1
|
Gezehagn Kussia G, Tessema TS. The Potential of Single-Chain Variable Fragment Antibody: Role in Future Therapeutic and Diagnostic Biologics. J Immunol Res 2024; 2024:1804038. [PMID: 39156005 PMCID: PMC11329312 DOI: 10.1155/2024/1804038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/09/2024] [Accepted: 07/20/2024] [Indexed: 08/20/2024] Open
Abstract
The advancement of genetic engineering has revolutionized the field of immunology by allowing the utilization of intrinsic antibody structures. One of the biologics that are being produced by recombinant antibody technology is single-chain fragments variable (scFv). Genes of variable regions, the heavy and light chains that are genetically linked into a single transcript by a short flexible linker peptide, are used to generate this fragment from cellular and synthetic libraries. The specificity and affinity of these molecules are comparable to those of parental antibodies. Fusion with marker proteins and other potent molecules improves their stability, circulation half-life, activity, and efficient purification. Besides, this review comprises construction protocols, therapeutics, and diagnostic applications of scFv, as well as related challenges. Nonetheless, there are still issues with efficacy, stability, safety, intracellular administration, and production costs that need to be addressed.
Collapse
Affiliation(s)
- Getachew Gezehagn Kussia
- Genomics and BioinformaticsBio and Emerging Technology Institute, Addis Ababa 5954, Ethiopia
- Institute of BiotechnologyAddis Ababa University, Addis Ababa 1176, Ethiopia
| | | |
Collapse
|
2
|
Chance R, Kang AS. Eukaryotic ribosome display for antibody discovery: A review. Hum Antibodies 2024; 32:107-120. [PMID: 38788063 DOI: 10.3233/hab-240001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Monoclonal antibody biologics have significantly transformed the therapeutic landscape within the biopharmaceutical industry, partly due to the utilisation of discovery technologies such as the hybridoma method and phage display. While these established platforms have streamlined the development process to date, their reliance on cell transformation for antibody identification faces limitations related to library diversification and the constraints of host cell physiology. Cell-free systems like ribosome display offer a complementary approach, enabling antibody selection in a completely in vitro setting while harnessing enriched cellular molecular machinery. This review aims to provide an overview of the fundamental principles underlying the ribosome display method and its potential for advancing antibody discovery and development.
Collapse
|
3
|
Garg N, Kunamneni AS, Garg P, Sharma S, Sharma D, Kunamneni A. Antiviral Drugs and Vaccines for Omicron Variant: A Focused Review. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2023; 2023:6695533. [PMID: 37719798 PMCID: PMC10504046 DOI: 10.1155/2023/6695533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/14/2023] [Accepted: 08/31/2023] [Indexed: 09/19/2023]
Abstract
The Omicron variant of concern (VOC) replaced the delta variant rapidly and became the predominant strain due to more mutations in spike protein and receptor-binding domain (RBD) enhancing its infectivity and binding affinity. The severity of the illness is less than that of the delta variant. Omicron is nonsusceptible to REGEN-COV™ and bamlanivimab with etesevimab. Drugs that are effective against the Omicron variant are oral antiviral drugs such as Paxlovid (nirmatrelvir/ritonavir), remdesivir, sotrovimab, and molnupiravir. The potency of sotrovimab is reduced to 3-fold against Omicron, and 8-fold reduction in potency with sotrovimab is found in a particular variant of Omicron with a R346K substitution in spike protein. There are neither clinical trials comparing the efficacy of these 4 therapies with each other nor any data on a combination of two or more therapies. The current recommendation for mild-moderate, nonhospitalized patients who are at a high risk of disease progression is to use Paxlovid as the first-line option. If Paxlovid is not available or cannot be administered due to drug interactions, then the next best choice is sotrovimab. The third choice is remdesivir if sotrovimab is also not available and molnupiravir is to be given if the other three options are not available or cannot be administered. For prevention, 2130 (cilgavimab) in combination with COV2-2196 (tixagevimab) has been effective against BA.2 only. LY-CoV1404 (bebtelovimab) is recently authorized as it is effective against all sublineages of the Omicron variant. Regarding vaccine efficacy (VE), the 3-dose VE with mRNA vaccines at 14-60 days was found to be 71.6%, and after 60 days, it is 47.4%. There is a 34-38-fold reduction of neutralizing activity with prebooster sera and a 19-fold reduction with booster sera for the Omicron variant. This probably explains the reason for worldwide breakthrough infections with the Omicron variant with waning immunity. The neutralizing antibody response against Omicron elicited by the bivalent vaccine is superior to that of the ancestral Wuhan strain, without any safety concerns. For future advances, the ribosome display technology can be applied for the generation of human single-chain fragment variable (scFv) antibodies from B cells of recovered patients against Omicron and other Coronavirus variants as they are easier and faster to produce and have high affinity and high specificity.
