1
|
Sobolev V, Tchepourina E, Soboleva A, Denisova E, Korsunskaya I, Mezentsev A. PPAR-γ in Melanoma and Immune Cells: Insights into Disease Pathogenesis and Therapeutic Implications. Cells 2025; 14:534. [PMID: 40214488 PMCID: PMC11989151 DOI: 10.3390/cells14070534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 03/31/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025] Open
Abstract
Changes in skin pigmentation, like hyperpigmentation or moles, can affect appearance and social life. Unlike locally containable moles, malignant melanomas are aggressive and can spread rapidly, disproportionately affecting younger individuals with a high potential for metastasis. Research has shown that the peroxisome proliferator-activated receptor gamma (PPAR-γ) and its ligands exhibit protective effects against melanoma. As a transcription factor, PPAR-γ is crucial in functions like fatty acid storage and glucose metabolism. Activation of PPAR-γ promotes lipid uptake and enhances sensitivity to insulin. In many cases, it also inhibits the growth of cancer cell lines, like breast, gastric, lung, and prostate cancer. In melanoma, PPAR-γ regulates cell proliferation, differentiation, apoptosis, and survival. During tumorigenesis, it controls metabolic changes and the immunogenicity of stromal cells. PPAR-γ agonists can target hypoxia-induced angiogenesis in tumor therapy, but their effects on tumors can be suppressive or promotional, depending on the tumor environment. Published data show that PPAR-γ-targeting agents can be effective in specific groups of patients, but further studies are needed to understand lesser-known biological effects of PPAR-γ and address the existing safety concerns. This review provides a summary of the current understanding of PPAR-γ and its involvement in melanoma.
Collapse
Affiliation(s)
- Vladimir Sobolev
- Laboratory of Physicochemical and Genetic Problems in Dermatology, Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, Moscow 109029, Russia; (V.S.); (E.T.); (A.S.); (E.D.); (I.K.)
| | - Ekaterina Tchepourina
- Laboratory of Physicochemical and Genetic Problems in Dermatology, Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, Moscow 109029, Russia; (V.S.); (E.T.); (A.S.); (E.D.); (I.K.)
| | - Anna Soboleva
- Laboratory of Physicochemical and Genetic Problems in Dermatology, Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, Moscow 109029, Russia; (V.S.); (E.T.); (A.S.); (E.D.); (I.K.)
| | - Elena Denisova
- Laboratory of Physicochemical and Genetic Problems in Dermatology, Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, Moscow 109029, Russia; (V.S.); (E.T.); (A.S.); (E.D.); (I.K.)
- Moscow Center of Dermatovenerology and Cosmetology, Moscow 119071, Russia
| | - Irina Korsunskaya
- Laboratory of Physicochemical and Genetic Problems in Dermatology, Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, Moscow 109029, Russia; (V.S.); (E.T.); (A.S.); (E.D.); (I.K.)
| | - Alexandre Mezentsev
- Laboratory of Physicochemical and Genetic Problems in Dermatology, Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, Moscow 109029, Russia; (V.S.); (E.T.); (A.S.); (E.D.); (I.K.)
| |
Collapse
|
2
|
Hajipour M, Mokhtari K, Mahdevar M, Esmaeili M, Peymani M, Nasr-Esfahani MH, Mirzaei S, Hasehmi M, Hushmandi K, Ghaedi K. Identification of a novel interplaying loop of PPARγ and respective lncRNAs are involved in colorectal cancer progress. Int J Biol Macromol 2022; 219:779-787. [PMID: 35940433 DOI: 10.1016/j.ijbiomac.2022.07.247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 12/14/2022]
Abstract
Long noncoding RNAs (lncRNAs) as regulatory molecules play important roles in early treatment and diagnosis of cancers. Considering the role of PPARγ in colorectal cancer (CRC) as a tumor suppressor, the GEO database was used to identify candidate genes that affect the activation of PPARγ protein in CRC cell lines. Then were selected 5 genes containing PPARγ response element (PPRE) in up to 4000 bp upstream and were affected by PPARγ protein activation in HT-29 colon cancer cell line using UCSC database. Expression meta-analysis was applied to map the expression network between candidate genes and all known lncRNAs through expression correlation and lncRNAs that correlated with a greater number of candidate genes (R > 0.5, P.value < 0.001). Moreover, were selected 3 lncRNAs as lncRNAs affected by PPARγ protein activation. Next, the expression levels of candidate genes and lncRNAs were evaluated using RT-qPCR in HT-29 cell line. Results showed a significant increase (FDR <0.05) in the expression level of 5 candidate genes and lncRNAs LINC01133, MBNL1-AS, LOC100288911 after treatment with pioglitazone as PPARγ ligand compared to the untreated group in HT-29 cells. Although additional tests are needed to confirm bioinformatics predictions, it can be concluded that increased expression of PPARγ may increase genes and lncRNAs expression. In summary, this study could be suggested identifying lncRNAs affected by PPARγ activation could be a new strategy in understanding the function and activity of PPARγ in colon cancer.
Collapse
Affiliation(s)
- Maral Hajipour
- Department of Modern Biology, ACECR Institute of Higher Education (Isfahan Branch), Isfahan, Iran; Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Khatereh Mokhtari
- Department of Modern Biology, ACECR Institute of Higher Education (Isfahan Branch), Isfahan, Iran; Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Mahdevar
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Maryam Esmaeili
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Maryam Peymani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mehrdad Hasehmi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| |
Collapse
|
3
|
Kasuki L, Maia B, Gadelha MR. Acromegaly and Colorectal Neoplasm: An Update. Front Endocrinol (Lausanne) 2022; 13:924952. [PMID: 35795151 PMCID: PMC9251006 DOI: 10.3389/fendo.2022.924952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/18/2022] [Indexed: 12/20/2022] Open
Abstract
Acromegaly is a systemic disease caused by excessive inappropriate secretion of GH and IGF-I levels, resulting in many systemic complications, including cardiovascular, respiratory, metabolic diseases, and a possible increased risk of some neoplasias. Although many studies on acromegaly and cancer remain uncertain, most data indicate that colorectal cancer (CRC) incidence is increased in this population. The exact mechanism involved in the role of GH-IGF-I axis in CRC has not been fully explained, yet it is associated with local and circulating effects of GH and IGF-I on the colon, promoting angiogenesis, cell proliferation, risk of mutation, inhibition of tumor-suppressor genes and apoptosis, thus facilitating a tumor microenvironment. Nevertheless, population-based studies present controversial findings on CRC incidence and mortality. All worldwide guidelines and expert consensuses agree with the need for colonoscopic screening and surveillance in acromegaly, although there is no consensus regarding the best period to do this. This review aims to analyze the existing data on CRC and acromegaly, exploring its pathophysiology, epidemiological studies and their limitations, colonic polyp characteristics, overall cancer and CRC incidences and mortality, risk factors for colon cancer pathophysiology, and recommendation guideline aspects.
Collapse
Affiliation(s)
- Leandro Kasuki
- Endocrine Unit and Neuroendocrinology Research Center, Medical School and Hospital Universitário Clementino Fraga Filho - Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Neuroendocrine Unit - Instituto Estadual do Cérebro Paulo Niemeyer, Secretaria Estadual de Saúde, Rio de Janeiro, Brazil
- *Correspondence: Leandro Kasuki,
| | - Bernardo Maia
- Endocrine Unit and Neuroendocrinology Research Center, Medical School and Hospital Universitário Clementino Fraga Filho - Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mônica R. Gadelha
- Endocrine Unit and Neuroendocrinology Research Center, Medical School and Hospital Universitário Clementino Fraga Filho - Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Neuroendocrine Unit - Instituto Estadual do Cérebro Paulo Niemeyer, Secretaria Estadual de Saúde, Rio de Janeiro, Brazil
- Neuropathology and Molecular Genetics Laboratory, Instituto Estadual do Cérebro Paulo Niemeyer, Secretaria Estadual de Saúde, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Augimeri G, Giordano C, Gelsomino L, Plastina P, Barone I, Catalano S, Andò S, Bonofiglio D. The Role of PPARγ Ligands in Breast Cancer: From Basic Research to Clinical Studies. Cancers (Basel) 2020; 12:cancers12092623. [PMID: 32937951 PMCID: PMC7564201 DOI: 10.3390/cancers12092623] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 02/06/2023] Open
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ), belonging to the nuclear receptor superfamily, is a ligand-dependent transcription factor involved in a variety of pathophysiological conditions such as inflammation, metabolic disorders, cardiovascular disease, and cancers. In this latter context, PPARγ is expressed in many tumors including breast cancer, and its function upon binding of ligands has been linked to the tumor development, progression, and metastasis. Over the last decade, much research has focused on the potential of natural agonists for PPARγ including fatty acids and prostanoids that act as weak ligands compared to the strong and synthetic PPARγ agonists such as thiazolidinedione drugs. Both natural and synthetic compounds have been implicated in the negative regulation of breast cancer growth and progression. The aim of the present review is to summarize the role of PPARγ activation in breast cancer focusing on the underlying cellular and molecular mechanisms involved in the regulation of cell proliferation, cell cycle, and cell death, in the modulation of motility and invasion as well as in the cross-talk with other different signaling pathways. Besides, we also provide an overview of the in vivo breast cancer models and clinical studies. The therapeutic effects of natural and synthetic PPARγ ligands, as antineoplastic agents, represent a fascinating and clinically a potential translatable area of research with regards to the battle against cancer.
