1
|
Pillai S, Roy N. Plasticity of Cancer Stem Cell. CANCER STEM CELLS: BASIC CONCEPT AND THERAPEUTIC IMPLICATIONS 2023:101-117. [DOI: 10.1007/978-981-99-3185-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
2
|
Vermeulen S, Van Puyvelde B, Bengtsson del Barrio L, Almey R, van der Veer BK, Deforce D, Dhaenens M, de Boer J. Micro-Topographies Induce Epigenetic Reprogramming and Quiescence in Human Mesenchymal Stem Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 10:e2203880. [PMID: 36414384 PMCID: PMC9811462 DOI: 10.1002/advs.202203880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Biomaterials can control cell and nuclear morphology. Since the shape of the nucleus influences chromatin architecture, gene expression and cell identity, surface topography can control cell phenotype. This study provides fundamental insights into how surface topography influences nuclear morphology, histone modifications, and expression of histone-associated proteins through advanced histone mass spectrometry and microarray analysis. The authors find that nuclear confinement is associated with a loss of histone acetylation and nucleoli abundance, while pathway analysis reveals a substantial reduction in gene expression associated with chromosome organization. In light of previous observations where the authors found a decrease in proliferation and metabolism induced by micro-topographies, they connect these findings with a quiescent phenotype in mesenchymal stem cells, as further shown by a reduction of ribosomal proteins and the maintenance of multipotency on micro-topographies after long-term culture conditions. Also, this influence of micro-topographies on nuclear morphology and proliferation is reversible, as shown by a return of proliferation when re-cultured on a flat surface. The findings provide novel insights into how biophysical signaling influences the epigenetic landscape and subsequent cellular phenotype.
Collapse
Affiliation(s)
- Steven Vermeulen
- Department of Instructive Biomaterials EngineeringMERLN InstituteUniversity of MaastrichtMaastricht6229 ERThe Netherlands
- Department of Biomedical Engineering and Institute for Complex Molecular SystemsEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| | - Bart Van Puyvelde
- Laboratory of Pharmaceutical BiotechnologyDepartment of PharmaceuticsGhent UniversityGhent9000Belgium
| | - Laura Bengtsson del Barrio
- Department of Instructive Biomaterials EngineeringMERLN InstituteUniversity of MaastrichtMaastricht6229 ERThe Netherlands
| | - Ruben Almey
- Laboratory of Pharmaceutical BiotechnologyDepartment of PharmaceuticsGhent UniversityGhent9000Belgium
| | - Bernard K. van der Veer
- Laboratory for Stem Cell and Developmental EpigeneticsDepartment of Development and RegenerationKU LeuvenLeuven3000Belgium
| | - Dieter Deforce
- Laboratory of Pharmaceutical BiotechnologyDepartment of PharmaceuticsGhent UniversityGhent9000Belgium
| | - Maarten Dhaenens
- Laboratory of Pharmaceutical BiotechnologyDepartment of PharmaceuticsGhent UniversityGhent9000Belgium
| | - Jan de Boer
- Department of Biomedical Engineering and Institute for Complex Molecular SystemsEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| |
Collapse
|
3
|
Nissa MU, Pinto N, Mukherjee A, Reddy PJ, Ghosh B, Sun Z, Ghantasala S, Chetanya C, Shenoy SV, Moritz RL, Goswami M, Srivastava S. Organ-Based Proteome and Post-Translational Modification Profiling of a Widely Cultivated Tropical Water Fish, Labeo rohita. J Proteome Res 2021; 21:420-437. [PMID: 34962809 DOI: 10.1021/acs.jproteome.1c00759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Proteomics has enormous applications in human and animal research. However, proteomic studies in fisheries science are quite scanty particularly for economically important species. Few proteomic studies have been carried out in model fish species, but comprehensive proteomics of aquaculture species are still scarce. This study aimed to perform a comprehensive organ-based protein profiling of important tissue samples for one of the most important aquaculture species,Labeo rohita.Deep proteomic profiling of 17 histologically normal tissues, blood plasma, and embryo provided mass-spectrometric evidence for 8498 proteins at 1% false discovery rate that make up about 26% of the total annotated protein-coding sequences in Rohu. Tissue-wise expression analysis was performed, and the presence of several biologically important proteins was also verified using a targeted proteomic approach. We identified the global post-translational modifications (PTMs) in terms of acetylation (N-terminus and lysine), methylation (N-terminus, lysine, and arginine), and phosphorylation (serine, threonine, and tyrosine) to present a comprehensive proteome resource. An interactive web-based portal has been developed for an overall landscape of protein expression across the studied tissues of Labeo rohita (www.fishprot.org). This draft proteome map of Labeo rohita would advance basic and applied research in aquaculture to meet the most critical challenge of providing food and nutritional security to an increasing world population.
