1
|
Wang C, Liu H, Cheng J, Pan S, Yang W, Wei X, Cheng Y, Xu T, Si H. One-Step Multiplex Real-Time Fluorescent Quantitative Reverse Transcription PCR for Simultaneous Detection of Four Waterfowl Viruses. Microorganisms 2024; 12:2423. [PMID: 39770626 PMCID: PMC11679685 DOI: 10.3390/microorganisms12122423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/17/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
Duck Tembusu virus (DTMUV), duck hepatitis virus (DHV), Muscovy duck reovirus (MDRV), and Muscovy duck parvovirus (MDPV) represent four emergent infectious diseases impacting waterfowl, which can be challenging to differentiate due to overlapping clinical signs. In response to this, we have developed a one-step multiplex real-time fluorescence quantitative reverse transcription PCR (qRT-PCR) assay, capable of simultaneously detecting DTMUV, DHV, MDRV, and MDPV. This method exhibits high specificity, avoiding cross-reactivity with other viruses such as Fowl adenoviruses (FADV), infectious bursal disease virus (IBDV), infectious bronchitis virus (IBV), infectious laryngotracheitis virus (ILTV), Haemophilus paragallinarum (Hpg), duck circovirus (DUCV), goose astrovirus (GoAstV), and mycoplasma gallisepticum (MG). The limit of detection (LOD) established for DTMUV, DHV, MDRV, and MDPV was determined to be 27 copies/μL. In the repeatability test, the intra-assay and inter-assay coefficients of variation (CVs) of the recombinant plasmid standard were less than 2%. Utilizing this method, we analyzed 326 clinical specimens sourced from Guangxi over the period spanning October 2021 through December 2023, yielding promising and precise outcomes. The qRT-PCR method established herein exhibits commendable specificity, sensitivity, and repeatability. Furthermore, it boasts a high clinical detection rate, making it a highly effective tool for diagnosing these pathogenic agents in waterfowl.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hongbin Si
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi Grass Station, Guangxi University, Nanning 530004, China; (C.W.); (H.L.); (J.C.); (S.P.); (W.Y.); (X.W.); (Y.C.); (T.X.)
| |
Collapse
|
2
|
Dong HV, Tran GTH, Vu TTT, Le NHT, Nguyen YTH, Rapichai W, Rattanasrisomporn A, Boonkaewwan C, Bui DAT, Rattanasrisomporn J. Duck Tembusu virus in North Vietnam: epidemiological and genetic analysis reveals novel virus strains. Front Vet Sci 2024; 11:1366904. [PMID: 38812564 PMCID: PMC11134369 DOI: 10.3389/fvets.2024.1366904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/18/2024] [Indexed: 05/31/2024] Open
Abstract
Tembusu virus (TMUV) is an important infectious disease, causing economic losses in duck production. Since the first report of TMUV infection in Vietnam in 2020, the disease has persisted and affected poultry production in the country. This study conducted epidemiological and genetic characterization of the viral strains circulating in north Vietnam based on 130 pooled tissue samples collected in six provinces/cities during 2021. The TMUV genome was examined using conventional PCR. The results indicated that 21 (16.15%) samples and 9 (23.68%) farms were positive for the viral genome. The positive rate was 59.26% for ducks at ages 2-4 weeks, which was significantly higher than for ducks at ages >4 weeks and < 2 weeks. Genetic analysis of the partial envelope gene (891 bp) sequences indicated that the five Vietnamese TMUVs shared 99.55-100% nucleotide identity, while the rates were in the range 99.59-100% based on the pre-membrane gene sequences (498 bp). The five Vietnamese TMUV strains obtained formed a novel single subcluster. These strains were closely related to Chinese strains and differed from the vaccine strain, suggesting that Vietnamese TMUV strains were field viruses. It needs to be further studied on vaccine development to prevent effects of TMUV infection on poultry production across Vietnam.