Collapse
Affiliation(s)
- Nidhi Garg
- Division of Infectious Diseases, Department of Internal Medicine, Mayo Clinic, Jacksonville, Florida, USA
| | | | - Pankaj Garg
- Department of Chemistry, GLA University, Mathura, India
| | - Sandeep Sharma
- Department of Medical Laboratory Science, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Divakar Sharma
- Department of Microbiology, Lady Hardinge Medical College, New Delhi 110001, India
| | - Adinarayana Kunamneni
- Division of Infectious Diseases, Department of Internal Medicine, Mayo Clinic, Jacksonville, Florida, USA
| |
Collapse
|
4
|
Kunamneni A, Montera MA, Durvasula R, Alles SRA, Goyal S, Westlund KN. Rapid Generation and Molecular Docking Analysis of Single-Chain Fragment Variable (scFv) Antibody Selected by Ribosome Display Targeting Cholecystokinin B Receptor (CCK-BR) for Reduction of Chronic Neuropathic Pain. Int J Mol Sci 2023; 24:11035. [PMID: 37446213 DOI: 10.3390/ijms241311035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/06/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
A robust cell-free platform technology, ribosome display in combination with cloning, expression, and purification was utilized to develop single chain Fragment variable (scFv) antibody variants as pain therapy directed at the mouse cholecystokinin B (CCK-B) receptor. Three effective CCK-B peptide-specific scFvs were generated through ribosomal display technology. Soluble expression and ELISA analysis showed that one antibody, scFv77-2 had the highest binding and could be purified from bacterial cells in large quantities. Octet measurements further revealed that the CCK-B scFv77-2 antibody had binding kinetics of KD = 1.794 × 10-8 M. Molecular modeling and docking analyses suggested that the scFv77-2 antibody shaped a proper cavity to embed the whole CCK-B peptide molecule and that a steady-state complex was formed relying on intermolecular forces, including hydrogen bonding, electrostatic force, and hydrophobic interactions. Thus, the scFv antibody can be applied for mechanistic intermolecular interactions and functional in vivo studies of CCK-BR. The high affinity scFv77-2 antibody showed good efficacy with binding to CCK-BR tested in a chronic pain model. In vivo studies validated the efficacy of the CCK-B receptor (CCK-BR) scFv77-2 antibody as a potential therapy for chronic trigeminal nerve injury-induced pain. Mice were given a single dose of the CCK-B receptor (CCK-BR) scFv antibody 3 weeks after induction of a chronic trigeminal neuropathic pain model, during the transition from acute to chronic pain. The long-term effectiveness for the reduction of mechanical hypersensitivity was evident, persisting for months. The anxiety- and depression-related behaviors typically accompanying persisting hypersensitivity subsequently never developed in the mice given CCK-BR scFv. The effectiveness of the antibody is the basis for further development of the lead CCK-BR scFv as a promising non-opioid therapeutic for chronic pain and the long-term reduction of chronic pain- and anxiety-related behaviors.
Collapse
Affiliation(s)
- Adinarayana Kunamneni
- Department of Internal Medicine, Mayo Clinic, Jacksonville, FL 32224-1865, USA
- Department of Medicine, Loyola University Medical Center, Maywood, IL 60153-3328, USA
| | - Marena A Montera
- Department of Anesthesiology & Critical Care Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131-0001, USA
| | - Ravi Durvasula
- Department of Internal Medicine, Mayo Clinic, Jacksonville, FL 32224-1865, USA
- Department of Medicine, Loyola University Medical Center, Maywood, IL 60153-3328, USA
| | - Sascha R A Alles
- Department of Anesthesiology & Critical Care Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131-0001, USA
| | - Sachin Goyal
- Department of Anesthesiology & Critical Care Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131-0001, USA
| | - Karin N Westlund
- Department of Anesthesiology & Critical Care Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131-0001, USA
- Biomedical Laboratory Research & Development (121F), New Mexico VA Health Care System, Albuquerque, NM 87108-5153, USA
| |
Collapse
|
5
|
Single-Dose P2 X4R Single-Chain Fragment Variable Antibody Permanently Reverses Chronic Pain in Male Mice. Int J Mol Sci 2021; 22:ijms222413612. [PMID: 34948407 PMCID: PMC8706307 DOI: 10.3390/ijms222413612] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/02/2021] [Accepted: 12/16/2021] [Indexed: 11/22/2022] Open
Abstract
Non-opioid single-chain variable fragment (scFv) small antibodies were generated as pain-reducing block of P2X4R receptor (P2X4R). A panel of scFvs targeting an extracellular peptide sequence of P2X4R was generated followed by cell-free ribosome display for recombinant antibody selection. After three rounds of bio-panning, a panel of recombinant antibodies was isolated and characterized by ELISA, cross-reactivity analysis, and immunoblotting/immunostaining. Generated scFv antibodies feature binding activity similar to monoclonal antibodies but with stronger affinity and increased tissue penetrability due to their ~30% smaller size. Two anti-P2X4R scFv clones (95, 12) with high specificity and affinity binding were selected for in vivo testing in male and female mice with trigeminal nerve chronic neuropathic pain (FRICT-ION model) persisting for several months in untreated BALBc mice. A single dose of P2X4R scFv (4 mg/kg, i.p.) successfully, completely, and permanently reversed chronic neuropathic pain-like measures in male mice only, providing retention of baseline behaviors indefinitely. Untreated mice retained hypersensitivity, and developed anxiety- and depression-like behaviors within 5 weeks. In vitro P2X4R scFv 95 treatment significantly increased the rheobase of larger-diameter (>25 µm) trigeminal ganglia (TG) neurons from FRICT-ION mice compared to controls. The data support use of engineered scFv antibodies as non-opioid biotherapeutic interventions for chronic pain.