Collapse
Affiliation(s)
- Mehar Un Nissa
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Nevil Pinto
- Central Institute of Fisheries Education, Indian Council of Agricultural Research, Versova, Mumbai, Maharashtra 400061, India
| | - Arijit Mukherjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | | | - Biplab Ghosh
- Regional Centre for Biotechnology, Faridabad 121001, India
| | - Zhi Sun
- Institute for Systems Biology, Seattle, Washington 98109, United States
| | - Saicharan Ghantasala
- Centre for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Chetanya Chetanya
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sanjyot Vinayak Shenoy
- Department of Mathematics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Robert L Moritz
- Institute for Systems Biology, Seattle, Washington 98109, United States
| | - Mukunda Goswami
- Central Institute of Fisheries Education, Indian Council of Agricultural Research, Versova, Mumbai, Maharashtra 400061, India
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
4
|
Krasic J, Skara L, Ulamec M, Katusic Bojanac A, Dabelic S, Bulic-Jakus F, Jezek D, Sincic N. Teratoma Growth Retardation by HDACi Treatment of the Tumor Embryonal Source. Cancers (Basel) 2020; 12:cancers12113416. [PMID: 33217978 PMCID: PMC7698704 DOI: 10.3390/cancers12113416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/09/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Testicular germ cell tumors are the most common neoplasms in young male populations, with a rising incidence. Among them, teratomas may often be very aggressive and resistant to therapy. Our aim was to investigate the impact of two potential anti-tumor epigenetic drugs (Valproate and Trichostatin A) in a mammalian model of teratoma development from an early trilaminar mouse embryo. Both drugs applied to the embryonic tissue had a significant negative impact on the teratoma growth in a three-dimensional in vitro culture. However, Trichostatin A did not diminish some potentially dangerous features of teratomas in contrast to Valproate. This research is an original contribution to the basic knowledge of the origin and development of teratomas. Such knowledge is necessary for envisioning therapeutic strategies against human testicular tumors. Abstract Among testicular germ cell tumors, teratomas may often be very aggressive and therapy-resistant. Our aim was to investigate the impact of histone deacetylase inhibitors (HDACi) on the in vitro growth of experimental mouse teratoma by treating their embryonic source, the embryo-proper, composed only of the three germ layers. The growth of teratomas was measured for seven days, and histopathological analysis, IHC/morphometry quantification, gene enrichment analysis, and qPCR analysis on a selected panel of pluripotency and early differentiation genes followed. For the first time, within teratomas, we histopathologically assessed the undifferentiated component containing cancer stem cell-like cells (CSCLCs) and differentiated components containing numerous lymphocytes. Mitotic indices were higher than apoptotic indices in both components. Both HDACi treatments of the embryos-proper significantly reduced teratoma growth, although this could be related neither to apoptosis nor proliferation. Trichostatin A increased the amount of CSCLCs, and upregulated the mRNA expression of pluripotency/stemness genes as well as differentiation genes, e.g., T and Eomes. Valproate decreased the amount of CSCLCs, and downregulated the expressions of pluripotency/stemness and differentiation genes. In conclusion, both HDACi treatments diminished the inherent tumorigenic growth potential of the tumor embryonal source, although Trichostatin A did not diminish the potentially dangerous expression of cancer-related genes and the amount of CSCLC.
Collapse
Affiliation(s)
- Jure Krasic
- Department of Medical Biology, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia; (J.K.); (L.S.); (A.K.B.); (F.B.-J.)
- Scientific Group for Research on Epigenetic Biomarkers, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia;
- Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia;
| | - Lucija Skara
- Department of Medical Biology, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia; (J.K.); (L.S.); (A.K.B.); (F.B.-J.)
- Scientific Group for Research on Epigenetic Biomarkers, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia;
- Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia;
| | - Monika Ulamec
- Scientific Group for Research on Epigenetic Biomarkers, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia;
- Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia;
- Ljudevit Jurak Clinical Department of Pathology and Cytology, Sestre Milosrdnice University Hospital Center, 10 000 Zagreb, Croatia
- Department of Pathology, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia
| | - Ana Katusic Bojanac
- Department of Medical Biology, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia; (J.K.); (L.S.); (A.K.B.); (F.B.-J.)
- Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia;
| | - Sanja Dabelic
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10 000 Zagreb, Croatia;
| | - Floriana Bulic-Jakus
- Department of Medical Biology, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia; (J.K.); (L.S.); (A.K.B.); (F.B.-J.)
- Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia;
| | - Davor Jezek
- Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia;
- Department of Histology and Embryology, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia
| | - Nino Sincic
- Department of Medical Biology, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia; (J.K.); (L.S.); (A.K.B.); (F.B.-J.)
- Scientific Group for Research on Epigenetic Biomarkers, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia;
- Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia;
- Correspondence: ; Tel.: +385-1-45-66-806; Fax: +385-45-960-199
| |
Collapse
|
5
|
Oh S, Boo K, Kim J, Baek SA, Jeon Y, You J, Lee H, Choi HJ, Park D, Lee JM, Baek SH. The chromatin-binding protein PHF6 functions as an E3 ubiquitin ligase of H2BK120 via H2BK12Ac recognition for activation of trophectodermal genes. Nucleic Acids Res 2020; 48:9037-9052. [PMID: 32735658 PMCID: PMC7498345 DOI: 10.1093/nar/gkaa626] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/07/2020] [Accepted: 07/14/2020] [Indexed: 12/19/2022] Open
Abstract
Epigenetic regulation is important for establishing lineage-specific gene expression during early development. Although signaling pathways have been well-studied for regulation of trophectoderm reprogramming, epigenetic regulation of trophectodermal genes with histone modification dynamics have been poorly understood. Here, we identify that plant homeodomain finger protein 6 (PHF6) is a key epigenetic regulator for activation of trophectodermal genes using RNA-sequencing and ChIP assays. PHF6 acts as an E3 ubiquitin ligase for ubiquitination of H2BK120 (H2BK120ub) via its extended plant homeodomain 1 (PHD1), while the extended PHD2 of PHF6 recognizes acetylation of H2BK12 (H2BK12Ac). Intriguingly, the recognition of H2BK12Ac by PHF6 is important for exerting its E3 ubiquitin ligase activity for H2BK120ub. Together, our data provide evidence that PHF6 is crucial for epigenetic regulation of trophectodermal gene expression by linking H2BK12Ac to H2BK120ub modification.
Collapse
Affiliation(s)
- Sungryong Oh
- Creative Research Initiatives Center for Epigenetic Code and Diseases, Department of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Kyungjin Boo
- Creative Research Initiatives Center for Epigenetic Code and Diseases, Department of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Jaebeom Kim
- Creative Research Initiatives Center for Epigenetic Code and Diseases, Department of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Seon Ah Baek
- Creative Research Initiatives Center for Epigenetic Code and Diseases, Department of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Yoon Jeon
- Graduate School of Cancer Science and Policy, Research Institute, National Cancer Center, Goyang 10408, South Korea
| | - Junghyun You
- Department of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Ho Lee
- Graduate School of Cancer Science and Policy, Research Institute, National Cancer Center, Goyang 10408, South Korea
| | - Hee-Jung Choi
- Department of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Daechan Park
- Department of Biological Sciences, College of Natural Sciences, Ajou University, Suwon 16499, South Korea
| | - Ji Min Lee
- Department of Molecular Bioscience, College of Biomedical Sciences, Kangwon National University, Chuncheon 24341, South Korea
| | - Sung Hee Baek
- Creative Research Initiatives Center for Epigenetic Code and Diseases, Department of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| |
Collapse
|
6
|
Tiwari SK, Toshniwal AG, Mandal S, Mandal L. Fatty acid β-oxidation is required for the differentiation of larval hematopoietic progenitors in Drosophila. eLife 2020; 9:53247. [PMID: 32530419 PMCID: PMC7347386 DOI: 10.7554/elife.53247] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 06/11/2020] [Indexed: 12/12/2022] Open
Abstract