Collapse
Affiliation(s)
- Giuseppina Augimeri
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy; (G.A.); (C.G.); (L.G.); (P.P.); (I.B.); (S.C.); (S.A.)
| | - Cinzia Giordano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy; (G.A.); (C.G.); (L.G.); (P.P.); (I.B.); (S.C.); (S.A.)
- Centro Sanitario, University of Calabria, 87036 Arcavacata di Rende (CS), Italy
| | - Luca Gelsomino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy; (G.A.); (C.G.); (L.G.); (P.P.); (I.B.); (S.C.); (S.A.)
| | - Pierluigi Plastina
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy; (G.A.); (C.G.); (L.G.); (P.P.); (I.B.); (S.C.); (S.A.)
| | - Ines Barone
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy; (G.A.); (C.G.); (L.G.); (P.P.); (I.B.); (S.C.); (S.A.)
- Centro Sanitario, University of Calabria, 87036 Arcavacata di Rende (CS), Italy
| | - Stefania Catalano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy; (G.A.); (C.G.); (L.G.); (P.P.); (I.B.); (S.C.); (S.A.)
- Centro Sanitario, University of Calabria, 87036 Arcavacata di Rende (CS), Italy
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy; (G.A.); (C.G.); (L.G.); (P.P.); (I.B.); (S.C.); (S.A.)
| | - Daniela Bonofiglio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy; (G.A.); (C.G.); (L.G.); (P.P.); (I.B.); (S.C.); (S.A.)
- Centro Sanitario, University of Calabria, 87036 Arcavacata di Rende (CS), Italy
- Correspondence: ; Tel.: +39-0984-496208
| |
Collapse
|
5
|
Liu Z, Li X, Ma J, Li D, Ju H, Liu Y, Chen Y, He X, Zhu Y. Integrative Analysis of the IQ Motif-Containing GTPase-Activating Protein Family Indicates That the IQGAP3-PIK3C2B Axis Promotes Invasion in Colon Cancer. Onco Targets Ther 2020; 13:8299-8311. [PMID: 32903879 PMCID: PMC7445521 DOI: 10.2147/ott.s257729] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 08/01/2020] [Indexed: 12/12/2022] Open
Abstract
Background Colon cancer (CRC) is a common type of tumour, and IQGAP family proteins play an important role in many tumours. However, their roles in CRC remain unclear. Methods First, we searched many public databases to comprehensively analyze expression of IQGAPs in CRC. Next, real-time PCR, immunohistochemical (IHC), transwell, siRNA transfection and Western blot assays were used to evaluate relationships among IQGAP3 expression, clinical pathological parameters and CRC prognosis, and the underlying molecular mechanism was investigated. Results IQGAP3 was elevated in CRC tissues, whereas there was no significant change in expression of IQGAP1 or IQGAP2. Additionally, IQGAP3 expression in CRC tissues was associated with tumour progression, invasion and poor prognosis. In mechanistic studies, we found that IQGAP3 was positively coexpressed with PIK3C2B. In an in vitro assay, the PIK3C2B expression level was increased after exogenous overexpression of IQGAP3, resulting in the promotion of cell invasion, which was blocked by pretransfecting cells with PIK3C2B siRNA. Furthermore, we found that high expression of IQGAP3 and PIK3C2B correlated with tumour stage and vessel invasion in human CRC, whereby patients with high expression of both in tumours had a worse prognosis compared with patients with single-positive or double-negative tumours. Conclusion The results of our current study and corresponding previous studies provide evidence that IQGAP3 is elevated in CRC and promotes colon cancer growth and metastasis by regulating PIK3C2B activation.
Collapse
Affiliation(s)
- Zhuo Liu
- Department of Colorectal Cancer, Institute of Cancer Research & Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Zhejiang 310022, People's Republic of China
| | - Xiao Li
- The 2nd Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, People's Republic of China.,Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, People's Republic of China
| | - Jie Ma
- Department of Pathology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, People's Republic of China
| | - Dechuan Li
- Department of Colorectal Cancer, Institute of Cancer Research & Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Zhejiang 310022, People's Republic of China
| | - Haixing Ju
- Department of Colorectal Cancer, Institute of Cancer Research & Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Zhejiang 310022, People's Republic of China
| | - Yong Liu
- Department of Colorectal Cancer, Institute of Cancer Research & Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Zhejiang 310022, People's Republic of China
| | - Yinbo Chen
- Department of Colorectal Cancer, Institute of Cancer Research & Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Zhejiang 310022, People's Republic of China
| | - Xujun He
- Department of Pathology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, People's Republic of China
| | - Yuping Zhu
- Department of Colorectal Cancer, Institute of Cancer Research & Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Zhejiang 310022, People's Republic of China
| |
Collapse
|
6
|
Tang X, Benesch MGK, Brindley DN. Role of the autotaxin-lysophosphatidate axis in the development of resistance to cancer therapy. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158716. [PMID: 32305571 DOI: 10.1016/j.bbalip.2020.158716] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/31/2020] [Accepted: 04/09/2020] [Indexed: 12/17/2022]
Abstract
Autotaxin (ATX) is a secreted enzyme that hydrolyzes lysophosphatidylcholine to produce lysophosphatidate (LPA), which signals through six G-protein coupled receptors (GPCRs). Signaling through LPA is terminated by its degradation by a family of three lipid phosphate phosphatases (LPPs). LPP1 also attenuates signaling downstream of the activation of LPA receptors and some other GPCRs. The ATX-LPA axis mediates a plethora of activities such as cell proliferation, survival, migration, angiogenesis and inflammation, which perform an important role in facilitating wound healing. This wound healing response is hijacked by cancers where there is decreased expression of LPP1 and LPP3 and increased expression of ATX. This maladaptive regulation of LPA signaling also causes chronic inflammation, which has been recognized as one of the hallmarks in cancer. The increased LPA signaling promotes cell survival and migration and attenuates apoptosis, which stimulates tumor growth and metastasis. The wound healing functions of increased LPA signaling also protect cancer cells from effects of chemotherapy and radiotherapy. In this review, we will summarize knowledge of the ATX-LPA axis and its role in the development of resistance to chemotherapy and radiotherapy. We will also offer insights for developing strategies of targeting ATX-LPA axis as a novel part of cancer treatment. This article is part of a Special Issue entitled Lysophospholipids and their receptors: New data and new insights into their function edited by Susan Smyth, Viswanathan Natarajan and Colleen McMullen.