Collapse
Affiliation(s)
- Hieu Van Dong
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Giang Thi Huong Tran
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Tra Thi Thu Vu
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Ngan Hong Thi Le
- Dak Lak Sub-Department of Livestock Production and Animal Health, Dak Lak, Vietnam
| | - Yen Thi Hoang Nguyen
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Witsanu Rapichai
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Amonpun Rattanasrisomporn
- Interdisciplinary of Genetic Engineering and Bioinformatics, Graduate School, Kasetsart University, Bangkok, Thailand
| | - Chaiwat Boonkaewwan
- Akkhraratchakumari Veterinary College, Walailak University, Tha Sala District, Thailand
| | - Dao Anh Tran Bui
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Jatuporn Rattanasrisomporn
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
3
|
Mao L, He Y, Wu Z, Wang X, Guo J, Zhang S, Wang M, Jia R, Zhu D, Liu M, Zhao X, Yang Q, Mao S, Wu Y, Zhang S, Huang J, Ou X, Gao Q, Sun D, Cheng A, Chen S. Stem-Loop I of the Tembusu Virus 3'-Untranslated Region Is Responsible for Viral Host-Specific Adaptation and the Pathogenicity of the Virus in Mice. Microbiol Spectr 2022; 10:e0244922. [PMID: 36214697 PMCID: PMC9602528 DOI: 10.1128/spectrum.02449-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/17/2022] [Indexed: 01/04/2023] Open
Abstract
Tembusu virus (TMUV), an avian mosquito-borne flavivirus, was first identified from Culex tritaeniorhynchus in 1955. To validate the effects of the 3'-untranslated region (3'UTR) in viral host-specific adaptation, we generated a set of chimeric viruses using CQW1 (duck strain) and MM 1775 (mosquito strain) as backbones with heterogeneous 3'UTRs. Compared with rMM 1775, rMM-CQ3'UTR (recombinant MM 1775 virus carrying the 3'UTR of CQW1) exhibited enhanced proliferation in vitro, with peak titers increasing by 5-fold in duck embryonic fibroblast (DEF) cells or 12-fold in baby hamster kidney (BHK-21) cells; however, the neurovirulence of rMM-CQ3'UTR was attenuated in 14-day-old Kunming mice via intracranial injection, with slower weight loss, lower mortality, and reduced viral loads. In contrast, rCQ-MM3'UTR showed similar growth kinetics in vitro and neurovirulence in mice compared with those of rCQW1. Then, the Stem-loop I (SLI) structure, which showed the highest variation within the 3'UTR between CQW1 and MM 1775, was further chosen for making chimeric viruses. The peak titers of rMM-CQ3'UTRSLI displayed a 15- or 4-fold increase in vitro, and the neurovirulence in mice was attenuated, compared with that of rMM 1775; rCQ-MM3'UTRSLI displayed comparable multiplication ability in vitro but was significantly attenuated in mice, in contrast with rCQW1. In conclusion, we demonstrated that the TMUV SLI structure of the 3'UTR was responsible for viral host-specific adaptation of the mosquito-derived strain in DEF and BHK-21 cells and regulated viral pathogenicity in 14-day-old mice, providing a new understanding of the functions of TMUV 3'UTR in viral host switching and the pathogenicity changes in mice. IMPORTANCE Mosquito-borne flaviviruses (MBFVs) constitute a large number of mosquito-transmitted viruses. The 3'-untranslated region (3'UTR) of MBFV has been suggested to be relevant to viral host-specific adaptation. However, the evolutionary strategies for host-specific fitness among MBFV are different, and the virulence-related structures within the 3'UTR are largely unknown. Here, using Tembusu virus (TMUV), an avian MBFV as models, we observed that the duck-derived SLI of the 3'UTR significantly enhanced the proliferation ability of mosquito-derived TMUV in baby hamster kidney (BHK-21) and duck embryonic fibroblast (DEF) cells, suggesting that the SLI structure was crucial for viral host-specific adaptation of mosquito-derived TMUVs in mammalian and avian cells. In addition, all SLI mutant viruses exhibited reduced viral pathogenicity in mice, indicating that SLI structure was a key factor for the pathogenicity in mice. This study provides a new insight into the functions of the MBFV 3'UTR in viral host switching and pathogenicity changes in mice.
Collapse
Affiliation(s)
- Li Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yu He
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhen Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiaoli Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jiaqi Guo
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Senzhao Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Dekang Zhu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Han K, Zhao D, Liu Q, Liu Y, Huang X, Yang J, Zhang L, Li Y. Transcriptome analysis reveals new insight of duck Tembusu virus (DTMUV)-infected DF-1 cells. Res Vet Sci 2021; 137:150-158. [PMID: 33975194 DOI: 10.1016/j.rvsc.2021.04.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 11/16/2022]
Abstract
Duck Tembusu virus (DTMUV) is a newly emerging pathogenic flavivirus that has caused huge economic losses to the duck industry in China since 2010. Moreover, the infection has spread rapidly, resulted in a potential public health concern. To improve our understanding of the host cellular responses to virus infection and the pathogenesis of DTMUV infection, we used RNA-Seq to detect the gene changes in DF-1 cells infected and mock-infected with DTMUV. A total of 663 differentially-expressed genes (DEGs) were identified in DTMUV-infected compared with mock-infected DF-1 cells at 24 h post-infection (hpi), among which 590 were up regulated and 73 were down regulated. Gene Ontology analysis indicated that the DEGs were mainly involved in cellular process, immune system processes, metabolic processes, and signal-organism process. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the DEGs were mainly involved in several signaling pathways such as Toll-like receptor signaling, Jak-STAT signaling, RIG-I-like receptor signaling and AGE-RAGE signaling pathway. Moreover, some selected DEGs were further confirmed by real-time PCR and the results were consistent with the sequencing data. To our knowledge, this study is the first to analyze the transcriptomic change in DF-1 cells following DTMUV infection. We believe that our research provides useful information in better understanding the host response to DTMUV infection and the inherent mechanism of DTMUV replication and pathogenicity.