Cell-intrinsic and extrinsic signals regulate the state and fate of stem and progenitor cells. Recent advances in metabolomics illustrate that various metabolic pathways are also important in regulating stem cell fate. However, our understanding of the metabolic control of the state and fate of progenitor cells is in its infancy. Using Drosophila hematopoietic organ: lymph gland, we demonstrate that Fatty Acid Oxidation (FAO) is essential for the differentiation of blood cell progenitors. In the absence of FAO, the progenitors are unable to differentiate and exhibit altered histone acetylation. Interestingly, acetate supplementation rescues both histone acetylation and the differentiation defects. We further show that the CPT1/whd (withered), the rate-limiting enzyme of FAO, is transcriptionally regulated by Jun-Kinase (JNK), which has been previously implicated in progenitor differentiation. Our study thus reveals how the cellular signaling machinery integrates with the metabolic cue to facilitate the differentiation program. Stem cells are special precursor cells, found in all animals from flies to humans, that can give rise to all the mature cell types in the body. Their job is to generate supplies of new cells wherever these are needed. This is important because it allows damaged or worn-out tissues to be repaired and replaced by fresh, healthy cells. As part of this renewal process, stem cells generate pools of more specialized cells, called progenitor cells. These can be thought of as half-way to maturation and can only develop in a more restricted number of ways. For example, so-called myeloid progenitor cells from humans can only develop into a specific group of blood cell types, collectively termed the myeloid lineage. Fruit flies, like many other animals, also have several different types of blood cells. The fly’s repertoire of blood cells is very similar to the human myeloid lineage, and these cells also develop from the fly equivalent of myeloid progenitor cells. These progenitors are found in a specialized organ in fruit fly larvae called the lymph gland, where the blood forms. These similarities between fruit flies and humans mean that flies are a good model to study how myeloid progenitor cells mature. A lot is already known about the molecules that signal to progenitor cells how and when to mature. However, the role of metabolism – the chemical reactions that process nutrients and provide energy inside cells – is still poorly understood. Tiwari et al. set out to identify which metabolic reactions myeloid progenitor cells require and how these reactions might shape the progenitors’ development into mature blood cells. The experiments in this study used fruit fly larvae that had been genetically altered so that they could no longer perform key chemical reactions needed for the breakdown of fats. In these mutant larvae, the progenitors within the lymph gland could not give rise to mature blood cells. This showed that myeloid progenitor cells need to be able to break down fats in order to develop properly. These results highlight a previously unappreciated role for metabolism in controlling the development of progenitor cells. If this effect also occurs in humans, this knowledge could one day help medical researchers engineer replacement tissues in the lab, or even increase our own bodies’ ability to regenerate blood, and potentially other organs.
Collapse
Affiliation(s)
- Satish Kumar Tiwari
- Developmental Genetics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, India
| | - Ashish Ganeshlalji Toshniwal
- Molecular Cell and Developmental Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, India
| | - Sudip Mandal
- Molecular Cell and Developmental Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, India
| | - Lolitika Mandal
- Developmental Genetics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, India
| |
Collapse
|
7
|
Zaccara IM, Mestieri LB, Pilar EFS, Moreira MS, Grecca FS, Martins MD, Kopper PMP. Photobiomodulation therapy improves human dental pulp stem cell viability and migration in vitro associated to upregulation of histone acetylation. Lasers Med Sci 2020; 35:741-749. [PMID: 32095920 DOI: 10.1007/s10103-019-02931-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 11/27/2019] [Indexed: 12/17/2022]
Abstract
This in vitro study evaluated the role of photobiomodulation therapy (PBMT) on viability and migration of human dental pulp stem cells (hDPSCs) and its association to epigenetic mechanisms such as histone acetylation. The hDPSCs were characterized and assigned into control and PBMT groups. For the PBMT, five laser irradiations at 6-h intervals were performed using a continuous-wave InGaAlP diode laser. Viability (MTT), migration (scratch), and histone acetylation H3 (H3K9ac immunofluorescence) were evaluated immediately after the last irradiation. PBMT significantly increased the viability (P = 0.004). Also, PBMT group showed significantly increased migration of cells in the wound compared to the control in 6 h (P = 0.002), 12 h (P = 0.014) and 18 h (P = 0.083) being faster than the control, which only finished the process at 24 h. PBMT induced epigenetic modifications in hDPSC due to increased histone acetylation (P = 0.001). PBMT increased viability and migration of hDPSCs, which are related with the upregulation of histone acetylation and could be considered a promising adjuvant therapy for regenerative endodontic treatment.