Collapse
Affiliation(s)
- Xiaoyun Tang
- Department of Biochemistry, University of Alberta, Edmonton T6G 2S2, Canada; Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton T6G 2S2, Canada
| | - Matthew G K Benesch
- Department of Biochemistry, University of Alberta, Edmonton T6G 2S2, Canada; Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton T6G 2S2, Canada; Discipline of Surgery, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador A1B 3V6, Canada
| | - David N Brindley
- Department of Biochemistry, University of Alberta, Edmonton T6G 2S2, Canada; Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton T6G 2S2, Canada.
| |
Collapse
|
7
|
He L, Shen D, Li J, Mao W. Alpinumisoflavone suppresses human Glioblastoma cell growth and induces cell cycle arrest through activating peroxisome proliferator-activated receptor-γ. Anat Rec (Hoboken) 2020; 303:2801-2810. [PMID: 31875354 DOI: 10.1002/ar.24350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/22/2019] [Accepted: 10/24/2019] [Indexed: 12/12/2022]
Abstract
As a common subtype of malignant gliomas, glioblastoma multiforme (GBM) is associated with poor prognosis. This study is aimed to examine the anticancer activities of alpinumisoflavone (AIF) and its underlying mechanisms. Our results demonstrated that AIF inhibited the proliferation of GBM cells (U373 and T98G) in a time and dose-dependent manner. In addition, flow cytometry analysis not only confirmed AIF arrested cell cycle at the G0/G1 phase but also the induced apoptosis of U373 and T98G cells. Western blotting also confirmed that AIF altered the expression levels of cell cycle-related proteins. Further mechanism studies revealed that AIF inhibited cell proliferation, induced G0/G1 phase arrest and induced apoptosis of U373 and T98G cells through activating PPARγ, as evidenced by the fact that GW9662 (PPARγ inhibitor) could effectively reverse the effects of AIF on U373 and T98G cells. Furthermore, the in vivo study also revealed that AIF suppressed tumor growth and caused cell cycle arrest. Collectively, these results highlighted the potential use of AIF in the treatment of GBM.
Collapse
Affiliation(s)
- Lijuan He
- Cancer Center, Jiangyin People's Hospital, Jiangyin, China
| | - Dong Shen
- Cancer Center, Jiangyin People's Hospital, Jiangyin, China
| | - Jianmei Li
- Cancer Center, Jiangyin People's Hospital, Jiangyin, China
| | - Weidong Mao
- Cancer Center, Jiangyin People's Hospital, Jiangyin, China
| |
Collapse
|
8
|
González-Llorente L, Santacatterina F, García-Aguilar A, Nuevo-Tapioles C, González-García S, Tirpakova Z, Toribio ML, Cuezva JM. Overexpression of Mitochondrial IF1 Prevents Metastatic Disease of Colorectal Cancer by Enhancing Anoikis and Tumor Infiltration of NK Cells. Cancers (Basel) 2019; 12:cancers12010022. [PMID: 31861681 PMCID: PMC7017164 DOI: 10.3390/cancers12010022] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/19/2019] [Accepted: 12/13/2019] [Indexed: 02/06/2023] Open
Abstract
Increasing evidences show that the ATPase Inhibitory Factor 1 (IF1), the physiological inhibitor of the ATP synthase, is overexpressed in a large number of carcinomas contributing to metabolic reprogramming and cancer progression. Herein, we show that in contrast to the findings in other carcinomas, the overexpression of IF1 in a cohort of colorectal carcinomas (CRC) predicts less chances of disease recurrence, IF1 being an independent predictor of survival. Bioinformatic and gene expression analyses of the transcriptome of colon cancer cells with differential expression of IF1 indicate that cells overexpressing IF1 display a less aggressive behavior than IF1 silenced (shIF1) cells. Proteomic and functional in vitro migration and invasion assays confirmed the higher tumorigenic potential of shIF1 cells. Moreover, shIF1 cells have increased in vivo metastatic potential. The higher metastatic potential of shIF1 cells relies on increased cFLIP-mediated resistance to undergo anoikis after cell detachment. Furthermore, tumor spheroids of shIF1 cells have an increased ability to escape from immune surveillance by NK cells. Altogether, the results reveal that the overexpression of IF1 acts as a tumor suppressor in CRC with an important anti-metastatic role, thus supporting IF1 as a potential therapeutic target in CRC.
Collapse
Affiliation(s)
- Lucía González-Llorente
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049 Madrid, Spain; (L.G.-L.); (F.S.); (A.G.-A.); (C.N.-T.); (S.G.-G.); (Z.T.); (M.L.T.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, 28049 Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Fulvio Santacatterina
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049 Madrid, Spain; (L.G.-L.); (F.S.); (A.G.-A.); (C.N.-T.); (S.G.-G.); (Z.T.); (M.L.T.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, 28049 Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Ana García-Aguilar
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049 Madrid, Spain; (L.G.-L.); (F.S.); (A.G.-A.); (C.N.-T.); (S.G.-G.); (Z.T.); (M.L.T.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, 28049 Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Cristina Nuevo-Tapioles
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049 Madrid, Spain; (L.G.-L.); (F.S.); (A.G.-A.); (C.N.-T.); (S.G.-G.); (Z.T.); (M.L.T.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, 28049 Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Sara González-García
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049 Madrid, Spain; (L.G.-L.); (F.S.); (A.G.-A.); (C.N.-T.); (S.G.-G.); (Z.T.); (M.L.T.)
| | - Zuzana Tirpakova
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049 Madrid, Spain; (L.G.-L.); (F.S.); (A.G.-A.); (C.N.-T.); (S.G.-G.); (Z.T.); (M.L.T.)
| | - María Luisa Toribio
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049 Madrid, Spain; (L.G.-L.); (F.S.); (A.G.-A.); (C.N.-T.); (S.G.-G.); (Z.T.); (M.L.T.)
| | - José M. Cuezva
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049 Madrid, Spain; (L.G.-L.); (F.S.); (A.G.-A.); (C.N.-T.); (S.G.-G.); (Z.T.); (M.L.T.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, 28049 Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Correspondence: ; Tel.: +34-91-196-4618; Fax: +34-91-196-4420
| |
Collapse
|
9
|
Kumar H, Deep A, Marwaha RK. Chemical Synthesis, Mechanism of Action and Anticancer Potential of Medicinally Important Thiazolidin-2,4-dione Derivatives: A Review. Mini Rev Med Chem 2019; 19:1474-1516. [DOI: 10.2174/1389557519666190513093618] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/17/2019] [Accepted: 04/23/2019] [Indexed: 11/22/2022]
Abstract
Thiazolidin-2,4-dione (TZD) possessing an active methylene constitute an important chemical
class of compounds for the development of new drugs. So, many scholars have synthesized these
derivatives as target molecules and evaluated their biological potential. Currently, some of the TZDs
are synthesized to treat human cancers stating high levels of PPARγ because it is expected that activation
of PPARγ arbitrates their anticancer activity because PPARγ ligands have recently been established
to affect differentiation, cell proliferation and apoptosis of different cell types. In the present review,
the synthesis of various derivatives of thiazolidine-2,4-diones, their mechanism of action and anticancer
activity have been highlighted.
Collapse
Affiliation(s)
- Harsh Kumar
- Faculty of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Aakash Deep
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani 127021, India
| | - Rakesh Kumar Marwaha
- Faculty of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| |
Collapse
|
10
|
The Expression/Methylation Profile of Adipogenic and Inflammatory Transcription Factors in Adipose Tissue Are Linked to Obesity-Related Colorectal Cancer. Cancers (Basel) 2019; 11:cancers11111629. [PMID: 31652933 PMCID: PMC6893417 DOI: 10.3390/cancers11111629] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/04/2019] [Accepted: 10/21/2019] [Indexed: 02/07/2023] Open
Abstract
Obesity is well accepted as crucial risk factor that plays a critical role in the initiation and progression of colorectal cancer (CRC). More specifically, visceral adipose tissue (VAT) in people with obesity could produce chronic inflammation and an altered profile expression of key transcription factors that promote a favorable microenvironment to colorectal carcinogenesis. For this, the aim of this study was to explore the relationship between adipogenic and inflammatory transcription factors in VAT from nonobese, obese, and/or CRC patients. To test this idea, we studied the expression and methylation of CCAAT-enhancer binding protein type alpha (C/EBP-α), peroxisome proliferator-activated receptor gamma (PPAR-γ), peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC-1α) and nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) in VAT from non-obese control, non-obese CRC subjects, overweight/obese control, and overweight/obese CRC patients and their correlation with anthropometric and biochemical variables. We found decreased expression of C/EBP-α in overweight/obese CRC patients in comparison with overweight/obese control subjects. PGC-1α and NF-κB were overexpressed in CRC patients independently of the BMI. NF-κB promoter was hypomethylated in overweight/obese CRC patients when compared to overweight/obese control individuals. In addition, multiple significant correlations between expression, methylation, and biochemical parameters were found. Finally, linear regression analysis showed that the expression of C/EBP-α and NF-κB and that NF-κB methylation were associated with CRC and able to explain up to 55% of CRC variability. Our results suggest that visceral adipose tissue may be a key factor in tumor development and inflammatory state. We propose C/EBP-α, PGC-1α and NF-κB to be interesting candidates as potential biomarkers in adipose tissue for CRC patients.
