1
|
Guo XJ, Zhu BB, Li J, Guo P, Niu YB, Shi JL, Yokoyama W, Huang QS, Shao DY. Cholesterol metabolism in tumor immunity: Mechanisms and therapeutic opportunities for cancer. Biochem Pharmacol 2025; 234:116802. [PMID: 39954742 DOI: 10.1016/j.bcp.2025.116802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/25/2024] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Cholesterol is an essential component of the cell membrane which plays a critical role in the survival of immune and tumor cells. Reprogramming of cholesterol metabolism in both tumor cells and immune cells can impact tumor progression and anti-tumor immune responses. Strategies aimed at modulating cholesterol metabolism have been demonstrated to be effective in hindering tumor growth and boosting anti-tumor immune functions. This review provides a thorough analysis of intracellular cholesterol homeostasis regulation in cells, focusing on key genes and signaling pathways. It particularly emphasizes the regulatory mechanisms and importance of the cholesterol presence state (esterified/free), levels of cholesterol, and its metabolites in immune and tumor cells. Additionally, the review thoroughly explores how cholesterol metabolism and sources (endogenous/exogenous) in the tumor microenvironment (TME) contribute to the interplay among tumor cells, immune suppressor cells, and immune effector cells, promoting cancer progression and immune evasion. It also delves into current insights on the influence of cholesterol metabolites and related drugs in regulating tumor development or immunotherapy. Finally, it presents an overview of recent advancements in clinical and preclinical trials investigating the efficacy of targeted cholesterol metabolism treatments and combination therapies in cancer management, while proposing potential future research directions in tumor immunity. This review is poised to offer fresh perspectives and avenues for examining the potential of cancer immunotherapy centered on cholesterol metabolism regulation.
Collapse
Affiliation(s)
- Xiao-Jia Guo
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi 710072, PR China
| | - Bo-Bo Zhu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi 710072, PR China
| | - Jing Li
- Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an 710072, PR China
| | - Ping Guo
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi 710072, PR China
| | - Yin-Bo Niu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi 710072, PR China
| | - Jun-Ling Shi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi 710072, PR China
| | - Wallace Yokoyama
- Processed Foods Research Unit, Western Regional Research Center, Agricultural Research Service, USDA, Albany, CA 94710, USA
| | - Qing-Sheng Huang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi 710072, PR China.
| | - Dong-Yan Shao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi 710072, PR China; Research & Development Institute of Northwestern Polytechnical University in Shenzhen, No. 45th, Gaoxin South 9th Road, Nanshan District, Shenzhen City 518063, PR China.
| |
Collapse
|
2
|
Zhang J, Peng J, Wang S, Wang L, Sun Y, Xia J, Cheng B, Hu Q. Perilipin2-dependent lipid droplets accumulation promotes metastasis of oral squamous cell carcinoma via epithelial-mesenchymal transition. Cell Death Discov 2025; 11:30. [PMID: 39875372 PMCID: PMC11775315 DOI: 10.1038/s41420-025-02314-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 12/28/2024] [Accepted: 01/21/2025] [Indexed: 01/30/2025] Open
Abstract
Emerging evidence shows that lipid metabolic reprogramming plays a vital role in tumor metastasis. The effect and mechanism of fatty acids and lipid droplets (LDs), the core products of lipid metabolism, on the metastasis of oral squamous cell carcinoma (OSCC), need further exploration. In this study, the influence of palmitic acid (PA) and oleic acid (OA) on the migration and invasion ability of OSCC cells was determined by in vitro experiments. Genetic manipulation of PLIN2 was performed to explore its effect on the accumulation of LDs and OSCC metastasis. Possible mechanisms of these biological effects were clarified by detecting the levels of epithelial-mesenchymal transition (EMT) markers and phosphatidylinositol 3-kinase (PI3K) pathway proteins as well as conducting various bioinformatics analyses. The results indicated that PA/OA promoted the migration and invasion of OSCC cells and induced PLIN2-dependent LDs accumulation in vitro. Knockdown of PLIN2 inhibited the LDs accumulation and the migration and invasion of OSCC cells in vitro, while overexpression of PLIN2 enhanced those of OSCC cells in vitro and also promoted the metastasis of OSCC in vivo. Besides, PLIN2 up-regulation activated the PI3K pathway and subsequently enhanced EMT in OSCC cells in vitro. OSCC patients with higher PLIN2 expression possessed poorer prognosis and higher sensitivity to chemotherapy drugs (1S,3 R)-RSL3 and ML-210. In conclusion, PLIN2-dependent LDs accumulation could promote the metastasis of OSCC cells by regulating EMT. PLIN2 might be a potential therapeutic target for OSCC patients, especially those with obesity.