Collapse
Affiliation(s)
- Ivana M Zaccara
- Dentistry Graduate Program, Department of Conservative Dentistry, School of Dentistry, Federal University of Rio Grande do Sul - UFRGS, Rua Ramiro Barcelos, 2492, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil
| | - Letícia B Mestieri
- Dentistry Graduate Program, Department of Conservative Dentistry, School of Dentistry, Federal University of Rio Grande do Sul - UFRGS, Rua Ramiro Barcelos, 2492, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil
| | - Emily F S Pilar
- Department of Experimental Pathology, Clinics Hospital of Porto Alegre, Federal University of Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Maria S Moreira
- Department of Dentistry, School of Dentistry, University of Sao Paulo, Sao Paulo, Brazil.,Ibirapuera University, Sao Paulo, Brazil
| | - Fabiana S Grecca
- Dentistry Graduate Program, Department of Conservative Dentistry, School of Dentistry, Federal University of Rio Grande do Sul - UFRGS, Rua Ramiro Barcelos, 2492, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil
| | - Manoela D Martins
- Dentistry Graduate Program, Department of Conservative Dentistry, School of Dentistry, Federal University of Rio Grande do Sul - UFRGS, Rua Ramiro Barcelos, 2492, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil
| | - Patrícia Maria Poli Kopper
- Dentistry Graduate Program, Department of Conservative Dentistry, School of Dentistry, Federal University of Rio Grande do Sul - UFRGS, Rua Ramiro Barcelos, 2492, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil.
| |
Collapse
|
8
|
Perusina Lanfranca M, Thompson JK, Bednar F, Halbrook C, Lyssiotis C, Levi B, Frankel TL. Metabolism and epigenetics of pancreatic cancer stem cells. Semin Cancer Biol 2019; 57:19-26. [PMID: 30273655 PMCID: PMC6438777 DOI: 10.1016/j.semcancer.2018.09.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 09/26/2018] [Indexed: 02/06/2023]
Abstract
Pancreatic Cancer (PDA) is an aggressive malignancy characterized by early spread and a high mortality. Current studies suggest that a subpopulation of cells exist within tumors, cancer stem cell (CSC), which are capable of self-renewal and give rise to unique progeny which form the major neoplastic cellular component of tumors. While CSCs constitute a small cellular subpopulation within the tumor, their resistance to chemotherapy and radiation make them an important therapeutic target for eradication. Along with distinctive phenotypic properties, CSCs possess a unique metabolic plasticity allowing them to rapidly respond and adapt to environmental changes. These cells and their progeny also display a significantly altered epigenetic state with distinctive patterns of DNA methylation. Several mechanisms of cross-talk between epigenetic and metabolic pathways in PDA exist which ultimately contribute to the observed cellular plasticity and enhanced tumorigenesis. In this review we discuss various examples of this metabolic-epigenetic interplay and how it may constitute a new avenue for therapy specifically targeting CSCs in PDA.
Collapse
Affiliation(s)
| | - J K Thompson
- Department of Surgery, University of Michigan, Ann Arbor, MI, United States
| | - F Bednar
- Department of Surgery, University of Michigan, Ann Arbor, MI, United States; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| | - C Halbrook
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States; Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - C Lyssiotis
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States; Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - B Levi
- Department of Surgery, University of Michigan, Ann Arbor, MI, United States
| | - T L Frankel
- Department of Surgery, University of Michigan, Ann Arbor, MI, United States; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
9
|
Huang M, Huang J, Zheng Y, Sun Q. Histone acetyltransferase inhibitors: An overview in synthesis, structure-activity relationship and molecular mechanism. Eur J Med Chem 2019; 178:259-286. [PMID: 31195169 DOI: 10.1016/j.ejmech.2019.05.078] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/28/2019] [Accepted: 05/28/2019] [Indexed: 02/05/2023]
Abstract
Acetylation, a key component in post-translational modification regulated by HATs and HDACs, is relevant to many crucial cellular contexts in organisms. Based on crucial pharmacophore patterns and the structure of targeted proteins, HAT inhibitors are designed and modified for higher affinity and better bioactivity. However, there are still some challenges, such as cell permeability, selectivity, toxicity and synthetic availability, which limit the improvement of HAT inhibitors. So far, only few HAT inhibitors have been approved for commercialization, indicating the urgent need for more successful and effective structure-based drug design and synthetic strategies. Here, we summarized three classes of HAT inhibitors based on their sources and structural scaffolds, emphasizing on their synthetic methods and structure-activity relationships and molecular mechanisms, hoping to facilitate the development and further application of HAT inhibitors.