Collapse
|
11
|
Peroxisome proliferator-activated receptor gamma (PPARγ), a key regulatory gene of lipid metabolism in chicken. WORLD POULTRY SCI J 2019. [DOI: 10.1017/s0043933916000684] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
12
|
Kaur S, Nag A, Gangenahalli G, Sharma K. Peroxisome Proliferator Activated Receptor Gamma Sensitizes Non-small Cell Lung Carcinoma to Gamma Irradiation Induced Apoptosis. Front Genet 2019; 10:554. [PMID: 31263479 PMCID: PMC6585470 DOI: 10.3389/fgene.2019.00554] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/24/2019] [Indexed: 12/17/2022] Open
Abstract
The nuclear receptors known as peroxisome proliferator activated receptor gamma (PPARG) are lipid-activated transcription factors that have emerged as key regulators of inflammation. PPARG ligands have been shown to have an anti-proliferative effect on a variety of cancers. These ligands can induce apoptosis via TP53 (Tumor protein p53) or ERK1/2 (Extracellular signal-regulated kinases 1/2) (EPHB2) pathways. However, the exact mechanism is not known. PPAR, a type II nuclear hormone receptor deserves attention as a selective target for radiotherapy. Our study examines the potential of selective agonism of PPARG for radiation therapy in non-small cell lung carcinoma (NSCLC). We found that the overexpression of PPARG protein as well as its induction using the agonist, rosiglitazone was able to stimulate radiation-induced cell death in otherwise radio resistant NSCLC A549 cell line. This cell death was apoptotic and was found to be BAX (BCL2 associated X) mediated. The treatment also inhibited radiation-induced AKT (Protein Kinase B) phosphorylation. Interestingly, the ionising radiation (IR) induced apoptosis was found to be inversely related to TP53 levels. A relatively significant increase in the levels of radiation induced apoptosis was observed in H1299 cells (TP53 null) under PPARG overexpression condition further supporting the inverse relationship between apoptosis and TP53 levels. The combination of PPARG agonist and radiation was able to induce apoptosis at a radiation dose at which A549 and H1299 are radioresistant, thus confirming the potential of the combinatorial strategy. Taken together, PPARG agonism was found to invigorate the radiosensitising effect and hence its use in combination with radiotherapy is expected to enhance sensitivity in otherwise resistant cancer types.
Collapse
Affiliation(s)
- Simran Kaur
- Division of Stem Cell and Gene Therapy Research, Institute of Nuclear Medicine and Allied Sciences, New Delhi, India.,Department of Biochemistry, University of Delhi, New Delhi, India
| | - Alo Nag
- Department of Biochemistry, University of Delhi, New Delhi, India
| | - Gurudutta Gangenahalli
- Division of Stem Cell and Gene Therapy Research, Institute of Nuclear Medicine and Allied Sciences, New Delhi, India
| | - Kulbhushan Sharma
- Division of Stem Cell and Gene Therapy Research, Institute of Nuclear Medicine and Allied Sciences, New Delhi, India
| |
Collapse
|
13
|
Du Y, Lv Z, Sun D, Li Y, Sun L, Zhou J. RETRACTED:
Physcion 8‐O‐β‐Glucopyranoside Exerts Anti‐Tumor Activity Against Non‐Small Cell Lung Cancer by Targeting PPARγ. Anat Rec (Hoboken) 2018; 302:785-793. [PMID: 30312015 DOI: 10.1002/ar.23975] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 04/22/2018] [Accepted: 05/01/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Youyi Du
- Department of Respiratory Medicine Lishui Central Hospital Lishui Zhejiang, 323000 China
| | - Zhuqing Lv
- Department of Respiratory Medicine Lishui Central Hospital Lishui Zhejiang, 323000 China
| | - Debin Sun
- Department of Respiratory Medicine Lishui Central Hospital Lishui Zhejiang, 323000 China
| | - Yuan Li
- Department of Respiratory Medicine Lishui Central Hospital Lishui Zhejiang, 323000 China
| | - Lei Sun
- Department of Respiratory Medicine Lishui Central Hospital Lishui Zhejiang, 323000 China
| | - Jiafeng Zhou
- Department of Respiratory Medicine Lishui Central Hospital Lishui Zhejiang, 323000 China
| |
Collapse
|
14
|
Han M, Gao H, Ju P, Gao MQ, Yuan YP, Chen XH, Liu KL, Han YT, Han ZW. Hispidulin inhibits hepatocellular carcinoma growth and metastasis through AMPK and ERK signaling mediated activation of PPARγ. Biomed Pharmacother 2018; 103:272-283. [PMID: 29656183 DOI: 10.1016/j.biopha.2018.04.014] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/31/2018] [Accepted: 04/02/2018] [Indexed: 12/22/2022] Open
Abstract
Hispidulin, a phenolic flavonoid, exerts potent cytotoxicity towards a variety of human cancers. However, the effects of hispidulin on hepatocellular carcinoma (HCC) and underlying molecular mechanisms of its action remain elusive. The present study investigated the effect of hispidulin on HCC in experimental models, including tumor cell lines and mouse tumor xenograft. Results demonstrated that hispidulin was cytotoxic and anti-proliferative to HCC cell lines (SMMC7721 and Bel7402). Hispidulin activated caspase-3 and triggered apoptosis in HCC cells. Moreover, hispidulin inhibited cell migration and invasion by inhibiting the expression of matrix metalloproteinases (MMP-2, MMP-9) and by inducing tissue inhibitor of metalloproteinase-3 (TIMP-3) expression. Hispidulin activated peroxisome proliferator-activated receptor γ (PPARγ) signaling which mainly contributed to its cytotoxicity in HCC cells. Remarkably, GW9662 (a PPARγ inhibitor) or PPARγ targeting siRNA significantly abrogated the anti-proliferative, pro-apoptotic, and anti-metastatic effects of hispidulin in HCC cells. Furthermore, hispidulin induced activation of PPARγ which was associated with increased phosphorylation of AMPK, ERK, JNK in HCC cells. Compound C (an AMPK inhibitor) or PD98059 (a MEK inhibitor) partly reversed the effects of hispidulin on PPARγ signaling in HCC cells. In contrast, no significant changes in PPARγ signaling were observed in HCC cells pretreated with SP600125 (a JNK inhibitor), while SP6000125 significantly inhibited the anti-cancer effects of hispidulin in HCC cells. Hispidulin administration effectively suppressed Bel7402 xenograft tumor growth and lung metastasis in vivo. Our findings indicate that PPARγ activation by hispidulin effectively suppressed HCC cell growth and metastasis both in vitro and in vivo.