Collapse
|
6
|
Westlund K, Montera M, Goins A, Alles S, Afaghpour-Becklund M, Bartel R, Durvasula R, Kunamneni A. Single-chain Fragment variable antibody targeting cholecystokinin-B receptor for pain reduction. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2021; 10:100067. [PMID: 34458647 PMCID: PMC8378781 DOI: 10.1016/j.ynpai.2021.100067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/09/2021] [Accepted: 07/09/2021] [Indexed: 05/13/2023]
Abstract
The cholecystokinin B receptor and its neuropeptide ligand are upregulated in chronic neuropathic pain models. Single-chain Fragment variable antibodies were generated as preferred non-opioid targeting therapy blocking the cholecystokinin B receptor to inhibit chronic neuropathic pain models in vivo and in vitro. Engineered antibodies of this type feature binding activity similar to monoclonal antibodies but with stronger affinity and increased tissue penetrability due to their smaller size. More importantly, single-chain Fragment variable antibodies have promising biotherapeutic applications for both nervous and immune systems, now recognized as interactive in chronic pain. A mouse single-chain Fragment variable antibody library recognizing a fifteen amino acid extracellular peptide fragment of the cholecystokinin B receptor was generated from immunized spleens. Ribosome display, a powerful cell-free technology, was applied for recombinant antibody selection. Antibodies with higher affinity, stability, solubility, and binding specificity for cholecystokinin B not A receptor were selected and optimized for in vivo and in vitro efficacy. A single dose of the lead candidate reduced mechanical and cold hypersensitivity in two rodent models of neuropathic pain for at least seven weeks. Continuing efficacy was evident with either intraperitoneal or intranasal dosing. Likewise, the lead single-chain Fragment variable antibody totally prevented development of anxiety- and depression-like behaviors and cognitive deficits typical in the models. Reduction of neuronal firing frequency was evident in trigeminal ganglia primary neuronal cultures treated in vitro with the cholecystokinin B receptor antibody. Immunofluorescent staining intensity in the trigeminal neuron primary cultures was significantly reduced incrementally after overnight binding with increasingly higher dilutions of the single-chain Fragment variable antibody. While it is reported that single-chain Fragment variable antibodies are removed systemically within 2-6 h, Western blot evidence indicates the His-tag marker remained after 7 weeks in the trigeminal ganglia and in the dorsolateral medulla, providing evidence of brain and ganglia penetrance known to be compromised in overactivated states. This project showcases the in vivo efficacy of our lead single-chain Fragment variable antibody indicating its potential for development as a non-opioid, non-addictive therapeutic intervention for chronic pain. Importantly, studies by others have indicated treatments with cholecystokinin B receptor antagonists suppress maintenance and reactivation of morphine dependence in place preference tests while lowering tolerance and dose requirements. Our future studies remain to address these potential benefits that may accompany the cholecystokinin B receptor biological therapy. Both chronic sciatic and orofacial pain can be unrelenting and excruciating, reducing quality of life as well as diminishing physical and mental function. An effective non-opiate, non-addictive therapy with potential to significantly reduce chronic neuropathic pain long term is greatly needed.