Collapse
Affiliation(s)
- Mengyuan Huang
- State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Jiangkun Huang
- Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yongcheng Zheng
- State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Qiu Sun
- State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
10
|
Simithy J, Sidoli S, Yuan ZF, Coradin M, Bhanu NV, Marchione DM, Klein BJ, Bazilevsky GA, McCullough CE, Magin RS, Kutateladze TG, Snyder NW, Marmorstein R, Garcia BA. Characterization of histone acylations links chromatin modifications with metabolism. Nat Commun 2017; 8:1141. [PMID: 29070843 PMCID: PMC5656686 DOI: 10.1038/s41467-017-01384-9] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 09/14/2017] [Indexed: 12/30/2022] Open
Abstract
Over the last decade, numerous histone acyl post-translational modifications (acyl-PTMs) have been discovered, of which the functional significance is still under intense study. Here, we use high-resolution mass spectrometry to accurately quantify eight acyl-PTMs in vivo and after in vitro enzymatic assays. We assess the ability of seven histone acetyltransferases (HATs) to catalyze acylations on histones in vitro using short-chain acyl-CoA donors, proving that they are less efficient towards larger acyl-CoAs. We also observe that acyl-CoAs can acylate histones through non-enzymatic mechanisms. Using integrated metabolomic and proteomic approaches, we achieve high correlation (R 2 > 0.99) between the abundance of acyl-CoAs and their corresponding acyl-PTMs. Moreover, we observe a dose-dependent increase in histone acyl-PTM abundances in response to acyl-CoA supplementation in in nucleo reactions. This study represents a comprehensive profiling of scarcely investigated low-abundance histone marks, revealing that concentrations of acyl-CoAs affect histone acyl-PTM abundances by both enzymatic and non-enzymatic mechanisms.
Collapse
Affiliation(s)
- Johayra Simithy
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Simone Sidoli
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Zuo-Fei Yuan
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Mariel Coradin
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Natarajan V Bhanu
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Dylan M Marchione
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Brianna J Klein
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Gleb A Bazilevsky
- Graduate Group in Cell and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Cheryl E McCullough
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Robert S Magin
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Tatiana G Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Nathaniel W Snyder
- AJ Drexel Autism Institute, Drexel University, 3020 Market Street Suite 560, Philadelphia, PA, 19104, USA
| | - Ronen Marmorstein
- Department of Biochemistry and Biophysics, Abramson Family Cancer Research Institute, and the Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
11
|
Liu N, Li S, Wu N, Cho KS. Acetylation and deacetylation in cancer stem-like cells. Oncotarget 2017; 8:89315-89325. [PMID: 29179522 PMCID: PMC5687692 DOI: 10.18632/oncotarget.19167] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/27/2017] [Indexed: 12/21/2022] Open
Abstract
Cancer stem-like cell (CSC) model has been established to investigate the underlying mechanisms of tumor initiation and progression. The imbalance between acetylation and deacetylation of histone or non-histone proteins, one of the important epigenetic modification processes, is closely associated with a wide variety of diseases including cancer. Acetylation and deacetylation are involved in various stemness-related signal pathways and drive the regulation of self-renewal and differentiation in normal developmental processes. Therefore, it is critical to explore their role in the maintenance of cancer stem-like cell traits. Here, we will review the extensive dysregulations of acetylation found in cancers and summarize their functional roles in sustaining CSC-like properties. Additionally, the use of deacetyltransferase inhibitors as an effective therapeutic strategy against CSCs is also discussed.
Collapse
Affiliation(s)
- Na Liu
- Department of Ophthalmology, Southwest Eye Hospital, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Shiqi Li
- Center of biotherapy, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Nan Wu
- Department of Ophthalmology, Southwest Eye Hospital, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Kin-Sang Cho
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
12
|
Horne GA, Stewart HJS, Dickson J, Knapp S, Ramsahoye B, Chevassut T. Nanog requires BRD4 to maintain murine embryonic stem cell pluripotency and is suppressed by bromodomain inhibitor JQ1 together with Lefty1. Stem Cells Dev 2014; 24:879-91. [PMID: 25393219 DOI: 10.1089/scd.2014.0302] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Embryonic stem cells (ESCs) are maintained in an undifferentiated state through expression of the core transcriptional factors Nanog, Oct4, and Sox2. However, the epigenetic regulation of pluripotency is poorly understood. Differentiation of ESCs is accompanied by a global reduction of panacetylation of histones H3 and H4 suggesting that histone acetylation plays an important role in maintenance of ESC pluripotency. Acetylated lysine residues on histones are read by members of the bromodomain family that includes BET (bromodomain and extraterminal domain) proteins for which highly potent and selective inhibitors have been developed. In this study we demonstrate that the pan-BET bromodomain inhibitor JQ1 induces rapid spontaneous differentiation of murine ESCs by inducing marked transcriptional downregulation of Nanog as well as the stemness markers Lefty1 and Lefty2, but not Myc, often used as a marker of BET inhibitor activity in cancer. We show that the effects of JQ1 are recapitulated by knockdown of the BET family member BRD4 implicating this protein in Nanog regulation. These data are also supported by chromatin immunoprecipitation experiments which confirm BRD4 binding at the Nanog promoter that is known to require acetylation by the histone acetyltransferase MOF for transcriptional activity. In further support of our findings, we show that JQ1 antagonizes the stem cell-promoting effects of the histone deacetylase inhibitors sodium butyrate and valproic acid. Our data suggest that BRD4 is critical for the maintenance of ESC pluripotency and that this occurs primarily through the maintenance of Nanog expression.