Collapse
Affiliation(s)
- Mei Han
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| | - Hui Gao
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, 266021, China.
| | - Ping Ju
- Qingdao Fifth People's Hospital (Shandong Qingdao Hospital of Integrated Traditional and Western Medicine), Qingdao, 266002, China
| | - Ming-Quan Gao
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| | - Yin-Ping Yuan
- Shandong Cancer Hospital Affiliated to Shandong University, Jinan, 250117, China; Shandong Academy of Medical Sciences, Jinan, 250001, China
| | - Xue-Hong Chen
- Medical College, Qingdao University, Qingdao, 266071, China
| | - Kai-Li Liu
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| | - Yan-Tao Han
- Medical College, Qingdao University, Qingdao, 266071, China
| | - Zhi-Wu Han
- The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| |
Collapse
|
15
|
Liu Y, Shi L, Liu Y, Li P, Jiang G, Gao X, Zhang Y, Jiang C, Zhu W, Han H, Ju F. Activation of PPARγ mediates icaritin-induced cell cycle arrest and apoptosis in glioblastoma multiforme. Biomed Pharmacother 2018; 100:358-366. [PMID: 29453045 DOI: 10.1016/j.biopha.2018.02.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 02/02/2018] [Accepted: 02/02/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is the most prevalent primary malignancy of the brain. This study was designed to investigate whether icaritin exerts anti-neoplastic activity against GBM in vitro. MATERIALS AND METHODS Cell Counting Kit-8 (CCK-8) assay was utilized to examine the viability of GBM cells. The apoptotic cell population was measured by flow cytometry analysis. Cell cycle distribution was detected by flow cytometry as well. Western blot analysis was performed to examine the level of biomarker proteins in GBM cells. Levels of PPARγ mRNA and protein were detected by qPCR and western blot analysis, respectively. To examine the role of PPARγ in the anti-neoplastic activity of icaritin, PPARγ antagonist GW9662 or PPARγ siRNA was used. The activity of PPARγ was determined by DNA binding and luciferase assays. RESULTS Our findings revealed that icaritin markedly suppresses cell growth in a dose-dependent and time-dependent fashion. The cell population at the G0/G1 phase of the cell cycle was significantly increased following icaritin treatment. Meanwhile, icaritin promoted apoptotic cell death in T98G and U87MG cells. Further investigation showed upregulation of PPARγ played a key role in the anti-neoplastic activities of icaritin. Moreover, our result demonstrated activation of AMPK signaling by icaritin mediated the modulatory effect of icaritin on PPARγ. CONCLUSION Our results suggest the PPARγ may mediate anti-neoplastic activities against GBM.
Collapse
Affiliation(s)
- Yongji Liu
- Department of Neurosurgery, The Affiliated Qingdao Hiser Hospital of Qingdao University (Qingdao Hospital of Traditional Chinese Medicine), Qingdao, Shandong, China.
| | - Ling Shi
- Department of Neurosurgery, The Affiliated Qingdao Hiser Hospital of Qingdao University (Qingdao Hospital of Traditional Chinese Medicine), Qingdao, Shandong, China
| | - Yuan Liu
- Department of Neurosurgery, The Affiliated Qingdao Hiser Hospital of Qingdao University (Qingdao Hospital of Traditional Chinese Medicine), Qingdao, Shandong, China
| | - Peng Li
- Department of Emergency, The Affiliated Qingdao Hiser Hospital of Qingdao University (Qingdao Hospital of Traditional Chinese Medicine), Qingdao, Shandong, China
| | - Guoping Jiang
- Department of Neurosurgery, The Affiliated Qingdao Hiser Hospital of Qingdao University (Qingdao Hospital of Traditional Chinese Medicine), Qingdao, Shandong, China
| | - Xiaoning Gao
- Department of Radiology, The Affiliated Qingdao Hiser Hospital of Qingdao University (Qingdao Hospital of Traditional Chinese Medicine), Qingdao, Shandong, China
| | - Yongbin Zhang
- Department of Radiology, The Affiliated Qingdao Hiser Hospital of Qingdao University (Qingdao Hospital of Traditional Chinese Medicine), Qingdao, Shandong, China
| | - Chuanwu Jiang
- Department of Radiology, The Affiliated Qingdao Hiser Hospital of Qingdao University (Qingdao Hospital of Traditional Chinese Medicine), Qingdao, Shandong, China
| | - Weiping Zhu
- Department of Rheumatology and Immunology, The Affiliated Qingdao Hiser Hospital of Qingdao University (Qingdao Hospital of Traditional Chinese Medicine), Qingdao, Shandong, China
| | - Hongxing Han
- Department of Neurology, Linyi People's Hospital, Linyi, Shandong, China
| | - Fang Ju
- Department of Oncology, Qingdao Central Hospital, Qingdao, Shandong, China.
| |
Collapse
|
16
|
De Lellis L, Cimini A, Veschi S, Benedetti E, Amoroso R, Cama A, Ammazzalorso A. The Anticancer Potential of Peroxisome Proliferator-Activated Receptor Antagonists. ChemMedChem 2018; 13:209-219. [PMID: 29276815 DOI: 10.1002/cmdc.201700703] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 12/17/2017] [Indexed: 12/13/2022]
Abstract
The effects on cancer-cell proliferation and differentiation mediated by peroxisome proliferator-activated receptors (PPARs) have been widely studied, and pleiotropic outcomes in different cancer models and under different experimental conditions have been obtained. Interestingly, few studies report and little preclinical evidence supports the potential antitumor activity of PPAR antagonists. This review focuses on recent findings on the antitumor in vitro and in vivo effects observed for compounds able to inhibit the three PPAR subtypes in different tumor models, providing a rationale for the use of PPAR antagonists in the treatment of tumors expressing the corresponding receptors.
Collapse
Affiliation(s)
- Laura De Lellis
- Department of Pharmacy, University of Chieti, Via dei Vestini 31, 66100, Chieti, Italy.,Unit of General Pathology, CeSI-MeT, University of Chieti, Chieti, Italy
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.,National Institute for Nuclear Physics (INFN), Gran Sasso National Laboratory (LNGS), Assergi (Aq), Italy.,Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Temple University, 1900 N. 12th Street, Philadelphia, PA, 19122, USA
| | - Serena Veschi
- Department of Pharmacy, University of Chieti, Via dei Vestini 31, 66100, Chieti, Italy.,Unit of General Pathology, CeSI-MeT, University of Chieti, Chieti, Italy
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Rosa Amoroso
- Department of Pharmacy, University of Chieti, Via dei Vestini 31, 66100, Chieti, Italy
| | - Alessandro Cama
- Department of Pharmacy, University of Chieti, Via dei Vestini 31, 66100, Chieti, Italy.,Unit of General Pathology, CeSI-MeT, University of Chieti, Chieti, Italy
| | | |
Collapse
|
17
|
Namani A, Li J, Wang XJ, Tang X. A Review of Compounds for Prevention of Colorectal Cancer. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s40495-017-0101-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Li K, Guo Q, Yang J, Chen H, Hu K, Zhao J, Zheng S, Pang X, Zhou S, Dang Y, Li L. FOXD3 is a tumor suppressor of colon cancer by inhibiting EGFR-Ras-Raf-MEK-ERK signal pathway. Oncotarget 2017; 8:5048-5056. [PMID: 27926503 PMCID: PMC5354891 DOI: 10.18632/oncotarget.13790] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 11/12/2016] [Indexed: 12/20/2022] Open
Abstract
Forkhead box D3 (FOXD3), as a transcriptional repressor, is well known to be involved in the regulation of development. Although FoxD3 is associated with several cancers, its role in colon cancer and the underlying mechanism are still unclear. Here, we first showed that FOXD3 knockdown dramatically increased the proliferation of human colon cancer cells, enhanced cell invasive ability and inhibited cell apoptosis. In vivo xenograft studies confirmed that the FOXD3-knockdown cells were more tumorigenic than the controls. Silencing FOXD3 markedly activated EGFR/Ras/Raf/MEK/ERK pathway in human colon cancer cells. In addition, blocking EGFR effectively decreased the activity of MAPK induced by FOXD3 knockdown. In human cancer tissue, the expression of FOXD3 was reduced, however, the EGFR/Ras/Raf/MEK/ERK pathway was activated. Our study indicates that FOXD3 may play a protective role in human colon formation by regulating EGFR/Ras/Raf/MEK/ERK signal pathway. It is proposed that FOXD3 may have potential as a new therapeutic target in human colon cancer treatment.