Collapse
Affiliation(s)
- Kaikai Han
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Diagnosis, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China; Institute of life sciences, Jiangsu University, Zhenjiang 212013, China.
| | - Dongmin Zhao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Diagnosis, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| | - Qingtao Liu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Diagnosis, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| | - Yuzhuo Liu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Diagnosis, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| | - Xinmei Huang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Diagnosis, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| | - Jing Yang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Diagnosis, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| | - Lijiao Zhang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Diagnosis, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| | - Yin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Diagnosis, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| |
Collapse
|
5
|
Guo X, Jiang T, Jiang Y, Zhao T, Li C, Dong Y, Xing D, Qin C, Zhao T. Potential Vector Competence of Mosquitoes to Transmit Baiyangdian Virus, a New Tembusu-Related Virus in China. Vector Borne Zoonotic Dis 2020; 20:541-546. [DOI: 10.1089/vbz.2019.2523] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Xiaoxia Guo
- Department of Vector Biology and Control, State Key Laboratory of Pathogen and Biosecurity, Beijing Key Laboratory, Institute of Microbiology and Epidemiology, Beijing, China
| | - Tao Jiang
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Yuting Jiang
- Department of Vector Biology and Control, State Key Laboratory of Pathogen and Biosecurity, Beijing Key Laboratory, Institute of Microbiology and Epidemiology, Beijing, China
| | - Teng Zhao
- Department of Vector Biology and Control, State Key Laboratory of Pathogen and Biosecurity, Beijing Key Laboratory, Institute of Microbiology and Epidemiology, Beijing, China
| | - Chunxiao Li
- Department of Vector Biology and Control, State Key Laboratory of Pathogen and Biosecurity, Beijing Key Laboratory, Institute of Microbiology and Epidemiology, Beijing, China
| | - Yande Dong
- Department of Vector Biology and Control, State Key Laboratory of Pathogen and Biosecurity, Beijing Key Laboratory, Institute of Microbiology and Epidemiology, Beijing, China
| | - Dan Xing
- Department of Vector Biology and Control, State Key Laboratory of Pathogen and Biosecurity, Beijing Key Laboratory, Institute of Microbiology and Epidemiology, Beijing, China
| | - Chengfeng Qin
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Tongyan Zhao
- Department of Vector Biology and Control, State Key Laboratory of Pathogen and Biosecurity, Beijing Key Laboratory, Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
6
|
pUC18-CpG Is an Effective Adjuvant for a Duck Tembusu Virus Inactivated Vaccine. Viruses 2020; 12:v12020238. [PMID: 32093377 PMCID: PMC7077240 DOI: 10.3390/v12020238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/06/2020] [Accepted: 02/12/2020] [Indexed: 12/16/2022] Open
Abstract
Duck Tembusu virus (DTMUV) is an emerging pathogenic flavivirus responsible for massive economic losses in the duck industry. However, commercially inactivated DTMUV vaccines have been ineffective at inducing protective immunity in ducks. The widely used adjuvant cytosine-phosphate-guanine oligodeoxynucleotides (CpG ODNs) reportedly improve humoral and cellular immunities in animal models. However, its effectiveness in DTMUV vaccines requires validation. Here, we assessed the protective efficacy of pUC18-CpG as an adjuvant in an inactivated live DTMUV vaccine in ducks. Our results revealed that the serum hemagglutination inhibition (HI) antibody titers, positive rates of anti-DTMUV antibodies, the concentration of serum cytokines, and protection efficacy were significantly increased in ducks immunized with pUC18-CpG compared to that in the control group. Moreover, ducks immunized with a full vaccine dose containing a half dose of antigen supplemented with 40 μg of pUC18-CpG exhibited the most potent responses. This study suggests that pUC18-CpG is a promising adjuvant against DTMUV, which might prove effective in treating other viral diseases in waterfowl.