Collapse
Affiliation(s)
- Jiayu Zhang
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Jianmin Peng
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Siyu Wang
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Li Wang
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Yutong Sun
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Juan Xia
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China.
| | - Bin Cheng
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China.
| | - Qinchao Hu
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
3
|
Xu M, Jin X, Shen Z. ZAG promotes colorectal cancer cell proliferation and epithelial-mesenchymal transition by promoting lipid synthesis. Open Life Sci 2024; 19:20221007. [PMID: 39711976 PMCID: PMC11662974 DOI: 10.1515/biol-2022-1007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 12/24/2024] Open
Abstract
Colorectal cancer (CRC) is a common malignant tumor characterized by a high degree of invasiveness, and since zinc-α2 glycoprotein (ZAG) has been implicated in the progression of several malignancies, this study was designed to investigate the role of ZAG in CRC. Its expression was assessed using the GEPIA database, and short hairpin RNA (shRNA) interference was conducted to create ZAG knockdown in CRC cell lines. We also conducted lipid synthesis, cell proliferation, apoptosis, and epithelial-mesenchymal transition (EMT) experiments to elucidate the effects of ZAG expression on CRC, as well as explored the potential underlying mechanistic pathways. Our findings reveal that ZAG is overexpressed in CRC. In vitro, ZAG knockdown resulted in the suppression of lipid production, cell division, and EMT while concurrently promoting apoptosis. The phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mechanistic target of rapamycin (mTOR) signaling pathway was found to mediate the effects of ZAG on CRC cells. In conclusion, the downregulation of ZAG can inhibit CRC cell survival, EMT, and lipid production via the PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Maotao Xu
- Department of Gastroenterology, The Ninth People’s Hospital of Chongqing, Chognqing, 400700, China
| | - Xingzheng Jin
- Department of Surgery, Southwest University Hospital, Chongqing, 400700, China
| | - Zhouli Shen
- Department of Gastroenterology, The Ninth People’s Hospital of Chongqing, No. 69, Jialing Village, Beibei District, Chognqing, 400700, China
| |
Collapse
|
4
|
Yang H, Hou C, Chen W, Zeng Y, Qu Y, Sun Y, Hu Y, Tang X, Song H. Disease Modules Associated with Unfavorable Sleep Patterns and Their Genetic Determinants: A Prospective Cohort Study of the UK Biobank. PHENOMICS (CHAM, SWITZERLAND) 2024; 4:415-429. [PMID: 39723226 PMCID: PMC11666895 DOI: 10.1007/s43657-023-00144-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/23/2023] [Accepted: 11/02/2023] [Indexed: 12/28/2024]
Abstract
Despite the established associations between sleep-related traits and major diseases, comprehensive assessment on affected disease modules and their genetic determinants is lacking. Using multiple correspondence analysis and the k-means clustering algorithm, 235,826 eligible participants were clustered into distinct unfavorable sleep patterns [short sleep duration (n = 10,073), snoring (22,419), insomnia (102,771), insomnia and snoring (62,909)] and favorable sleep pattern groups (37,654). The associations of unfavorable sleep patterns with 134 diseases were estimated using Cox regression models; and comorbidity network analyses were applied for disease module identification. Genetic determinants associated with each disease module were identified by genome-wide association studies (GWAS). During an average follow-up of 10.80 years, unfavorable sleep patterns featured by 'short sleep duration', 'snoring', 'insomnia', and 'insomnia and snoring' were associated with increased risk of 0, 9, 10, and 19 diseases, respectively. Furthermore, comorbidity network analyses categorized these affected diseases into three disease modules, characterized by predominant diseases related to digestive system, circulatory and endocrine systems (snoring-related patterns only), and musculoskeletal system (insomnia-related patterns only). Using the number of affected diseases, as an index of a person's susceptibility to each disease module [i.e., susceptible score (SS)], GWAS analyses identified five, one, and three significant loci associated with the residual SS of these aforementioned disease modules, respectively, which mapped to several potential biological pathways, including those related to hormone regulation and catecholamine uptake. In conclusion, individuals with unfavorable sleep patterns, particularly snoring and insomnia, had increased risk of multiple diseases. The identification of three major disease modules with their relevant genetic determinants may facilitate strategy development for precision prevention of future health decline. Supplementary Information The online version contains supplementary material available at 10.1007/s43657-023-00144-8.