Collapse
Affiliation(s)
- Kun Li
- Department of Biochemistry and Molecular Biology, Guangxi Medical University, Nanning, Guangxi, China
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Guangxi Medical University, Nanning, Guangxi, China
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, China
| | - Qunfeng Guo
- Department of Orthopedics, Changzheng Hospital, The Second Military Medical University, Shanghai, People's Republic of China
| | - Jun Yang
- Department of Orthopedics, Changzheng Hospital, The Second Military Medical University, Shanghai, People's Republic of China
| | - Hui Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, China
| | - Kewen Hu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, China
| | - Juan Zhao
- Department of Biochemistry and Molecular Biology, Guangxi Medical University, Nanning, Guangxi, China
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Guangxi Medical University, Nanning, Guangxi, China
| | - Shunxin Zheng
- Department of Biochemistry and Molecular Biology, Guangxi Medical University, Nanning, Guangxi, China
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiufeng Pang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, China
| | - Sufang Zhou
- Department of Biochemistry and Molecular Biology, Guangxi Medical University, Nanning, Guangxi, China
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Guangxi Medical University, Nanning, Guangxi, China
| | - Yongyan Dang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, China
| | - Lei Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, China
| |
Collapse
|
19
|
Activation of autophagy and PPARγ protect colon cancer cells against apoptosis induced by interactive effects of butyrate and DHA in a cell type-dependent manner: The role of cell differentiation. J Nutr Biochem 2017; 39:145-155. [DOI: 10.1016/j.jnutbio.2016.09.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 07/28/2016] [Accepted: 09/02/2016] [Indexed: 02/07/2023]
|
20
|
Mandal SP, Mithuna M, Garg A, Sahetya SS, Nagendra SR, Sripad HS, Manjunath MM, Sitaram S, Soni M, Baig RN, Kumar SV, Kumar BRP. Novel rhodanines with anticancer activity: design, synthesis and CoMSIA study. RSC Adv 2016. [DOI: 10.1039/c6ra08785j] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A library of novel rhodanines are reported for their anticancer activity along with the 3D QSAR.
Collapse
Affiliation(s)
- Subhankar P. Mandal
- Department of Pharmaceutical Chemistry
- JSS College of Pharmacy
- Mysuru 570 015
- India
| | - Mithuna Mithuna
- Department of Pharmaceutical Chemistry
- JSS College of Pharmacy
- Mysuru 570 015
- India
| | - Aakriti Garg
- Department of Pharmaceutical Chemistry
- JSS College of Pharmacy
- Mysuru 570 015
- India
| | - Sanjana S. Sahetya
- Department of Pharmaceutical Chemistry
- JSS College of Pharmacy
- Mysuru 570 015
- India
| | - S. R. Nagendra
- Department of Pharmaceutical Chemistry
- JSS College of Pharmacy
- Mysuru 570 015
- India
| | - H. S. Sripad
- Department of Pharmaceutical Chemistry
- JSS College of Pharmacy
- Mysuru 570 015
- India
| | | | - Sitaram Sitaram
- Department of Pharmaceutical Chemistry
- JSS College of Pharmacy
- Mysuru 570 015
- India
| | - Mukesh Soni
- Department of Pharmaceutical Chemistry
- JSS College of Pharmacy
- Mysuru 570 015
- India
| | - R. Nasir Baig
- Department of Organic Chemistry
- Indian Institute of Science
- Bengaluru 560 012
- India
| | - S. Vasanth Kumar
- Department of Mathematics
- National Institute of Engineering
- Mysuru 570 008
- India
| | | |
Collapse
|
21
|
Mahmoud AM, Abdella EM, El-Derby AM, Abdella EM. Protective Effects of Turbinaria ornata and Padina pavonia against Azoxymethane-Induced Colon Carcinogenesis through Modulation of PPAR Gamma, NF-κB and Oxidative Stress. Phytother Res 2015; 29:737-48. [PMID: 25676613 DOI: 10.1002/ptr.5310] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 01/22/2015] [Accepted: 01/22/2015] [Indexed: 12/16/2023]
Abstract
The aim of this study was to investigate the antiproliferative and protective effects of the brown seaweeds, Turbinaria ornata and Padina pavonia, against azoxymethane (AOM)-induced colon carcinogenesis in mice. Both algal extracts showed anti-proliferative effects on the human carcinoma cell line HCT-116 in vitro, with T. ornata demonstrating a more potent effect. Male albino Swiss mice received intraperitoneal injections of AOM (10 mg/kg) once a week for two consecutive weeks and 100 mg/kg of either T. ornata or P. pavonia extracts. AOM-induced mice exhibited alterations in the histological structure of the colon, elevated lipid peroxidation and nitric oxide, declined glutathione content and reduced activity of superoxide dismutase and glutathione peroxidase. In addition, AOM induced downregulation of peroxisome proliferator activated receptor gamma (PPARγ) and p53 mRNA expression, with concomitant upregulation of nuclear factor-kappa B (NF-κB) in colon tissue. Administration of either algal extract markedly alleviated the recorded alterations. In conclusion, the current study suggests that T. ornata and P. pavonia, through their antioxidant and anti-inflammatory effects, are able to attenuate colon inflammation by downregulating NF-κB expression. Furthermore, the protective effects of both algae against AOM-initiated carcinogenesis were attributed, at least in part, to their ability to upregulate colonic PPARγ and p53 expression.
Collapse
Affiliation(s)
- Ayman M Mahmoud
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Egypt
| | | | | | | |
Collapse
|
22
|
Luteolin potentiates the sensitivity of colorectal cancer cell lines to oxaliplatin through the PPARγ/OCTN2 pathway. Anticancer Drugs 2015; 25:1016-27. [PMID: 25075794 DOI: 10.1097/cad.0000000000000125] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Oxaliplatin is a chemotherapeutic agent used in the treatment of colorectal cancers. However, the mechanism controlling the cellular uptake and efflux of oxaliplatin is not completely understood. Organic cation/carnitine transporter 2 (OCTN2) is a member of the solute carrier superfamily and is a determinant of oxaliplatin uptake. OCTN2 is regulated by peroxisome proliferator-activated receptor γ (PPARγ) binding to the PPAR-response element within the first intron. Luteolin is a naturally occurring flavonoid and an agonist of PPARγ. Thus, we hypothesize that luteolin-mediated OCTN2 expression and activity potentiate the sensitivity of cancer cells to oxaliplatin. In this study, luteolin increased mRNA and protein expression of OCTN2 in a time-dependent and dose-dependent manner in colorectal cancer SW480 cells. This induction was attenuated by PPARγ antagonist GW9662 as well as by PPARγ knockdown, suggesting that the induction by luteolin is dependent on PPARγ. In uptake studies, luteolin increased the binding affinity of OCTN2 toward oxaliplatin and enhanced intracellular concentration of oxaliplatin. This finding is likely because of the increase of PDZ domain containing 1 (PDZK1) and PDZ domain containing 3 (PDZK2), which are known to facilitate the expression of OCTN2 on the cell surface and/or enhance transporter activity. Moreover, cell viability and cell apoptosis assays showed that luteolin increased oxaliplatin uptake and intracellular accumulation through OCTN2. Thus, our study showed that luteolin increased the sensitivity of colorectal cancer SW480 cells to oxaliplatin, likely through the PPARγ/OCTN2 pathway.
Collapse
|
23
|
Chemotherapy and chemoprevention by thiazolidinediones. BIOMED RESEARCH INTERNATIONAL 2015; 2015:845340. [PMID: 25866814 PMCID: PMC4383438 DOI: 10.1155/2015/845340] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 07/29/2014] [Accepted: 08/27/2014] [Indexed: 12/13/2022]
Abstract
Thiazolidinediones (TZDs) are synthetic ligands of Peroxisome-Proliferator-Activated Receptor gamma (PPARγ). Troglitazone, rosiglitazone, and pioglitazone have been approved for treatment of diabetes mellitus type II. All three compounds, together with the first TZD ciglitazone, also showed an antitumor effect in preclinical studies and a beneficial effect in some clinical trials. This review summarizes hypotheses on the role of PPARγ in tumors, on cellular targets of TZDs, antitumor effects of monotherapy and of TZDs in combination with other compounds, with a focus on their role in the treatment of differentiated thyroid carcinoma. The results of chemopreventive effects of TZDs are also considered. Existing data suggest that the action of TZDs is highly complex and that actions do not correlate with cellular PPARγ expression status. Effects are cell-, species-, and compound-specific and concentration-dependent. Data from human trials suggest the efficacy of TZDs as monotherapy in prostate cancer and glioma and as chemopreventive agent in colon, lung, and breast cancer. TZDs in combination with other therapies might increase antitumor effects in thyroid cancer, soft tissue sarcoma, and melanoma.
