1
|
Momoh EO, Ghag SK, White J, Mudeppa DG, Rathod PK. Multiplex Assays for Analysis of Antibody Responses to South Asian Plasmodium falciparum and Plasmodium vivax Malaria Infections. Vaccines (Basel) 2023; 12:1. [PMID: 38276660 PMCID: PMC10818873 DOI: 10.3390/vaccines12010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/01/2023] [Accepted: 12/13/2023] [Indexed: 01/27/2024] Open
Abstract
Malaria remains a major global health challenge, causing over 0.6 million yearly deaths. To understand naturally acquired immunity in adult human populations in malaria-prevalent regions, improved serological tools are needed, particularly where multiple malaria parasite species co-exist. Slide-based and bead-based multiplex approaches can help characterize antibodies in malaria patients from endemic regions, but these require pure, well-defined antigens. To efficiently bypass purification steps, codon-optimized malaria antigen genes with N-terminal FLAG-tag and C-terminal Ctag sequences were expressed in a wheat germ cell-free system and adsorbed on functionalized BioPlex beads. In a pilot study, 15 P. falciparum antigens, 8 P. vivax antigens, and a negative control (GFP) were adsorbed individually on functionalized bead types through their Ctag. To validate the multiplexing powers of this platform, 10 P. falciparum-infected patient sera from a US NIH MESA-ICEMR study site in Goa, India, were tested against all 23 parasite antigens. Serial dilution of patient sera revealed variations in potency and breadth of antibodies to various parasite antigens. Individual patients revealed informative variations in immunity to P. falciparum versus P. vivax. This multiplex approach to malaria serology captures varying immunity to different human malaria parasite species and different parasite antigens. This approach can be scaled to track the dynamics of antibody production during one or more human malaria infections.
Collapse
Affiliation(s)
| | | | | | - Devaraja G. Mudeppa
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA; (E.O.M.); (S.K.G.); (J.W.)
| | - Pradipsinh K. Rathod
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA; (E.O.M.); (S.K.G.); (J.W.)
| |
Collapse
|
2
|
Identification of Oocyst-Driven Toxoplasma gondii Infections in Humans and Animals through Stage-Specific Serology-Current Status and Future Perspectives. Microorganisms 2021; 9:microorganisms9112346. [PMID: 34835471 PMCID: PMC8618849 DOI: 10.3390/microorganisms9112346] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/17/2022] Open
Abstract
The apicomplexan zoonotic parasite Toxoplasma gondii has three infective stages: sporozoites in sporulated oocysts, which are shed in unsporulated form into the environment by infected felids; tissue cysts containing bradyzoites, and fast replicating tachyzoites that are responsible for acute toxoplasmosis. The contribution of oocysts to infections in both humans and animals is understudied despite being highly relevant. Only a few diagnostic antigens have been described to be capable of discriminating which parasite stage has caused an infection. Here we provide an extensive overview of the antigens and serological assays used to detect oocyst-driven infections in humans and animals according to the literature. In addition, we critically discuss the possibility to exploit the increasing knowledge of the T. gondii genome and the various 'omics datasets available, by applying predictive algorithms, for the identification of new oocyst-specific proteins for diagnostic purposes. Finally, we propose a workflow for how such antigens and assays based on them should be evaluated to ensure reproducible and robust results.
