouChina,Department of Cardiology, Guangdong Cardiovascular InstituteGuangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhouChina
| | - Qing‐Rui Wu
- Guangdong Provincial Key Laboratory of Clinical PharmacologyResearch Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhouChina,Department of Cardiology, Guangdong Cardiovascular InstituteGuangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhouChina,School of MedicineSouth China University of TechnologyGuangzhouChina
| | - Peng Zeng
- Guangdong Provincial Key Laboratory of Clinical PharmacologyResearch Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhouChina,Department of Cardiology, Guangdong Cardiovascular InstituteGuangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhouChina,School of MedicineSouth China University of TechnologyGuangzhouChina
| | - Sui‐Min Li
- Guangdong Provincial Key Laboratory of Clinical PharmacologyResearch Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhouChina,Department of Cardiology, Guangdong Cardiovascular InstituteGuangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhouChina
| | - Yong‐Jiang Cai
- Guangdong Provincial Key Laboratory of Clinical PharmacologyResearch Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhouChina,Department of Cardiology, Guangdong Cardiovascular InstituteGuangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhouChina,School of Pharmaceutical SciencesSouthern Medical UniversityGuangzhouChina
| | - Shu‐Zhen Chen
- Guangdong Provincial Key Laboratory of Clinical PharmacologyResearch Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhouChina,Department of Cardiology, Guangdong Cardiovascular InstituteGuangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhouChina
| | - Xue‐Shan Luo
- Guangdong Provincial Key Laboratory of Clinical PharmacologyResearch Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhouChina,Department of Cardiology, Guangdong Cardiovascular InstituteGuangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhouChina,School of MedicineSouth China University of TechnologyGuangzhouChina
| | - Su‐Juan Kuang
- Guangdong Provincial Key Laboratory of Clinical PharmacologyResearch Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhouChina,Department of Cardiology, Guangdong Cardiovascular InstituteGuangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhouChina
| | - Fang Rao
- Guangdong Provincial Key Laboratory of Clinical PharmacologyResearch Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhouChina,Department of Cardiology, Guangdong Cardiovascular InstituteGuangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhouChina
| | - Ying‐Yu Lai
- Guangdong Provincial Key Laboratory of Clinical PharmacologyResearch Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhouChina,Department of Cardiology, Guangdong Cardiovascular InstituteGuangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhouChina,School of Pharmaceutical SciencesSouthern Medical UniversityGuangzhouChina
| | - Meng‐Yuan Zhou
- Guangdong Provincial Key Laboratory of Clinical PharmacologyResearch Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhouChina,Department of Cardiology, Guangdong Cardiovascular InstituteGuangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhouChina
| | - Fei‐Long Wu
- Guangdong Provincial Key Laboratory of Clinical PharmacologyResearch Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhouChina,Department of Cardiology, Guangdong Cardiovascular InstituteGuangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhouChina
| | - Hui Yang
- Guangdong Provincial Key Laboratory of Clinical PharmacologyResearch Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhouChina,Department of Cardiology, Guangdong Cardiovascular InstituteGuangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhouChina
| | - Chun‐Yu Deng
- Guangdong Provincial Key Laboratory of Clinical PharmacologyResearch Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhouChina,Department of Cardiology, Guangdong Cardiovascular InstituteGuangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhouChina,School of MedicineSouth China University of TechnologyGuangzhouChina,School of Pharmaceutical SciencesSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
15
|
Bacova BS, Andelova K, Sykora M, Egan Benova T, Barancik M, Kurahara LH, Tribulova N. Does Myocardial Atrophy Represent Anti-Arrhythmic Phenotype? Biomedicines 2022; 10:2819. [PMID: 36359339 PMCID: PMC9687767 DOI: 10.3390/biomedicines10112819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/30/2023] Open
Abstract
This review focuses on cardiac atrophy resulting from mechanical or metabolic unloading due to various conditions, describing some mechanisms and discussing possible strategies or interventions to prevent, attenuate or reverse myocardial atrophy. An improved awareness of these conditions and an increased focus on the identification of mechanisms and therapeutic targets may facilitate the development of the effective treatment or reversion for cardiac atrophy. It appears that a decrement in the left ventricular mass itself may be the central component in cardiac deconditioning, which avoids the occurrence of life-threatening arrhythmias. The depressed myocardial contractility of atrophied myocardium along with the upregulation of electrical coupling protein, connexin43, the maintenance of its topology, and enhanced PKCƐ signalling may be involved in the anti-arrhythmic phenotype. Meanwhile, persistent myocardial atrophy accompanied by oxidative stress and inflammation, as well as extracellular matrix fibrosis, may lead to severe cardiac dysfunction, and heart failure. Data in the literature suggest that the prevention of heart failure via the attenuation or reversion of myocardial atrophy is possible, although this requires further research.