Collapse
|
24
|
McAlister GC, Nusinow DP, Jedrychowski MP, Wühr M, Huttlin EL, Erickson BK, Rad R, Haas W, Gygi SP. MultiNotch MS3 enables accurate, sensitive, and multiplexed detection of differential expression across cancer cell line proteomes. Anal Chem 2014; 86:7150-8. [PMID: 24927332 PMCID: PMC4215866 DOI: 10.1021/ac502040v] [Citation(s) in RCA: 976] [Impact Index Per Article: 88.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
Multiplexed quantitation via isobaric
chemical tags (e.g., tandem
mass tags (TMT) and isobaric tags for relative and absolute quantitation
(iTRAQ)) has the potential to revolutionize quantitative proteomics.
However, until recently the utility of these tags was questionable
due to reporter ion ratio distortion resulting from fragmentation
of coisolated interfering species. These interfering signals can be
negated through additional gas-phase manipulations (e.g., MS/MS/MS
(MS3) and proton-transfer reactions (PTR)). These methods, however,
have a significant sensitivity penalty. Using isolation waveforms
with multiple frequency notches (i.e., synchronous precursor selection,
SPS), we coisolated and cofragmented multiple MS2 fragment ions, thereby
increasing the number of reporter ions in the MS3 spectrum 10-fold
over the standard MS3 method (i.e., MultiNotch MS3). By increasing
the reporter ion signals, this method improves the dynamic range of
reporter ion quantitation, reduces reporter ion signal variance, and
ultimately produces more high-quality quantitative measurements. To
demonstrate utility, we analyzed biological triplicates of eight colon
cancer cell lines using the MultiNotch MS3 method. Across all the
replicates we quantified 8 378 proteins in union and 6 168
proteins in common. Taking into account that each of these quantified
proteins contains eight distinct cell-line measurements, this data
set encompasses 174 704 quantitative ratios each measured in
triplicate across the biological replicates. Herein, we demonstrate
that the MultiNotch MS3 method uniquely combines multiplexing capacity
with quantitative sensitivity and accuracy, drastically increasing
the informational value obtainable from proteomic experiments.
Collapse
Affiliation(s)
- Graeme C McAlister
- Harvard Medical School, Department of Cell Biology , Boston, Massachusetts 02115, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Lin HC, Kachingwe BH, Lin HL, Cheng HW, Uang YS, Wang LH. Effects of metformin dose on cancer risk reduction in patients with type 2 diabetes mellitus: a 6-year follow-up study. Pharmacotherapy 2013; 34:36-45. [PMID: 23864581 DOI: 10.1002/phar.1334] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
STUDY OBJECTIVE To explore the effects of metformin dose on cancer risk reduction in patients with type 2 diabetes. DESIGN Population-based cohort study. DATA SOURCE National Health Insurance program Longitudinal Health Insurance Database. PATIENTS A total of 65,754 age- and gender-matched patients without diabetes and no previous cancer diagnosis were extracted from the database. MEASUREMENTS AND MAIN RESULTS We compared cancer risk among the subjects who had no diabetes, had type 2 diabetes but were not on diabetes drugs, used metformin only, used antidiabetic drugs other than metformin, or used metformin in combination with other antidiabetic drugs. Our results revealed dose-dependent effects of metformin on cancer risk and cancer onset times. A significant decrease in cancer risk was found in the monotherapy group who received more than 360 defined daily doses (DDDs) of metformin (hazard ratio [HR] 0.40, 95% confidence interval [CI] 0.24-0.66). The greatest decrease in cancer risk was observed in patients who took more than 1080 DDDs (HR 0.27, 95% CI 0.09-0.84). Significantly greater dose-dependent effects were seen in patients who used metformin in combination with other antidiabetic drugs. CONCLUSION The magnitude of cancer risk reduction and prolonged cancer onset times produced by metformin in patients with type 2 diabetes depended on the dose of metformin, regardless of whether metformin was used alone or combined with other antidiabetic drugs.
Collapse
Affiliation(s)
- Hsiu-Chen Lin
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
26
|
Panza A, Pazienza V, Ripoli M, Benegiamo G, Gentile A, Valvano MR, Augello B, Merla G, Prattichizzo C, Tavano F, Ranieri E, di Sebastiano P, Vinciguerra M, Andriulli A, Mazzoccoli G, Piepoli A. Interplay between SOX9, β-catenin and PPARγ activation in colorectal cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1853-65. [PMID: 23583560 DOI: 10.1016/j.bbamcr.2013.04.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 04/03/2013] [Accepted: 04/05/2013] [Indexed: 12/31/2022]
Abstract
Colorectal carcinogenesis relies on loss of homeostasic mechanisms regulating cell proliferation, differentiation and survival. These cell processes have been reported to be influenced independently by transcription factors activated downstream of the Wnt pathway, such as SOX9 and β-catenin, and by the nuclear receptor PPARγ. The purpose of this study was to explore the expression levels and functional link between SOX9, β-catenin and PPARγ in the pathogenesis of colorectal cancer (CRC). We evaluated SOX9, β-catenin and PPARγ expression levels on human CRC specimens by qPCR and immunoblot detection. We tested the hypothesis that PPARγ activation might affect SOX9 and β-catenin expression using four colon cancer cell lines (CaCo2, SW480, HCT116, and HT29 cells). In CRC tissues SOX9 resulted up-regulated at both mRNA and protein levels when compared to matched normal mucosa, β-catenin resulted up-regulated at protein levels, while PPARG mRNA and PPARγ protein levels were down-regulated. A significant relationship was observed between high PPARG and SOX9 expression levels in the tumor tissue and female gender (p=0.005 and p=0.04, respectively), and between high SOX9 expression in the tumor tissue and age (p=0.04) and microsatellite instability (MSI), in particular with MSI-H (p=0.0002). Moreover, treatment with the synthetic PPARγ ligand rosiglitazone induced different changes of SOX9 and β-catenin expression and subcellular localization in the colon cancer cell lines examined. In conclusion, SOX9, β-catenin and PPARγ expression levels are deregulated in the CRC tissue, and in colon cancer cell lines ligand-dependent PPARγ activation unevenly influences SOX9 and β-catenin expression and subcellular localization, suggesting a variable mechanistic role in colon carcinogenesis.
Collapse
Affiliation(s)
- Anna Panza
- Department of Medical Sciences, IRCCS Scientific Institute and Regional General Hospital, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Short-chain fatty acids stimulate angiopoietin-like 4 synthesis in human colon adenocarcinoma cells by activating peroxisome proliferator-activated receptor γ. Mol Cell Biol 2013; 33:1303-16. [PMID: 23339868 DOI: 10.1128/mcb.00858-12] [Citation(s) in RCA: 225] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Angiopoietin-like protein 4 (ANGPTL4/FIAF) has been proposed as a circulating mediator between the gut microbiota and fat storage. Here, we show that transcription and secretion of ANGPTL4 in human T84 and HT29 colon adenocarcinoma cells is highly induced by physiological concentrations of short-chain fatty acids (SCFA). SCFA induce ANGPTL4 by activating the nuclear receptor peroxisome proliferator activated receptor γ (PPARγ), as demonstrated using PPARγ antagonist, PPARγ knockdown, and transactivation assays, which show activation of PPARγ but not PPARα and PPARδ by SCFA. At concentrations required for PPARγ activation and ANGPTL4 induction in colon adenocarcinoma cells, SCFA do not stimulate PPARγ in mouse 3T3-L1 and human SGBS adipocytes, suggesting that SCFA act as selective PPARγ modulators (SPPARM), which is supported by coactivator peptide recruitment assay and structural modeling. Consistent with the notion that fermentation leads to PPAR activation in vivo, feeding mice a diet rich in inulin induced PPAR target genes and pathways in the colon. We conclude that (i) SCFA potently stimulate ANGPTL4 synthesis in human colon adenocarcinoma cells and (ii) SCFA transactivate and bind to PPARγ. Our data point to activation of PPARs as a novel mechanism of gene regulation by SCFA in the colon, in addition to other mechanisms of action of SCFA.