Collapse
|
3
|
Ricci AD, Brunner M, Ramoa D, Carmona SJ, Nielsen M, Agüero F. APRANK: Computational Prioritization of Antigenic Proteins and Peptides From Complete Pathogen Proteomes. Front Immunol 2021; 12:702552. [PMID: 34335615 PMCID: PMC8320365 DOI: 10.3389/fimmu.2021.702552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/22/2021] [Indexed: 01/09/2023] Open
Abstract
Availability of highly parallelized immunoassays has renewed interest in the discovery of serology biomarkers for infectious diseases. Protein and peptide microarrays now provide a rapid, high-throughput platform for immunological testing and validation of potential antigens and B-cell epitopes. However, there is still a need for tools to prioritize and select relevant probes when designing these arrays. In this work we describe a computational method called APRANK (Antigenic Protein and Peptide Ranker) which integrates multiple molecular features to prioritize potentially antigenic proteins and peptides in a given pathogen proteome. These features include subcellular localization, presence of repetitive motifs, natively disordered regions, secondary structure, transmembrane spans and predicted interaction with the immune system. We trained and tested this method with a number of bacteria and protozoa causing human diseases: Borrelia burgdorferi (Lyme disease), Brucella melitensis (Brucellosis), Coxiella burnetii (Q fever), Escherichia coli (Gastroenteritis), Francisella tularensis (Tularemia), Leishmania braziliensis (Leishmaniasis), Leptospira interrogans (Leptospirosis), Mycobacterium leprae (Leprae), Mycobacterium tuberculosis (Tuberculosis), Plasmodium falciparum (Malaria), Porphyromonas gingivalis (Periodontal disease), Staphylococcus aureus (Bacteremia), Streptococcus pyogenes (Group A Streptococcal infections), Toxoplasma gondii (Toxoplasmosis) and Trypanosoma cruzi (Chagas Disease). We have evaluated this integrative method using non-parametric ROC-curves and made an unbiased validation using Onchocerca volvulus as an independent data set. We found that APRANK is successful in predicting antigenicity for all pathogen species tested, facilitating the production of antigen-enriched protein subsets. We make APRANK available to facilitate the identification of novel diagnostic antigens in infectious diseases.
Collapse
Affiliation(s)
- Alejandro D Ricci
- Instituto de Investigaciones Biotecnológicas "Rodolfo Ugalde" (IIB), Universidad de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Mauricio Brunner
- Instituto de Investigaciones Biotecnológicas "Rodolfo Ugalde" (IIB), Universidad de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Diego Ramoa
- Instituto de Investigaciones Biotecnológicas "Rodolfo Ugalde" (IIB), Universidad de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Santiago J Carmona
- Instituto de Investigaciones Biotecnológicas "Rodolfo Ugalde" (IIB), Universidad de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Morten Nielsen
- Instituto de Investigaciones Biotecnológicas "Rodolfo Ugalde" (IIB), Universidad de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Department of Health Technology, The Technical University of Denmark, Lyngby, Denmark
| | - Fernán Agüero
- Instituto de Investigaciones Biotecnológicas "Rodolfo Ugalde" (IIB), Universidad de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
4
|
Ventimiglia NT, Stucke EM, Coulibaly D, Berry AA, Lyke KE, Laurens MB, Bailey JA, Adams M, Niangaly A, Kone AK, Takala-Harrison S, Kouriba B, Doumbo OK, Felgner PL, Plowe CV, Thera MA, Travassos MA. Malian adults maintain serologic responses to virulent PfEMP1s amid seasonal patterns of fluctuation. Sci Rep 2021; 11:14401. [PMID: 34257318 PMCID: PMC8277812 DOI: 10.1038/s41598-021-92974-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 06/08/2021] [Indexed: 12/03/2022] Open
Abstract
Plasmodium falciparum erythrocyte membrane protein-1s (PfEMP1s), diverse malaria proteins expressed on the infected erythrocyte surface, play an important role in pathogenesis, mediating adhesion to host vascular endothelium. Antibodies to particular non-CD36-binding PfEMP1s are associated with protection against severe disease. We hypothesized that given lifelong P. falciparum exposure, Malian adults would have broad PfEMP1 serorecognition and high seroreactivity levels during follow-up, particularly to non-CD36-binding PfEMP1s such as those that attach to endothelial protein C receptor (EPCR) and intercellular adhesion molecule-1 (ICAM-1). Using a protein microarray, we determined serologic responses to 166 reference PfEMP1 fragments during a dry and subsequent malaria transmission season in Malian adults. Malian adult sera had PfEMP1 serologic responses throughout the year, with decreased reactivity to a small subset of PfEMP1 fragments during the dry season and increases in reactivity to a different subset of PfEMP1 fragments during the subsequent peak malaria transmission season, especially for intracellular PfEMP1 domains. For some individuals, PfEMP1 serologic responses increased after the dry season, suggesting antigenic switching during asymptomatic infection. Adults were more likely to experience variable serorecognition of CD36-binding PfEMP1s than non-CD36-binding PfEMP1s that bind EPCR or ICAM-1, which remained serorecognized throughout the year. Sustained seroreactivity to non-CD36-binding PfEMP1s throughout adulthood amid seasonal fluctuation patterns may reflect underlying protective severe malaria immunity and merits further investigation.