Collapse
Affiliation(s)
| | - Katarina Andelova
- Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia
| | - Matus Sykora
- Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia
| | - Tamara Egan Benova
- Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia
| | - Miroslav Barancik
- Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia
| | - Lin Hai Kurahara
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University, Miki-cho 761-0793, Japan
| | - Narcis Tribulova
- Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia
| |
Collapse
|
16
|
Tikhonova IV, Grinevich AA, Tankanag AV, Safronova VG. Skin Microhemodynamics and Mechanisms of Its Regulation in Type 2 Diabetes Mellitus. Biophysics (Nagoya-shi) 2022; 67:647-659. [PMID: 36281313 PMCID: PMC9581453 DOI: 10.1134/s0006350922040200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/07/2022] Open
Abstract
The review presents modern ideas about peripheral microhemodynamics, approaches to the ana-lysis of skin blood flow oscillations and their diagnostic significance. Disorders of skin microhemodynamics in type 2 diabetes mellitus (DM) and the possibility of their interpretation from the standpoint of external and internal interactions between systems of skin blood flow regulation, based on a comparison of couplings in normal and pathological conditions, including models of pathologies on animals, are considered. The factors and mechanisms of vasomotor regulation, among them receptors and signaling events in endothelial and smooth muscle cells considered as models of microvessels are discussed. Attention was drawn to the disturbance of Ca2+-dependent regulation of coupling between vascular cells and NO-dependent regulation of vasodilation in diabetes mellitus. The main mechanisms of insulin resistance in type 2 DM are considered to be a defect in the number of insulin receptors and impaired signal transduction from the receptor to phosphatidylinositol-3-kinase and downstream targets. Reactive oxygen species plays an important role in vascular dysfunction in hyperglycemia. It is assumed that the considered molecular and cellular mechanisms of microhemodynamics regulation are involved in the formation of skin blood flow oscillations. Parameters of skin blood microcirculation can be used as diagnostic and prognostic markers for assessing the state of the body.
Collapse
Affiliation(s)
- I. V. Tikhonova
- Institute of Cell Biophysics, Russian Academy of Sciences, 142290 Pushchino, Moscow oblast Russia
| | - A. A. Grinevich
- Institute of Cell Biophysics, Russian Academy of Sciences, 142290 Pushchino, Moscow oblast Russia
| | - A. V. Tankanag
- Institute of Cell Biophysics, Russian Academy of Sciences, 142290 Pushchino, Moscow oblast Russia
| | - V. G. Safronova
- Institute of Cell Biophysics, Russian Academy of Sciences, 142290 Pushchino, Moscow oblast Russia
| |
Collapse
|
17
|
Rupee S, Rupee K, Singh RB, Hanoman C, Ismail AMA, Smail M, Singh J. Diabetes-induced chronic heart failure is due to defects in calcium transporting and regulatory contractile proteins: cellular and molecular evidence. Heart Fail Rev 2022; 28:627-644. [PMID: 36107271 DOI: 10.1007/s10741-022-10271-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/07/2022] [Indexed: 11/04/2022]
Abstract
Heart failure (HF) is a major deteriorating disease of the myocardium due to weak myocardial muscles. As such, the heart is unable to pump blood efficiently around the body to meet its constant demand. HF is a major global health problem with more than 7 million deaths annually worldwide, with some patients dying suddenly due to sudden cardiac death (SCD). There are several risk factors which are associated with HF and SCD which can negatively affect the heart synergistically. One major risk factor is diabetes mellitus (DM) which can cause an elevation in blood glucose level or hyperglycaemia (HG) which, in turn, has an insulting effect on the myocardium. This review attempted to explain the subcellular, cellular and molecular mechanisms and to a lesser extent, the genetic factors associated with the development of diabetes- induced cardiomyopathy due to the HG which can subsequently lead to chronic heart failure (CHF) and SCD. The study first explained the structure and function of the myocardium and then focussed mainly on the excitation-contraction coupling (ECC) processes highlighting the defects of calcium transporting (SERCA, NCX, RyR and connexin) and contractile regulatory (myosin, actin, titin and troponin) proteins. The study also highlighted new therapies and those under development, as well as preventative strategies to either treat or prevent diabetic cardiomyopathy (DCM). It is postulated that prevention is better than cure.