Collapse
Affiliation(s)
- Huazhen Yang
- Mental Health Center and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610000 China
- Med-X Center for Informatics, Sichuan University, Chengdu, 610000 China
| | - Can Hou
- Mental Health Center and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610000 China
- Med-X Center for Informatics, Sichuan University, Chengdu, 610000 China
| | - Wenwen Chen
- Mental Health Center and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610000 China
- Med-X Center for Informatics, Sichuan University, Chengdu, 610000 China
| | - Yu Zeng
- Mental Health Center and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610000 China
- Med-X Center for Informatics, Sichuan University, Chengdu, 610000 China
| | - Yuanyuan Qu
- Mental Health Center and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610000 China
- Med-X Center for Informatics, Sichuan University, Chengdu, 610000 China
| | - Yajing Sun
- Mental Health Center and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610000 China
- Med-X Center for Informatics, Sichuan University, Chengdu, 610000 China
| | - Yao Hu
- Mental Health Center and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610000 China
- Med-X Center for Informatics, Sichuan University, Chengdu, 610000 China
| | - Xiangdong Tang
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Mental Health Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610000 China
| | - Huan Song
- Mental Health Center and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610000 China
- Med-X Center for Informatics, Sichuan University, Chengdu, 610000 China
- Center of Public Health Sciences, Faculty of Medicine, University of Iceland, 102 Reykjavík, Iceland
| |
Collapse
|
5
|
Du J, Qin H. Lipid metabolism dynamics in cancer stem cells: potential targets for cancers. Front Pharmacol 2024; 15:1367981. [PMID: 38994204 PMCID: PMC11236562 DOI: 10.3389/fphar.2024.1367981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 06/10/2024] [Indexed: 07/13/2024] Open
Abstract
Cancer stem cells (CSCs) represent a small subset of heterogeneous cells within tumors that possess the ability to self-renew and initiate tumorigenesis. They serve as potential drivers for tumor initiation, metastasis, recurrence, and drug resistance. Recent research has demonstrated that the stemness preservation of CSCs is heavily reliant on their unique lipid metabolism alterations, enabling them to maintain their own environmental homeostasis through various mechanisms. The primary objectives involve augmenting intracellular fatty acid (FA) content to bolster energy supply, promoting β-oxidation of FA to optimize energy utilization, and elevating the mevalonate (MVA) pathway for efficient cholesterol synthesis. Additionally, lipid droplets (LDs) can serve as alternative energy sources in the presence of glycolysis blockade in CSCs, thereby safeguarding FA from peroxidation. Furthermore, the interplay between autophagy and lipid metabolism facilitates rapid adaptation of CSCs to the harsh microenvironment induced by chemotherapy. In this review, we comprehensively review recent studies pertaining to lipid metabolism in CSCs and provide a concise overview of the indispensable role played by LDs, FA, cholesterol metabolism, and autophagy in maintaining the stemness of CSCs.
Collapse
Affiliation(s)
- Juan Du
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Hai Qin
- Department of Clinical Laboratory, Beijing Jishuitan Hospital Guizhou Hospital, Guiyang, China
| |
Collapse
|
6
|
Liu S, Jiao B, Zhao H, Liang X, Jin F, Liu X, Hu J. LncRNAs-circRNAs as Rising Epigenetic Binary Superstars in Regulating Lipid Metabolic Reprogramming of Cancers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303570. [PMID: 37939296 PMCID: PMC10767464 DOI: 10.1002/advs.202303570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/28/2023] [Indexed: 11/10/2023]
Abstract
As one of novel hallmarks of cancer, lipid metabolic reprogramming has recently been becoming fascinating and widely studied. Lipid metabolic reprogramming in cancer is shown to support carcinogenesis, progression, distal metastasis, and chemotherapy resistance by generating ATP, biosynthesizing macromolecules, and maintaining appropriate redox status. Notably, increasing evidence confirms that lipid metabolic reprogramming is under the control of dysregulated non-coding RNAs in cancer, especially lncRNAs and circRNAs. This review highlights the present research findings on the aberrantly expressed lncRNAs and circRNAs involved in the lipid metabolic reprogramming of cancer. Emphasis is placed on their regulatory targets in lipid metabolic reprogramming and associated mechanisms, including the clinical relevance in cancer through lipid metabolism modulation. Such insights will be pivotal in identifying new theranostic targets and treatment strategies for cancer patients afflicted with lipid metabolic reprogramming.