Collapse
Affiliation(s)
| | - Emily M Stucke
- University of Maryland School of Medicine, Baltimore, MD, USA
| | - Drissa Coulibaly
- University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Andrea A Berry
- University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kirsten E Lyke
- University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - Jason A Bailey
- University of Maryland School of Medicine, Baltimore, MD, USA
| | - Matthew Adams
- University of Maryland School of Medicine, Baltimore, MD, USA
| | - Amadou Niangaly
- University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Abdoulaye K Kone
- University of Sciences, Techniques and Technologies, Bamako, Mali
| | | | - Bourema Kouriba
- University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Ogobara K Doumbo
- University of Sciences, Techniques and Technologies, Bamako, Mali
| | | | | | | | | |
Collapse
|
5
|
Gonzales SJ, Reyes RA, Braddom AE, Batugedara G, Bol S, Bunnik EM. Naturally Acquired Humoral Immunity Against Plasmodium falciparum Malaria. Front Immunol 2020; 11:594653. [PMID: 33193447 PMCID: PMC7658415 DOI: 10.3389/fimmu.2020.594653] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/07/2020] [Indexed: 12/18/2022] Open
Abstract
Malaria remains a significant contributor to the global burden of disease, with around 40% of the world's population at risk of Plasmodium infections. The development of an effective vaccine against the malaria parasite would mark a breakthrough in the fight to eradicate the disease. Over time, natural infection elicits a robust immune response against the blood stage of the parasite, providing protection against malaria. In recent years, we have gained valuable insight into the mechanisms by which IgG acts to prevent pathology and inhibit parasite replication, as well as the potential role of immunoglobulin M (IgM) in these processes. Here, we discuss recent advances in our understanding of the mechanisms, acquisition, and maintenance of naturally acquired immunity, and the relevance of these discoveries for the development of a potential vaccine against the blood stage of Plasmodium falciparum.
Collapse
Affiliation(s)
| | | | | | | | | | - Evelien M. Bunnik
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
6
|
Greenhouse B, Smith DL, Rodríguez-Barraquer I, Mueller I, Drakeley CJ. Taking Sharper Pictures of Malaria with CAMERAs: Combined Antibodies to Measure Exposure Recency Assays. Am J Trop Med Hyg 2019; 99:1120-1127. [PMID: 30298804 PMCID: PMC6221205 DOI: 10.4269/ajtmh.18-0303] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Antibodies directed against malaria parasites are easy and inexpensive to measure but remain an underused surveillance tool because of a lack of consensus on what to measure and how to interpret results. High-throughput screening of antibodies from well-characterized cohorts offers a means to substantially improve existing assays by rationally choosing the most informative sets of responses and analytical methods. Recent data suggest that high-resolution information on malaria exposure can be obtained from a small number of samples by measuring a handful of properly chosen antibody responses. In this review, we discuss how standardized multi-antibody assays can be developed and efficiently integrated into existing surveillance activities, with potential to greatly augment the breadth and quality of information available to direct and monitor malaria control and elimination efforts.