Collapse
|
18
|
SGLT2 Inhibitor Empagliflozin Modulates Ion Channels in Adult Zebrafish Heart. Int J Mol Sci 2022; 23:ijms23179559. [PMID: 36076956 PMCID: PMC9455557 DOI: 10.3390/ijms23179559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/14/2022] [Accepted: 08/20/2022] [Indexed: 11/16/2022] Open
Abstract
Empagliflozin, an inhibitor of sodium-glucose co-transporter 2 (iSGLT2), improves cardiovascular outcomes in patients with and without diabetes and possesses an antiarrhythmic activity. However, the mechanisms of these protective effects have not been fully elucidated. This study aimed to explore the impact of empagliflozin on ion channel activity and electrophysiological characteristics in the ventricular myocardium. The main cardiac ionic currents (INa, ICaL, ICaT, IKr, IKs) and action potentials (APs) were studied in zebrafish. Whole-cell currents were measured using the patch clamp method in the isolated ventricular cardiomyocytes. The conventional sharp glass microelectrode technique was applied for the recording of APs from the ventricular myocardium of the excised heart. Empagliflozin pretreatment compared to the control group enhanced potassium IKr step current density in the range of testing potentials from 0 to +30 mV, IKr tail current density in the range of testing potentials from +10 to +70 mV, and IKs current density in the range of testing potentials from −10 to +20 mV. Moreover, in the ventricular myocardium, empagliflozin pretreatment shortened AP duration APD as shown by reduced APD50 and APD90. Empagliflozin had no influence on sodium (INa) and L- and T-type calcium currents (ICaL and ICaT) in zebrafish ventricular cardiomyocytes. Thus, we conclude that empagliflozin increases the rapid and slow components of delayed rectifier K+ current (IKr and IKs). This mechanism could be favorable for cardiac protection.
Collapse
|
19
|
García-Vega D, González-Juanatey JR, Eiras S. Diabesity in Elderly Cardiovascular Disease Patients: Mechanisms and Regulators. Int J Mol Sci 2022; 23:7886. [PMID: 35887234 PMCID: PMC9318065 DOI: 10.3390/ijms23147886] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 12/04/2022] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death in the world. In 2019, 550 million people were suffering from CVD and 18 million of them died as a result. Most of them had associated risk factors such as high fasting glucose, which caused 134 million deaths, and obesity, which accounted for 5.02 million deaths. Diabesity, a combination of type 2 diabetes and obesity, contributes to cardiac, metabolic, inflammation and neurohumoral changes that determine cardiac dysfunction (diabesity-related cardiomyopathy). Epicardial adipose tissue (EAT) is distributed around the myocardium, promoting myocardial inflammation and fibrosis, and is associated with an increased risk of heart failure, particularly with preserved systolic function, atrial fibrillation and coronary atherosclerosis. In fact, several hypoglycaemic drugs have demonstrated a volume reduction of EAT and effects on its metabolic and inflammation profile. However, it is necessary to improve knowledge of the diabesity pathophysiologic mechanisms involved in the development and progression of cardiovascular diseases for comprehensive patient management including drugs to optimize glucometabolic control. This review presents the mechanisms of diabesity associated with cardiovascular disease and their therapeutic implications.