Collapse
Affiliation(s)
- Gillian A Horne
- 1 Brighton and Sussex Medical School, University of Sussex , Brighton, United Kingdom
| | | | | | | | | | | |
Collapse
|
13
|
Chen X, Du Z, Shi W, Wang C, Yang Y, Wang F, Yao Y, He K, Hao A. 2-Bromopalmitate modulates neuronal differentiation through the regulation of histone acetylation. Stem Cell Res 2014; 12:481-91. [DOI: 10.1016/j.scr.2013.12.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 11/25/2013] [Accepted: 12/21/2013] [Indexed: 10/25/2022] Open
|
14
|
YE B, Dai Z, Liu B, Wang R, Li C, Huang G, Wang S, Xia P, Yang X, Kuwahara K, Sakaguchi N, Fan Z. Pcid2 Inactivates Developmental Genes in Human and Mouse Embryonic Stem Cells to Sustain Their Pluripotency by Modulation of EID1 Stability. Stem Cells 2014; 32:623-35. [DOI: 10.1002/stem.1580] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 09/26/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Buqing YE
- Key Laboratory of Infection and Immunity of CAS; Institute of Biophysics, Chinese Academy of Sciences; Beijing People's Republic of China
| | - Zhonghua Dai
- Key Laboratory of Infection and Immunity of CAS; Institute of Biophysics, Chinese Academy of Sciences; Beijing People's Republic of China
| | - Benyu Liu
- Key Laboratory of Infection and Immunity of CAS; Institute of Biophysics, Chinese Academy of Sciences; Beijing People's Republic of China
| | - Rui Wang
- Key Laboratory of Infection and Immunity of CAS; Institute of Biophysics, Chinese Academy of Sciences; Beijing People's Republic of China
| | - Chong Li
- Key Laboratory of Infection and Immunity of CAS; Institute of Biophysics, Chinese Academy of Sciences; Beijing People's Republic of China
| | - Guanling Huang
- Key Laboratory of Infection and Immunity of CAS; Institute of Biophysics, Chinese Academy of Sciences; Beijing People's Republic of China
| | - Shuo Wang
- Key Laboratory of Infection and Immunity of CAS; Institute of Biophysics, Chinese Academy of Sciences; Beijing People's Republic of China
| | - Pengyan Xia
- Key Laboratory of Infection and Immunity of CAS; Institute of Biophysics, Chinese Academy of Sciences; Beijing People's Republic of China
| | - Xuan Yang
- Key Laboratory of Infection and Immunity of CAS; Institute of Biophysics, Chinese Academy of Sciences; Beijing People's Republic of China
| | - Kazuhiko Kuwahara
- Department of Immunology; Graduate School of Medical Sciences; Kumamoto University; Kumamoto Japan
| | - Nobuo Sakaguchi
- Department of Immunology; Graduate School of Medical Sciences; Kumamoto University; Kumamoto Japan
| | - Zusen Fan
- Key Laboratory of Infection and Immunity of CAS; Institute of Biophysics, Chinese Academy of Sciences; Beijing People's Republic of China
| |
Collapse
|
15
|
Marconett CN, Zhou B, Rieger ME, Selamat SA, Dubourd M, Fang X, Lynch SK, Stueve TR, Siegmund KD, Berman BP, Borok Z, Laird-Offringa IA. Integrated transcriptomic and epigenomic analysis of primary human lung epithelial cell differentiation. PLoS Genet 2013; 9:e1003513. [PMID: 23818859 PMCID: PMC3688557 DOI: 10.1371/journal.pgen.1003513] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 04/04/2013] [Indexed: 12/16/2022] Open
Abstract
Elucidation of the epigenetic basis for cell-type specific gene regulation is key to gaining a full understanding of how the distinct phenotypes of differentiated cells are achieved and maintained. Here we examined how epigenetic changes are integrated with transcriptional activation to determine cell phenotype during differentiation. We performed epigenomic profiling in conjunction with transcriptomic profiling using in vitro differentiation of human primary alveolar epithelial cells (AEC). This model recapitulates an in vivo process in which AEC transition from one differentiated cell type to another during regeneration following lung injury. Interrogation of histone marks over time revealed enrichment of specific transcription factor binding motifs within regions of changing chromatin structure. Cross-referencing of these motifs with pathways showing transcriptional changes revealed known regulatory pathways of distal alveolar differentiation, such as the WNT and transforming growth factor beta (TGFB) pathways, and putative novel regulators of adult AEC differentiation including hepatocyte nuclear factor 4 alpha (HNF4A), and the retinoid X receptor (RXR) signaling pathways. Inhibition of the RXR pathway confirmed its functional relevance for alveolar differentiation. Our incorporation of epigenetic data allowed specific identification of transcription factors that are potential direct upstream regulators of the differentiation process, demonstrating the power of this