Collapse
|
7
|
Analysis of the microRNA expression profiles in DEF cells infected with duck Tembusu virus. INFECTION GENETICS AND EVOLUTION 2018; 63:126-134. [PMID: 29803008 DOI: 10.1016/j.meegid.2018.05.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/13/2018] [Accepted: 05/22/2018] [Indexed: 02/06/2023]
Abstract
Duck Tembusu virus (DTMUV), belonging to the Flaviviridae family, is a single-stranded positive-sense RNA virus. Since April 2010, the outbreak of DTMUV in southeast provinces of China has caused great economic losses. MicroRNAs (miRNAs) play important regulatory roles in viral infection through binding to the host target genes or the viral genomes. To better understanding the molecular mechanisms of virus-host interaction, here we identified the miRNA expression profiles in DTMUV-infected and uninfected DEF cells by high-throughput sequencing. A total of 287 known and 63 novel miRNAs were identified. 48 miRNAs, including 26 known miRNAs and 22 novel miRNAs, were differentially expressed in response to DTMUV infection. Among these miRNAs, 37 miRNAs were up-regulated and 11 miRNAs were down-regulated. 9 miRNAs were randomly selected for validation by qRT-PCR experiment. The results of qRT-PCR experiment were consistent with the sequencing data. GO enrichment showed that the predicted targets of these differentially expressed miRNAs were mainly involved in the regulation of immune system, cellular process and metabolic process. KEGG pathways analysis showed that predicted target genes were involved in several signaling pathways such as Wnt signaling pathway, TGF-beta signaling pathway, mTOR signaling pathway and FoxO signaling pathway. This is the first study to evaluate changes of miRNA expression in DEF cells upon DTMUV infection. Our findings provide important clues for better understanding the DTMUV-host interaction.
Collapse
|
8
|
Zhang W, Chen S, Mahalingam S, Wang M, Cheng A. An updated review of avian-origin Tembusu virus: a newly emerging avian Flavivirus. J Gen Virol 2017; 98:2413-2420. [PMID: 28874226 DOI: 10.1099/jgv.0.000908] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tembusu virus (TMUV, genus Flavivirus, family Flaviviridae) was first isolated in 1955 from Culex tritaeniorhynchus mosquitoes in Kuala Lumpur, Malaysia. In April 2010, duck TMUV was first identified as the causative agent of egg-drop syndrome, characterized by a substantial decrease in egg laying and depression, growth retardation and neurological signs or death in infected egg-laying and breeder ducks, in the People's Republic of China. Since 2010, duck TMUV has spread to most of the duck-producing regions in China, including many of the coastal provinces, neighbouring regions and certain Southeast Asia areas (i.e. Thailand and Malaysia). This review describes the current understanding of the genome characteristics, host range, transmission, epidemiology, phylogenetic and immune evasion of avian-origin TMUV and the innate immune response of the host.
Collapse
Affiliation(s)
- Wei Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Shun Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, PR China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Suresh Mahalingam
- Emerging Viruses and Inflammation Research Group, Institute for Glycomics, Griffith University, Gold Coast, Australia
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, PR China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, PR China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| |
Collapse
|
9
|
Chen S, Zhang W, Wu Z, Zhang J, Wang M, Jia R, Zhu D, Liu M, Sun K, Yang Q, Wu Y, Chen X, Cheng A. Goose Mx and OASL Play Vital Roles in the Antiviral Effects of Type I, II, and III Interferon against Newly Emerging Avian Flavivirus. Front Immunol 2017; 8:1006. [PMID: 28878774 PMCID: PMC5572330 DOI: 10.3389/fimmu.2017.01006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 08/07/2017] [Indexed: 12/24/2022] Open
Abstract
Duck Tembusu virus (TMUV), an emerging avian flavivirus, is highly pathogenic to birds and has the potential to become a zoonotic pathogen. Here, the molecular antiviral mechanism of goose type I, II, and III interferon (goIFNα, goIFNγ, and goIFNλ), the key components of the innate immune pathway, against TMUV was studied. We found that the transcription of goIFNs was obviously driven by TMUV infection in vivo and in vitro, and the titers and copies of TMUV were significantly reduced following treatment with goIFNs. The results of RNA sequencing (RNA-seq) revealed that goIFN stimulation triggered a set of differentially expressed genes at different levels and a positive regulatory feedback loop of IFN release against infection. Two important interferon-stimulated genes, goMx and goOASL, were identified as workhorse IFNs in the inhibition of TMUV replication. The antiviral effects of goMx and goOASL were confirmed by transient overexpression and knockdown assay in vitro. Overall, our findings defined that goose Mx and OASL play key roles in the antiviral effects of type I, II, and III interferon against the TMUV. These results extend our understanding of the transcriptional profile of the goose IFN-mediated signaling pathway and provide insight into the antiviral mechanism of goIFNs against flavivirus infection.
Collapse
Affiliation(s)
- Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Wei Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhen Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jinyue Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Kunfeng Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xiaoyue Chen
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|