Collapse
Affiliation(s)
- David García-Vega
- Cardiology and Intensive Cardiac Care Department, University Hospital, 15706 Santiago de Compostela, Spain;
- Cardiology Group, Health Research Institute, 15706 Santiago de Compostela, Spain
| | - José Ramón González-Juanatey
- Cardiology and Intensive Cardiac Care Department, University Hospital, 15706 Santiago de Compostela, Spain;
- Cardiology Group, Health Research Institute, 15706 Santiago de Compostela, Spain
- CIBERCV, 28029 Madrid, Spain
| | - Sonia Eiras
- CIBERCV, 28029 Madrid, Spain
- Translational Cardiology Group (Laboratory 6), Health Research Institute, 15706 Santiago de Compostela, Spain
| |
Collapse
|
20
|
da Purificação NRC, Garcia VB, Frez FCV, Sehaber CC, Lima KRDA, de Oliveira Lima MF, de Carvalho Vasconcelos R, de Araujo AA, de Araújo Júnior RF, Lacchini S, de Oliveira F, Perles JVCM, Zanoni JN, de Sousa Lopes MLD, Clebis NK. Combined use of systemic quercetin, glutamine and alpha-tocopherol attenuates myocardial fibrosis in diabetic rats. Biomed Pharmacother 2022; 151:113131. [PMID: 35643067 DOI: 10.1016/j.biopha.2022.113131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 11/02/2022] Open
Abstract
This study aimed to analyze the effects of the quercetin (100 mg/kg), 1% glutamine and 1% α-tocopherol antioxidants in the myocardium of rats with streptozotocin-induced diabetes mellitus. Twenty male rats were subdivided into four groups (n = 5): N (normoglycemic); D (diabetic); NT (normoglycemic treated with antioxidants); and DT (diabetic treated with antioxidants) treated for 60 days. Clinical parameters, oxidative stress markers, inflammatory cytokines, myocardial collagen fibers and immunoexpression of superoxide dismutase 1 (SOD-1), glutathione peroxidase-1 (GPx-1), interleukin-1β (IL-1-β), transforming growth factor-beta (TGF-β), and fibroblast growth factor-2 (FGF-2) were evaluated. Results showed reduced body weight, hyperphagia, polydipsia and hyperglycemic state in groups D and DT. The levels of glutathione (GSH) were higher in NT and DT compared to N (p < 0.01) and D (p < 0.001) groups, respectively. Greater GSH levels were found in DT when compared to N animals (p < 0.001). In DT, there was an increase in IL-10 in relation to N, D and NT (p < 0.05), while GPx-1 expression was similar to N and lower compared to D (p < 0.001). TGF-β expression in DT was greater than N (p < 0.001) group, whereas FGF-2 in DT was higher than in the other groups (p < 0.001). A significant reduction in collagen fibers (type I) was found in DT compared to D (p < 0.05). The associated administration of quercetin, glutamine and α-tocopherol increased the levels of circulating interleukin-10 (IL-10) and GSH, and reduced the number of type I collagen fibers. Combined use of systemic quercetin, glutamine and alpha-tocopherol attenuates myocardial fibrosis in diabetic rats.
Collapse
Affiliation(s)
| | | | | | | | - Kaio Ramon De Aguiar Lima
- Postgraduate Program in Functional & Structural Biology, Departament of Morphology, UFRN, Natal, RN, Brazil
| | | | | | - Aurigena Antunes de Araujo
- Postgraduate Program in Pharmaceutical Sciences, Postgraduate Program in Dental Sciences, Department of Pharmacology and Biophysical, UFRN, Natal, RN, Brazil.
| | - Raimundo Fernandes de Araújo Júnior
- Postgraduate Program in Health Sciences, Postgraduate Program in Functional & Structural Biology, Departament of Morphology, UFRN, Natal, RN, Brazil
| | - Silvia Lacchini
- Postgraduate Program in Morphology Science, Departamento of Anatomy, São Paulo University, São Paulo, SP, Brazil
| | - Flávia de Oliveira
- Departament of Biocience, Federal University of São Paulo (UNIFESP), Santos, SP, Brazil
| | | | | | | | - Naianne Kelly Clebis
- Postgraduate Program in Functional & Structural Biology, Departament of Morphology, UFRN, Natal, RN, Brazil
| |
Collapse
|
21
|
Glucose dysregulation and repolarization variability markers are short-term mortality predictors in decompensated heart failure. Cardiovasc Endocrinol Metab 2022; 11:e0264. [PMID: 35664451 PMCID: PMC9155175 DOI: 10.1097/xce.0000000000000264] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/05/2022] [Indexed: 11/27/2022]
Abstract
As recently reported, elevated fasting glucose plasma level constitutes a risk factor for 30-day total mortality in acutely decompensated chronic heart failure (CHF). Aim of this study was to evaluate the 30-day mortality risk in decompensated CHF patients by fasting glucose plasma level and some repolarization ECG markers.