Collapse
|
28
|
Vadlamudi HC, Yalavarthi PR, Balambhaigari RY, Vulava J. Receptors and ligands role in colon physiology and pathology. J Recept Signal Transduct Res 2013; 33:1-9. [DOI: 10.3109/10799893.2012.752001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
29
|
Dixon DA, Blanco FF, Bruno A, Patrignani P. Mechanistic aspects of COX-2 expression in colorectal neoplasia. Recent Results Cancer Res 2013; 191:7-37. [PMID: 22893198 DOI: 10.1007/978-3-642-30331-9_2] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The cyclooxygenase-2 (COX-2) enzyme catalyzes the rate-limiting step of prostaglandin formation in pathogenic states and a large amount of evidence has demonstrated constitutive COX-2 expression to be a contributing factor promoting colorectal cancer (CRC). Various genetic, epigenetic, and inflammatory pathways have been identified to be involved in the etiology and development of CRC. Alteration in these pathways can influence COX-2 expression at multiple stages of colon carcinogenesis allowing for elevated prostanoid biosynthesis to occur in the tumor microenvironment. In normal cells, COX-2 expression levels are potently regulated at the post-transcriptional level through various RNA sequence elements present within the mRNA 3' untranslated region (3'UTR). A conserved AU-rich element (ARE) functions to target COX-2 mRNA for rapid decay and translational inhibition through association with various RNA-binding proteins to influence the fate of COX-2 mRNA. Specific microRNAs (miRNAs) bind regions within the COX-2 3'UTR and control COX-2 expression. In this chapter, we discuss novel insights in the mechanisms of altered post-transcriptional regulation of COX-2 in CRC and how this knowledge may be used to develop novel strategies for cancer prevention and treatment.
Collapse
Affiliation(s)
- Dan A Dixon
- Department of Cancer Biology, University of Kansas Medical Center, Kansas, KS 66106, USA.
| | | | | | | |
Collapse
|
30
|
PPARs Signaling and Cancer in the Gastrointestinal System. PPAR Res 2012; 2012:560846. [PMID: 23028383 PMCID: PMC3458283 DOI: 10.1155/2012/560846] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 07/23/2012] [Accepted: 08/07/2012] [Indexed: 12/27/2022] Open
Abstract
Nowadays, the study of the peroxisome proliferators activated receptors (PPARs) as potential targets for cancer prevention and therapy has gained a strong interest. From a biological point of view, the overall responsibility of PPARs in cancer development and progression is still controversial since several studies report both antiproliferative and tumor-promoting actions for these signaling molecules in human cancer cells and animal models. In this paper, we discuss PPARs functions in the context of different types of gastrointestinal cancer.
Collapse
|
31
|
Tsukahara T. The Role of PPARγ in the Transcriptional Control by Agonists and Antagonists. PPAR Res 2012; 2012:362361. [PMID: 22693486 PMCID: PMC3368591 DOI: 10.1155/2012/362361] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 04/02/2012] [Indexed: 01/04/2023] Open
Abstract
In recent years, peroxisome proliferator-activated receptor gamma (PPARγ) has been reported to be a target for the treatment of type II diabetes. Furthermore, it has received attention for its therapeutic potential in many other human diseases, including atherosclerosis, obesity, and cancers. Recent studies have provided evidence that the endogenously produced PPARγ antagonist, 2,3-cyclic phosphatidic acid (cPA), which is similar in structure to lysophosphatidic acid (LPA), inhibits cancer cell invasion and metastasis in vitro and in vivo. We recently observed that cPA negatively regulates PPARγ function by stabilizing the binding of the corepressor protein, silencing mediator of retinoic acid and thyroid hormone receptor. We also showed that cPA prevents neointima formation, adipocyte differentiation, lipid accumulation, and upregulation of PPARγ target gene transcription. We then analyzed the molecular mechanism of cPA's action on PPARγ. In this paper, we summarize the current knowledge on the mechanism of PPARγ-mediated transcriptional activity and transcriptional repression in response to novel lipid-derived ligands, such as cPA.
Collapse
Affiliation(s)
- Tamotsu Tsukahara
- Department of Integrative Physiology and Bio-System Control, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| |
Collapse
|
32
|
Vamecq J, Colet JM, Vanden Eynde JJ, Briand G, Porchet N, Rocchi S. PPARs: Interference with Warburg' Effect and Clinical Anticancer Trials. PPAR Res 2012; 2012:304760. [PMID: 22654896 PMCID: PMC3357561 DOI: 10.1155/2012/304760] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 02/15/2012] [Accepted: 02/19/2012] [Indexed: 02/07/2023] Open
Abstract
The metabolic/cell signaling basis of Warburg's effect ("aerobic glycolysis") and the general metabolic phenotype adopted by cancer cells are first reviewed. Several bypasses are adopted to provide a panoramic integrated view of tumoral metabolism, by attributing a central signaling role to hypoxia-induced factor (HIF-1) in the expression of aerobic glycolysis. The cancer metabolic phenotype also results from alterations of other routes involving ras, myc, p53, and Akt signaling and the propensity of cancer cells to develop signaling aberrances (notably aberrant surface receptor expression) which, when present, offer unique opportunities for therapeutic interventions. The rationale for various emerging strategies for cancer treatment is presented along with mechanisms by which PPAR ligands might interfere directly with tumoral metabolism and promote anticancer activity. Clinical trials using PPAR ligands are reviewed and followed by concluding remarks and perspectives for future studies. A therapeutic need to associate PPAR ligands with other anticancer agents is perhaps an important lesson to be learned from the results of the clinical trials conducted to date.
Collapse
Affiliation(s)
- Joseph Vamecq
- Inserm, HMNO, CBP, CHRU Lille, 59037 Lille, France
- Biochemistry and Molecular Biology, HMNO, CBP, CHRU Lille, 59037 Lille, France
| | - Jean-Marie Colet
- Department of Human Biology and Toxicology, Faculty of Medicine and Pharmacy, UMons, 7000 Mons, Belgium
| | | | - Gilbert Briand
- Biochemistry and Molecular Biology, HMNO, CBP, CHRU Lille, 59037 Lille, France
| | - Nicole Porchet
- Biochemistry and Molecular Biology, HMNO, CBP, CHRU Lille, 59037 Lille, France
| | - Stéphane Rocchi
- Inserm U1065, IFR 50, Mediterranean Center of Molecular Medicine, 06204 Nice, France
| |
Collapse
|
33
|
Scalise M, Galluccio M, Accardi R, Cornet I, Tommasino M, Indiveri C. Human OCTN2 (SLC22A5) is down-regulated in virus- and nonvirus-mediated cancer. Cell Biochem Funct 2012; 30:419-25. [PMID: 22374795 DOI: 10.1002/cbf.2816] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 01/17/2012] [Accepted: 01/31/2012] [Indexed: 12/27/2022]
Abstract
The expression of carnitine plasma membrane transporter OCTN2 was evaluated in virus and nonvirus-mediated cancer. Both OCTN2 mRNA and protein levels were reduced in keratinocytes retrotransduced with HPV16 E6 and E7 compared with the control. The OCTN2 expression was reduced also in keratinocytes retrotransduced with the sole HPV16 E6. A similar down-regulation of OCTN2 mRNA level was observed in a naturally HPV16-infected cancer cell line, CaSki, harbouring several copies of HPV16 whole genome. The mechanism of down-regulation is not related to p53 transcriptional activity because in SAOS (p53-null) cell line, the restoration of p53 expression did not rescue OCTN2 expression. The treatment of keratinocytes retrotransduced with HPV16 E6 and E7 with 5-aza-cytidine rescued the OCTN2 expression, indicating that the mechanism of down-regulation is linked to DNA methylation. Low levels of mRNA expression of OCTN2 were found also in several nonvirus-related epithelial cancer cell lines. The treatment of those cell lines with 5-aza-cytidine again rescued the expression of OCTN2 as well. These data demonstrate for the first time that the OCTN2 transporter is generally down-regulated in virus and nonvirus-mediated epithelial cancers, probably via methylation of its promoter region.
Collapse
Affiliation(s)
- Mariafrancesca Scalise
- Department of Cell Biology, University of Calabria, Via P. Bucci 4c 87036 Arcavacata di Rende, Italy
| | | | | | | | | | | |
Collapse
|