Collapse
Affiliation(s)
- Bryan Greenhouse
- Department of Medicine, University of California, San Francisco, San Francisco, California.,Chan Zuckerberg Biohub, San Francisco, California
| | - David L Smith
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, Washington
| | | | - Ivo Mueller
- Institute Pasteur, Paris, France.,Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Chris J Drakeley
- London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
7
|
Venkatesh A, Jain A, Davies H, Periera L, Maki JN, Gomes E, Felgner PL, Srivastava S, Patankar S, Rathod PK. Hospital-derived antibody profiles of malaria patients in Southwest India. Malar J 2019; 18:138. [PMID: 30995911 PMCID: PMC6472095 DOI: 10.1186/s12936-019-2771-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 04/08/2019] [Indexed: 11/10/2022] Open
Abstract
Background Naturally acquired immunity to malaria across the globe varies in intensity and protective powers. Many of the studies on immunity are from hyperendemic regions of Africa. In Asia, particularly in India, there are unique opportunities for exploring and understanding malaria immunity relative to host age, co-occurrence of Plasmodium falciparum and Plasmodium vivax infections, varying travel history, and varying disease severity. Variation in immunity in hospital settings is particularly understudied. Methods A US NIH ICEMR (South Asia) team examined the level of immunity in an Indian malaria patient population visiting or admitted to Goa Medical College and Hospital in Goa, India. Sera from 200 patients of different ages, in different seasons, infected with P. falciparum or P. vivax or both species, and with different clinical severity were applied to an established protein array system with over 1000 P. falciparum and P. vivax antigens. Differential binding of patient IgG to different antigens was measured. Results Even though Goa itself has much more P. vivax than P. falciparum, IgG reactivity towards P. falciparum antigens was very strong and comparable to that seen in regions of the world with high P. falciparum endemicity. Of 248 seropositive P. falciparum antigens, the strongest were VAR, MSP10, HSP70, PTP5, AP2, AMA1, and SYN6. In P. vivax patients, ETRAMPs, MSPs, and ApiAP2, sexual stage antigen s16, RON3 were the strongest IgG binders. Both P. falciparum and P. vivax patients also revealed strong binding to new antigens with unknown functions. Seropositives showed antigens unique to the young (HSP40, ACS6, GCVH) or to non-severe malaria (MSP3.8 and PHIST). Conclusion Seroreactivity at a major hospital in Southwest India reveals antibody responses to P. falciparum and P. vivax in a low malaria transmission region with much migration. In addition to markers of transmission, the data points to specific leads for possible protective immunity against severe disease. Several, but not all, key antigens overlap with work from different settings around the globe and from other parts of India. Together, these studies confidently help define antigens with the greatest potential chance of universal application for surveillance and possibly for disease protection, in many different parts of India and the world. Electronic supplementary material The online version of this article (10.1186/s12936-019-2771-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Apoorva Venkatesh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Aarti Jain
- Vaccine R&D Center, University of California, Irvine, CA, 92697, USA
| | - Huw Davies
- Vaccine R&D Center, University of California, Irvine, CA, 92697, USA
| | - Ligia Periera
- Department of Chemistry and Department of Global Health, University of Washington, Seattle, WA, 98195, USA
| | - Jennifer N Maki
- Department of Chemistry and Department of Global Health, University of Washington, Seattle, WA, 98195, USA
| | - Edwin Gomes
- Department of Medicine, Goa Medical College and Hospital, Bambolim, Goa, 403202, India
| | - Philip L Felgner
- Vaccine R&D Center, University of California, Irvine, CA, 92697, USA
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Swati Patankar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Pradipsinh K Rathod
- Department of Chemistry and Department of Global Health, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
8
|
McCall MBB, Kremsner PG, Mordmüller B. Correlating efficacy and immunogenicity in malaria vaccine trials. Semin Immunol 2018; 39:52-64. [PMID: 30219621 DOI: 10.1016/j.smim.2018.08.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 08/06/2018] [Indexed: 12/19/2022]
Abstract
The availability of an effective and appropriately implemented malaria vaccine would form a crucial cornerstone of public health efforts to fight this disease. Despite many decades of research, however, no malaria vaccine has yet shown satisfactory protective efficacy or been rolled-out. Validated immunological substitute endpoints have the potential to accelerate clinical vaccine development by reducing the required complexity, size, duration and cost of clinical trials. Besides facilitating clinical development of existing vaccine candidates, understanding immunological mechanisms of protection may drive the development of fundamentally new vaccination approaches. In this review we focus on correlates of protection in malaria vaccine development: Does immunogenicity predict malaria vaccine efficacy and why is this question particularly difficult? Have immunological correlates accelerated malaria vaccine development in the past and will they facilitate it in the future? Does Controlled Human Malaria Infection represent a valid model for identifying such immunological correlates, or a correlate of protection against naturally-acquired malaria in itself?
Collapse
Affiliation(s)
- Matthew B B McCall
- Institut für Tropenmedizin, Universität Tübingen and Deutsches Zentrum für Infektionsforschung, Germany; Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon.
| | - Peter G Kremsner
- Institut für Tropenmedizin, Universität Tübingen and Deutsches Zentrum für Infektionsforschung, Germany; Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Benjamin Mordmüller
- Institut für Tropenmedizin, Universität Tübingen and Deutsches Zentrum für Infektionsforschung, Germany; Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| |
Collapse
|