Collapse
|
22
|
Zhang D, Tu H, Hu W, Duan B, Zimmerman MC, Li YL. Hydrogen Peroxide Scavenging Restores N-Type Calcium Channels in Cardiac Vagal Postganglionic Neurons and Mitigates Myocardial Infarction-Evoked Ventricular Arrhythmias in Type 2 Diabetes Mellitus. Front Cardiovasc Med 2022; 9:871852. [PMID: 35548411 PMCID: PMC9082497 DOI: 10.3389/fcvm.2022.871852] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveWithdrawal of cardiac vagal activity is associated with ventricular arrhythmia-related high mortality in patients with type 2 diabetes mellitus (T2DM). Our recent study found that reduced cell excitability of cardiac vagal postganglionic (CVP) neurons is involved in cardiac vagal dysfunction and further exacerbates myocardial infarction (MI)-evoked ventricular arrhythmias and mortality in T2DM. However, the mechanisms responsible for T2DM-impaired cell excitability of CVP neurons remain unclear. This study tested if and how elevation of hydrogen peroxide (H2O2) inactivates CVP neurons and contributes to cardiac vagal dysfunction and ventricular arrhythmogenesis in T2DM.Methods and ResultsRat T2DM was induced by a high-fat diet plus streptozotocin injection. Local in vivo transfection of adenoviral catalase gene (Ad.CAT) successfully induced overexpression of catalase and subsequently reduced cytosolic H2O2 levels in CVP neurons in T2DM rats. Ad.CAT restored protein expression and ion currents of N-type Ca2+ channels and increased cell excitability of CVP neurons in T2DM. Ad.CAT normalized T2DM-impaired cardiac vagal activation, vagal control of ventricular function, and heterogeneity of ventricular electrical activity. Additionally, Ad.CAT not only reduced the susceptibility to ventricular arrhythmias, but also suppressed MI-evoked lethal ventricular arrhythmias such as VT/VF in T2DM.ConclusionsWe concluded that endogenous H2O2 elevation inhibited protein expression and activation of N-type Ca2+ channels and reduced cell excitability of CVP neurons, which further contributed to the withdrawal of cardiac vagal activity and ventricular arrhythmogenesis in T2DM. Our current study suggests that the H2O2-N-type Ca2+ channel signaling axis might be an effective therapeutic target to suppress ventricular arrhythmias in T2DM patients with MI.
Collapse
Affiliation(s)
- Dongze Zhang
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Huiyin Tu
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Wenfeng Hu
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Bin Duan
- Mary and Dick Holland Regenerative Medicine Program, Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Matthew C. Zimmerman
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Yu-Long Li
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
- *Correspondence: Yu-Long Li
| |
Collapse
|
23
|
Isse FA, El-Sherbeni AA, El-Kadi AOS. The multifaceted role of cytochrome P450-Derived arachidonic acid metabolites in diabetes and diabetic cardiomyopathy. Drug Metab Rev 2022; 54:141-160. [PMID: 35306928 DOI: 10.1080/03602532.2022.2051045] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Understanding lipid metabolism is a critical key to understanding the pathogenesis of Diabetes Mellitus (DM). It is known that 60-90% of DM patients are obese or used to be obese. The incidence of obesity is rising owing to the modern sedentary lifestyle that leads to insulin resistance and increased levels of free fatty acids, predisposing tissues to utilize more lipids with less glucose uptake. However, the exact mechanism is not yet fully elucidated. Diabetic cardiomyopathy seems to be associated with these alterations in lipid metabolism. Arachidonic acid (AA) is an important fatty acid that is metabolized to several bioactive compounds by cyclooxygenases, lipoxygenases, and the more recently discovered, cytochrome P450 (P450) enzymes. P450 metabolizes AA to either epoxy-AA (EETs) or hydroxy-AA (HETEs). Studies showed that EETs could have cardioprotective effects and beneficial effects in reversing abnormalities in glucose and insulin homeostasis. Conversely, HETEs, most importantly 12-HETE and 20-HETE, were found to interfere with normal glucose and insulin homeostasis and thus, might be involved in diabetic cardiomyopathy. In this review, we highlight the role of P450-derived AA metabolites in the context of DM and diabetic cardiomyopathy and their potential use as a target for developing new treatments for DM and diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Fadumo Ahmed Isse