Collapse
Key Words
- ANOVA, analysis of variance
- ARM, antibody ribosome mRNA
- Anxiety
- BBB, blood–brain barrier
- CCK-8, cholecystokinin octapeptide
- CCK-BR, cholecystokinin B receptor
- CPP, conditioned place preference
- Chronic pain
- DRG, dorsal root ganglia
- Depression
- Eukaryotic ribosome display
- FRICT-ION, foramen rotundum inflammatory compression trigeminal infraorbital nerve model
- GPCR, G-protein-coupled receptor
- IACUC, Institutional Animal Care and Use Committee
- ION, infraorbital nerve
- MΩ, megaOhms
- PBS, phosphate buffered saline
- SEM, standard error of the mean
- TG, trigeminal ganglia
- ms, milliseconds
- pA, picoAmps
- scFv
- scFv, single-chain Fragment variable antibody
Collapse
Affiliation(s)
- K.N. Westlund
- Department of Anesthesiology & Critical Care Medicine, University of
New Mexico Health Sciences Center, Albuquerque, NM 87106-0001, USA
- Biomedical Laboratory Research & Development (121F), New Mexico VA
Health Care System, Albuquerque, NM, USA
| | - M.A. Montera
- Department of Anesthesiology & Critical Care Medicine, University of
New Mexico Health Sciences Center, Albuquerque, NM 87106-0001, USA
| | - A.E. Goins
- Department of Anesthesiology & Critical Care Medicine, University of
New Mexico Health Sciences Center, Albuquerque, NM 87106-0001, USA
| | - S.R.A. Alles
- Department of Anesthesiology & Critical Care Medicine, University of
New Mexico Health Sciences Center, Albuquerque, NM 87106-0001, USA
| | - M. Afaghpour-Becklund
- Department of Anesthesiology & Critical Care Medicine, University of
New Mexico Health Sciences Center, Albuquerque, NM 87106-0001, USA
| | - R. Bartel
- Department of Anesthesiology & Critical Care Medicine, University of
New Mexico Health Sciences Center, Albuquerque, NM 87106-0001, USA
| | - R. Durvasula
- Division of Infectious Diseases, Department of Internal Medicine, Mayo
Clinic, Jacksonville, FL, USA
- Department of Medicine, Loyola University Medical Center, Maywood, IL
60153-3328, USA
| | - A. Kunamneni
- Division of Infectious Diseases, Department of Internal Medicine, Mayo
Clinic, Jacksonville, FL, USA
- Department of Medicine, Loyola University Medical Center, Maywood, IL
60153-3328, USA
| |
Collapse
|
7
|
Maciorowski D, Ogaugwu C, Durvasula SR, Durvasula R, Kunamneni A. Therapeutic and Vaccine Options for COVID-19: Status after Six Months of the Disease Outbreak. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2021; 26:311-329. [PMID: 33319627 PMCID: PMC8940856 DOI: 10.1177/2472555220979579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/15/2020] [Accepted: 11/18/2020] [Indexed: 12/23/2022]
Abstract
An outbreak of the coronavirus disease 2019 (COVID-19) caused by an infection of the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) occurred in Wuhan, China, in December 2019. This new virus belongs to the group of enveloped RNA beta-coronaviruses. Symptoms may differ in various infected persons, but major presentations include dry cough, nasal congestion, shortness of breath, fever, and general malaise. The disease appears to be more severe in patients above the age of 60 years and those with underlying conditions such as diabetes, cancer, cardiovascular diseases, chronic respiratory disease, and hypertension. There is still no approved vaccine against COVID-19, but more than a hundred are at different stages of development. It is known that the development of new drugs takes a relatively long time, so several known and already-approved drugs are being repurposed for the treatment of this disease. In this review, we explore the therapeutic and vaccine options that are available for COVID-19 6 months after its outbreak. Most noteworthy among the therapeutic options are dexamethasone, remdesivir, Avigan (favipiravir) and convalescent plasma.
Collapse
Affiliation(s)
- Dawid Maciorowski
- Department of Medicine, Loyola University Medical Center, Maywood, IL, USA
| | - Christian Ogaugwu
- Department of Animal and Environmental Biology, Federal University Oye-Ekiti, Ekiti State, Nigeria
| | | | - Ravi Durvasula
- Department of Medicine, Loyola University Medical Center, Maywood, IL, USA
| | | |
Collapse
|
8
|
Ribosome Display Technology: Applications in Disease Diagnosis and Control. Antibodies (Basel) 2020; 9:antib9030028. [PMID: 32605027 PMCID: PMC7551589 DOI: 10.3390/antib9030028] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/06/2020] [Accepted: 06/08/2020] [Indexed: 12/28/2022] Open
Abstract
Antibody ribosome display remains one of the most successful in vitro selection technologies for antibodies fifteen years after it was developed. The unique possibility of direct generation of whole proteins, particularly single-chain antibody fragments (scFvs), has facilitated the establishment of this technology as one of the foremost antibody production methods. Ribosome display has become a vital tool for efficient and low-cost production of antibodies for diagnostics due to its advantageous ability to screen large libraries and generate binders of high affinity. The remarkable flexibility of this method enables its applicability to various platforms. This review focuses on the applications of ribosome display technology in biomedical and agricultural fields in the generation of recombinant scFvs for disease diagnostics and control.
Collapse
|