Collapse
Affiliation(s)
- Shanshan Liu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of EducationCancer Center, First HospitalJilin UniversityChangchun130021China
- Hematology DepartmentFirst HospitalJilin UniversityChangchun130021China
| | - Benzheng Jiao
- NHC Key Laboratory of Radiobiology (Jilin University)School of Public HealthJilin UniversityChangchun130021China
- Nuclear Medicine DepartmentFirst HospitalJilin UniversityChangchun130021China
| | - Hongguang Zhao
- Nuclear Medicine DepartmentFirst HospitalJilin UniversityChangchun130021China
| | - Xinyue Liang
- Hematology DepartmentFirst HospitalJilin UniversityChangchun130021China
| | - Fengyan Jin
- Hematology DepartmentFirst HospitalJilin UniversityChangchun130021China
| | - Xiaodong Liu
- NHC Key Laboratory of Radiobiology (Jilin University)School of Public HealthJilin UniversityChangchun130021China
- Radiation Medicine Department, School of Public Health and ManagementWenzhou Medical UniversityWenzhou325035China
| | - Ji‐Fan Hu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of EducationCancer Center, First HospitalJilin UniversityChangchun130021China
- Palo Alto Veterans Institute for ResearchStanford University Medical SchoolPalo AltoCA94304USA
| |
Collapse
|
7
|
Wang H, Zhang Z, Ruan S, Yan Q, Chen Y, Cui J, Wang X, Huang S, Hou B. Regulation of iron metabolism and ferroptosis in cancer stem cells. Front Oncol 2023; 13:1251561. [PMID: 37736551 PMCID: PMC10509481 DOI: 10.3389/fonc.2023.1251561] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/16/2023] [Indexed: 09/23/2023] Open
Abstract
The ability of cancer stem cells (CSCs) to self-renew, differentiate, and generate new tumors is a significant contributor to drug resistance, relapse, and metastasis. Therefore, the targeting of CSCs for treatment is particularly important. Recent studies have demonstrated that CSCs are more susceptible to ferroptosis than non-CSCs, indicating that this could be an effective strategy for treating tumors. Ferroptosis is a type of programmed cell death that results from the accumulation of lipid peroxides caused by intracellular iron-mediated processes. CSCs exhibit different molecular characteristics related to iron and lipid metabolism. This study reviews the alterations in iron metabolism, lipid peroxidation, and lipid peroxide scavenging in CSCs, their impact on ferroptosis, and the regulatory mechanisms underlying iron metabolism and ferroptosis. Potential treatment strategies and novel compounds targeting CSC by inducing ferroptosis are also discussed.
Collapse
Affiliation(s)
- Hailiang Wang
- Department of Hepatobiliary Surgery, Weihai Central Hospital Affiliated to Qingdao University, Weihai, China
- Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Zhongyan Zhang
- Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of General Surgery, Heyuan People’s Hospital, Heyuan, China
| | - Shiye Ruan
- Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of General Surgery, Heyuan People’s Hospital, Heyuan, China
| | - Qian Yan
- Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Department of General Surgery, Heyuan People’s Hospital, Heyuan, China
| | - Yubin Chen
- Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Department of General Surgery, Heyuan People’s Hospital, Heyuan, China
| | - Jinwei Cui
- Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Department of General Surgery, Heyuan People’s Hospital, Heyuan, China
| | - Xinjian Wang
- Department of Hepatobiliary Surgery, Weihai Central Hospital Affiliated to Qingdao University, Weihai, China
| | - Shanzhou Huang
- Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of General Surgery, Heyuan People’s Hospital, Heyuan, China
- Department of General Surgery, South China University of Technology School of Medicine, Guangzhou, China
| | - Baohua Hou
- Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of General Surgery, Heyuan People’s Hospital, Heyuan, China
- Department of General Surgery, South China University of Technology School of Medicine, Guangzhou, China
| |
Collapse
|
8
|
Wang W, Rong Z, Wang G, Hou Y, Yang F, Qiu M. Cancer metabolites: promising biomarkers for cancer liquid biopsy. Biomark Res 2023; 11:66. [PMID: 37391812 PMCID: PMC10311880 DOI: 10.1186/s40364-023-00507-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/27/2023] [Indexed: 07/02/2023] Open
Abstract
Cancer exerts a multitude of effects on metabolism, including the reprogramming of cellular metabolic pathways and alterations in metabolites that facilitate inappropriate proliferation of cancer cells and adaptation to the tumor microenvironment. There is a growing body of evidence suggesting that aberrant metabolites play pivotal roles in tumorigenesis and metastasis, and have the potential to serve as biomarkers for personalized cancer therapy. Importantly, high-throughput metabolomics detection techniques and machine learning approaches offer tremendous potential for clinical oncology by enabling the identification of cancer-specific metabolites. Emerging research indicates that circulating metabolites have great promise as noninvasive biomarkers for cancer detection. Therefore, this review summarizes reported abnormal cancer-related metabolites in the last decade and highlights the application of metabolomics in liquid biopsy, including detection specimens, technologies, methods, and challenges. The review provides insights into cancer metabolites as a promising tool for clinical applications.