- Departmet of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | - Ahmed A El-Sherbeni
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Ayman O S El-Kadi
- Departmet of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| |
Collapse
|
24
|
Ha ACT, Doumouras BS, Wang CN, Tranmer J, Lee DS. Prediction of sudden cardiac arrest in the general population: Review of traditional and emerging risk factors. Can J Cardiol 2022; 38:465-478. [PMID: 35041932 DOI: 10.1016/j.cjca.2022.01.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/08/2022] [Accepted: 01/09/2022] [Indexed: 12/28/2022] Open
Abstract
Sudden cardiac death (SCD) is the most common and devastating outcome of sudden cardiac arrest (SCA), defined as an abrupt and unexpected cessation of cardiovascular function leading to circulatory collapse. The incidence of SCD is relatively infrequent for individuals in the general population, in the range of 0.03-0.10% per year. Yet, the absolute number of cases around the world is high due to the sheer size of the population at risk, making SCA/SCD a major global health issue. Based on conservative estimates, there are at least 2 million cases of SCA occurring worldwide on a yearly basis. As such, identification of risk factors associated with SCA in the general population is an important objective from a clinical and public health standpoint. This review will provide an in-depth discussion of established and emerging factors predictive of SCA/SCD in the general population beyond coronary artery disease and impaired left ventricular ejection fraction. Contemporary studies evaluating the association between age, sex, race, socioeconomic status and the emerging contribution of diabetes and obesity to SCD risk beyond their role as atherosclerotic risk factors will be reviewed. In addition, the role of biomarkers, particularly electrocardiographic ones, on SCA/SCD risk prediction in the general population will be discussed. Finally, the use of machine learning as a tool to facilitate SCA/SCD risk prediction will be examined.
Collapse
Affiliation(s)
- Andrew C T Ha
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada; Peter Munk Cardiac Centre, University Health Network, Toronto, Ontario, Canada.
| | - Barbara S Doumouras
- Peter Munk Cardiac Centre, University Health Network, Toronto, Ontario, Canada
| | - Chang Nancy Wang
- Department of Medicine, Queen's University, Kingston, Ontario, Canada; ICES Central, Toronto, Ontario, Canada
| | - Joan Tranmer
- School of Nursing, Queen's University, Kingston, Ontario, Canada; ICES Queens, Queen's University, Kingston, Ontario, Canada
| | - Douglas S Lee
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada; Peter Munk Cardiac Centre, University Health Network, Toronto, Ontario, Canada; ICES Central, Toronto, Ontario, Canada; Ted Rogers Centre for Heart Research, Toronto, Ontario, Canada.
| |
Collapse
|
25
|
Remme CA. Sudden cardiac death in diabetes and obesity: mechanisms and therapeutic strategies. Can J Cardiol 2022; 38:418-426. [PMID: 35017043 DOI: 10.1016/j.cjca.2022.01.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 02/07/2023] Open
Abstract
Ventricular arrhythmias and sudden cardiac death (SCD) occur most frequently in the setting of coronary artery disease, cardiomyopathy and heart failure, but are also increasingly observed in individuals suffering from diabetes mellitus and obesity. The incidence of these metabolic disorders is rising in Western countries, but adequate prevention and treatment of arrhythmias and SCD in affected patients is limited due to our incomplete knowledge of the underlying disease mechanisms. Here, an overview is presented of the prevalence of electrophysiological disturbances, ventricular arrhythmias and SCD in the clinical setting of diabetes and obesity. Experimental studies are reviewed, which have identified disease pathways and associated modulatory factors, in addition to pro-arrhythmic mechanisms. Key processes are discussed, including mitochondrial dysfunction, oxidative stress, cardiac structural derangements, abnormal cardiac conduction, ion channel dysfunction, prolonged repolarization and dysregulation of intracellular sodium and calcium homeostasis. In addition, the recently identified pro-arrhythmic effects of dysregulated branched chain amino acid metabolism, a common feature in patients with metabolic disorders, are addressed. Finally, current management options are discussed, in addition to the potential development of novel preventive and therapeutic strategies based on recent insight gained from translational studies.