approach. Integration of epigenomic data with transcriptomic profiling has broad application for the identification of regulatory pathways in other models of differentiation. Understanding the role of epigenetic control of gene expression is critical to the full description of biological processes, such as development and regeneration. Herein we utilize the differentiation of cells from the distal lung to gain insight into the correlation between the epigenetic landscape, molecular signaling events, and eventual changes in transcription and phenotype. We found that by integrating epigenetic profiling with whole genome transcriptomic data we were able to determine which molecular signaling events were activated and repressed during adult alveolar epithelial cell differentiation, and we identified epigenetic changes that contributed to these changes. Furthermore, we validated the role of one of these predicted but not previously identified pathways, retinoid X receptor signaling, in this process.
Collapse
Affiliation(s)
- Crystal N. Marconett
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Beiyun Zhou
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Will Rogers Institute Pulmonary Research Center and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Megan E. Rieger
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Will Rogers Institute Pulmonary Research Center and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Suhaida A. Selamat
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Mickael Dubourd
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Will Rogers Institute Pulmonary Research Center and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Xiaohui Fang
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, United States of America
- Department of Medicine/Pathology, University of California San Francisco, San Francisco, California, United States of America
| | - Sean K. Lynch
- Department of Product Engineering, Division of Manufacturing Operations, MAXIM Integrated Products, Sunnyvale, California, United States of America
| | - Theresa Ryan Stueve
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Kimberly D. Siegmund
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Benjamin P. Berman
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- University of Southern California Epigenome Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Zea Borok
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Will Rogers Institute Pulmonary Research Center and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Ite A. Laird-Offringa
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
16
|
Ma Y, Chen Z, Jin Y, Liu W. Identification of a histone acetyltransferase as a novel regulator of Drosophila
intestinal stem cells. FEBS Lett 2013; 587:1489-95. [DOI: 10.1016/j.febslet.2013.03.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 03/11/2013] [Accepted: 03/11/2013] [Indexed: 11/25/2022]
|
17
|
De Felici M. Nuclear reprogramming in mouse primordial germ cells: epigenetic contribution. Stem Cells Int 2011; 2011:425863. [PMID: 21969835 PMCID: PMC3182379 DOI: 10.4061/2011/425863] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 07/11/2011] [Indexed: 12/17/2022] Open
Abstract
The unique capability of germ cells to give rise to a new organism, allowing the transmission of primary genetic information from generation to generation, depends on their epigenetic reprogramming ability and underlying genomic totipotency. Recent studies have shown that genome-wide epigenetic modifications, referred to as “epigenetic reprogramming”, occur during the development of the gamete precursors termed primordial germ cells (PGCs) in the embryo. This reprogramming is likely to be critical for the germ line development itself and necessary to erase the parental imprinting and setting the base for totipotency intrinsic to this cell lineage. The status of genome acquired during reprogramming and the associated expression of key pluripotency genes render PGCs susceptible to transform into pluripotent stem cells. This may occur in vivo under still undefined condition, and it is likely at the origin of the formation of germ cell tumors. The phenomenon appears to be reproduced under partly defined in vitro culture conditions, when PGCs are transformed into embryonic germ (EG) cells. In the present paper, I will try to summarize the contribution that epigenetic modifications give to nuclear reprogramming in mouse PGCs.
Collapse
Affiliation(s)
- Massimo De Felici
- Section of Histology and Embryology, Department of Public Health and Cell Biology, University of Rome "Tor Vergata," 00173 Rome, Italy
| |
Collapse
|