Collapse
Affiliation(s)
- Wenxiang Wang
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, 100044, China
- Peking University People's Hospital Thoracic Oncology Institute, Beijing, 100044, China
| | - Zhiwei Rong
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, 100191, China
| | - Guangxi Wang
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Yan Hou
- Department of Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
- Clinical Research Center, Peking University, Beijing, 100191, China
| | - Fan Yang
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, 100044, China.
- Peking University People's Hospital Thoracic Oncology Institute, Beijing, 100044, China.
| | - Mantang Qiu
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, 100044, China.
- Peking University People's Hospital Thoracic Oncology Institute, Beijing, 100044, China.
| |
Collapse
|
9
|
Fan M, Shi Y, Zhao J, Li L. Cancer stem cell fate determination: mito-nuclear communication. Cell Commun Signal 2023; 21:159. [PMID: 37370081 PMCID: PMC10294499 DOI: 10.1186/s12964-023-01160-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/06/2023] [Indexed: 06/29/2023] Open
Abstract
Cancer stem cells (CSCs) are considered to be responsible for tumor recurrence and metastasis. Therefore, clarification of the mechanisms involved in CSC stemness maintenance and cell fate determination would provide a new strategy for cancer therapy. Unregulated cellular energetics has been accepted as one of the hallmarks of cancer cells, but recent studies have revealed that mitochondrial metabolism can also actively determine CSC fate by affecting nuclear stemness gene expression. Herein, from the perspective of mito-nuclear communication, we review recent progress on the influence of mitochondria on CSC potential from four aspects: metabolism, dynamics, mitochondrial homeostasis, and reactive oxygen species (ROS). Video Abstract.
Collapse
Affiliation(s)
- Mengchen Fan
- School of Basic Medical Sciences, Medical College of Yan’an University, Yanan, 716000 China
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi’an, 710032 China
| | - Ying Shi
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi’an, 710032 China
| | - Jumei Zhao
- School of Basic Medical Sciences, Medical College of Yan’an University, Yanan, 716000 China
| | - Ling Li
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi’an, 710032 China
| |
Collapse
|
10
|
Xie WJ, Li J. Obesity and cancer stem cells: Roles in cancer initiation, progression and therapy resistance. World J Stem Cells 2023; 15:120-135. [PMID: 37181008 PMCID: PMC10173809 DOI: 10.4252/wjsc.v15.i4.120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/28/2023] [Accepted: 03/16/2023] [Indexed: 04/26/2023] Open
Abstract
Obesity, the global pandemic since industrialization, is the number one lifestyle-related risk factor for premature death, which increases the incidence and mortality of various diseases and conditions, including cancer. In recent years, the theory of cancer stem cells (CSCs), which have the capacity for self-renewal, metastasis and treatment resistance, has been bolstered by increasing evidence. However, research on how obesity affects CSCs to facilitate cancer initiation, progression and therapy resistance is still in its infancy, although evidence has already begun to accumulate. Regarding the ever-increasing burden of obesity and obesity-related cancer, it is pertinent to summarize evidence about the effects of obesity on CSCs, as elucidating these effects will contribute to the improvement in the management of obesity-related cancers. In this review, we discuss the association between obesity and CSCs, with a particular focus on how obesity promotes cancer initiation, progression and therapy resistance through CSCs and the mechanisms underlying these effects. In addition, the prospect of preventing cancer and targeting the mechanisms linking obesity and CSCs to reduce cancer risk or to improve the survival of patients with cancer is considered.
Collapse
Affiliation(s)
- Wen-Jie Xie
- Department of General Surgery, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang 621000, Sichuan Province, China
| | - Jian Li
- Department of General Surgery, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang 621000, Sichuan Province, China.
| |
Collapse
|