Collapse
Affiliation(s)
- Carol Ann Remme
- Department of Experimental Cardiology, Amsterdam UMC, location AMC, Amsterdam, The Netherlands.
| |
Collapse
|
26
|
Al Kury LT, Chacar S, Alefishat E, Khraibi AA, Nader M. Structural and Electrical Remodeling of the Sinoatrial Node in Diabetes: New Dimensions and Perspectives. Front Endocrinol (Lausanne) 2022; 13:946313. [PMID: 35872997 PMCID: PMC9302195 DOI: 10.3389/fendo.2022.946313] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/14/2022] [Indexed: 11/14/2022] Open
Abstract
The sinoatrial node (SAN) is composed of highly specialized cells that mandate the spontaneous beating of the heart through self-generation of an action potential (AP). Despite this automaticity, the SAN is under the modulation of the autonomic nervous system (ANS). In diabetes mellitus (DM), heart rate variability (HRV) manifests as a hallmark of diabetic cardiomyopathy. This is paralleled by an impaired regulation of the ANS, and by a pathological remodeling of the pacemaker structure and function. The direct effect of diabetes on the molecular signatures underscoring this pathology remains ill-defined. The recent focus on the electrical currents of the SAN in diabetes revealed a repressed firing rate of the AP and an elongation of its tracing, along with conduction abnormalities and contractile failure. These changes are blamed on the decreased expression of ion transporters and cell-cell communication ports at the SAN (i.e., HCN4, calcium and potassium channels, connexins 40, 45, and 46) which further promotes arrhythmias. Molecular analysis crystallized the RGS4 (regulator of potassium currents), mitochondrial thioredoxin-2 (reactive oxygen species; ROS scavenger), and the calcium-dependent calmodulin kinase II (CaMKII) as metabolic culprits of relaying the pathological remodeling of the SAN cells (SANCs) structure and function. A special attention is given to the oxidation of CaMKII and the generation of ROS that induce cell damage and apoptosis of diabetic SANCs. Consequently, the diabetic SAN contains a reduced number of cells with significant infiltration of fibrotic tissues that further delay the conduction of the AP between the SANCs. Failure of a genuine generation of AP and conduction of their derivative waves to the neighboring atrial myocardium may also occur as a result of the anti-diabetic regiment (both acute and/or chronic treatments). All together, these changes pose a challenge in the field of cardiology and call for further investigations to understand the etiology of the structural/functional remodeling of the SANCs in diabetes. Such an understanding may lead to more adequate therapies that can optimize glycemic control and improve health-related outcomes in patients with diabetes.
Collapse
Affiliation(s)
- Lina T. Al Kury
- Department of Health Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi, United Arab Emirates
- *Correspondence: Lina T. Al Kury, ; Moni Nader,
| | - Stephanie Chacar
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Eman Alefishat
- Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman, Jordan
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Ali A. Khraibi
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Moni Nader
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- *Correspondence: Lina T. Al Kury, ; Moni Nader,
| |
Collapse
|
27
|
Campesi I, Seghieri G, Franconi F. Type 2 diabetic women are not small type 2 diabetic men: Sex-and-gender differences in antidiabetic drugs. Curr Opin Pharmacol 2021; 60:40-45. [PMID: 34325380 DOI: 10.1016/j.coph.2021.06.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/17/2021] [Accepted: 06/26/2021] [Indexed: 12/12/2022]
Abstract
Many pieces of evidence have accumulated over time suggesting sex-and-gender differences in type 2 diabetes, the most relevant being the greater excess risk of cardiovascular diseases in women with diabetes than in men. Drugs available for the treatment of diabetes have, meanwhile, increased in number and effectiveness over the last 20 years. Nonetheless, overall metabolic control of diabetes continues to be suboptimal, with a clear further disadvantage for women. Moreover, old and new glucose-lowering drugs present some sex-and-gender differences, although women continue to be underrepresented in all cardiovascular outcome trials testing their efficacy and protective effects. We conclude that pharmacology should wear gender glasses starting from preclinical research to overcome all these gender gaps.
Collapse
Affiliation(s)
- Ilaria Campesi
- Dipartimento di Scienze Biomediche, Università degli Studi di Sassari, 07100, Sassari, Italy; Laboratorio Nazionale di Farmacologia e Medicina di Genere, Istituto Nazionale Biostrutture Biosistemi, 07100, Sassari, Italy.
| | | | - Flavia Franconi
- Laboratorio Nazionale di Farmacologia e Medicina di Genere, Istituto Nazionale Biostrutture Biosistemi, 07100, Sassari, Italy
| |
Collapse
|