1
|
Li X, Trovão NS, Wertheim JO, Baele G, de Bernardi Schneider A. Optimizing ancestral trait reconstruction of large HIV Subtype C datasets through multiple-trait subsampling. Virus Evol 2023; 9:vead069. [PMID: 38046219 PMCID: PMC10691791 DOI: 10.1093/ve/vead069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/29/2023] [Accepted: 11/20/2023] [Indexed: 12/05/2023] Open
Abstract
Large datasets along with sampling bias represent a challenge for phylodynamic reconstructions, particularly when the study data are obtained from various heterogeneous sources and/or through convenience sampling. In this study, we evaluate the presence of unbalanced sampled distribution by collection date, location, and risk group of human immunodeficiency virus Type 1 Subtype C using a comprehensive subsampling strategy and assess their impact on the reconstruction of the viral spatial and risk group dynamics using phylogenetic comparative methods. Our study shows that a most suitable dataset for ancestral trait reconstruction can be obtained through subsampling by all available traits, particularly using multigene datasets. We also demonstrate that sampling bias is inflated when considerable information for a given trait is unavailable or of poor quality, as we observed for the trait risk group. In conclusion, we suggest that, even if traits are not well recorded, including them deliberately optimizes the representativeness of the original dataset rather than completely excluding them. Therefore, we advise the inclusion of as many traits as possible with the aid of subsampling approaches in order to optimize the dataset for phylodynamic analysis while reducing the computational burden. This will benefit research communities investigating the evolutionary and spatio-temporal patterns of infectious diseases.
Collapse
Affiliation(s)
| | - Nídia S Trovão
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, 31 Center Dr, Bethesda, MA 20892, USA
| | - Joel O Wertheim
- Department of Medicine, University of California, La Jolla, San Diego, CA 92093, USA
| | - Guy Baele
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven BE-3000, Belgium
| | - Adriano de Bernardi Schneider
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
- Ningbo No.2 Hospital, Ningbo 315010, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo 315000, China
| |
Collapse
|
2
|
Gafarova MT, Eremeeva ME. History and Current Status of Mediterranean Spotted Fever (MSF) in the Crimean Peninsula and Neighboring Regions along the Black Sea Coast. Pathogens 2023; 12:1161. [PMID: 37764969 PMCID: PMC10536518 DOI: 10.3390/pathogens12091161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Mediterranean spotted fever (MSF) is a tick-borne rickettsiosis caused by Rickettsia conorii subspecies conorii and transmitted to humans by Rhipicephalus sanguineus ticks. The disease was first discovered in Tunisia in 1910 and was subsequently reported from other Mediterranean countries. The first cases of MSF in the former Soviet Union were detected in 1936 on the Crimean Peninsula. This review summarizes the historic information and main features of MSF in that region and contemporary surveillance and control efforts for this rickettsiosis. Current data pertinent to the epidemiology of the disease, circulation of the ticks and distribution of animal hosts are discussed and compared for each of the countries in the Black Sea basin where MSF occurs.
Collapse
Affiliation(s)
- Muniver T. Gafarova
- S.I. Georgievsky Medical Academy (Academic Unit), V.I. Vernadsky Crimean Federal University, 295051 Simferopol, Russia
| | - Marina E. Eremeeva
- Jiann-Ping Hsu College of Public Health, Georgia Southern University, Statesboro, GA 30458, USA
| |
Collapse
|
3
|
Riswari SF, Prodjosoewojo S, Mony SR, Megantara I, Iskandar S, Mayasari W, Heryaman H, de Mast Q, van der Ven A, Kosasih H, Alisjahbana B. Murine typhus is a common cause of acute febrile illness in Bandung, Indonesia. PLoS One 2023; 18:e0283135. [PMID: 37418452 PMCID: PMC10328256 DOI: 10.1371/journal.pone.0283135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 03/02/2023] [Indexed: 07/09/2023] Open
Abstract
Murine typhus (MT), an infection caused by the gram-negative bacteria Rickettsia typhi (R. typhi), is a significant cause of acute febrile illness (AFI) in Southeast Asia but is rarely reported in Indonesia. The current study aimed to describe the clinical characteristics of MT cases in Bandung, West Java. Non-confirmed AFI cases (n = 176) from a prospective cohort study of whom paired serum samples (acute (T1), midterm (T2), or convalescent (T3)) were available were screened using MT serology. IgG against R. typhi was detected in the T2 or T3 samples using an in-house ELISA. Positive IgG samples were further screened for the presence of IgM. If both IgM and IgG were positive, the endpoint titer of T1, T2, or T3 was determined. In cases with a fourfold increase in titer, real-time PCR of T1 samples was performed to detect R. typhi DNA. In total, 71/176 (40.3%) patients tested positive for IgG antibody, and 26 AFI cases were confirmed as MT (23 cases by PCR, 3 cases by fourfold titer increased IgG or IgM titer). The most common clinical symptoms in the confirmed cases were headache (80%), arthralgia (73%), malaise (69%), and myalgia (54%). In these cases, the presumptive clinical diagnoses were typhoid fever (43.2%), dengue (38.5%), and leptospirosis (19.2%). MT was not considered in any of the patients, and no patients received doxycycline. These findings confirmed that MT is an important cause of AFI in Indonesia. MT should be included in the differential diagnosis of AFI, and empirical treatment with doxycycline should be considered.
Collapse
Affiliation(s)
- Silvita Fitri Riswari
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
- Research Center for Care and Control of Infectious Diseases (RC3ID), Universitas Padjadjaran, Bandung, Indonesia
- Department of Internal Medicine and the Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Susantina Prodjosoewojo
- Research Center for Care and Control of Infectious Diseases (RC3ID), Universitas Padjadjaran, Bandung, Indonesia
- Department of Internal Medicine, Hasan Sadikin General Hospital, Bandung, Indonesia
| | - Siti Rasnawati Mony
- Research Center for Care and Control of Infectious Diseases (RC3ID), Universitas Padjadjaran, Bandung, Indonesia
| | - Imam Megantara
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
- Research Center for Care and Control of Infectious Diseases (RC3ID), Universitas Padjadjaran, Bandung, Indonesia
| | - Shelly Iskandar
- Research Center for Care and Control of Infectious Diseases (RC3ID), Universitas Padjadjaran, Bandung, Indonesia
- Department of Psychiatry, Hasan Sadikin General Hospital, Bandung, Indonesia
| | - Wulan Mayasari
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Henhen Heryaman
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Quirijn de Mast
- Department of Internal Medicine and the Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Andre van der Ven
- Department of Internal Medicine and the Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Herman Kosasih
- Indonesia Research Partnership on Infectious Diseases (INA-RESPOND), Jakarta, Indonesia
| | - Bachti Alisjahbana
- Research Center for Care and Control of Infectious Diseases (RC3ID), Universitas Padjadjaran, Bandung, Indonesia
- Department of Internal Medicine, Hasan Sadikin General Hospital, Bandung, Indonesia
| |
Collapse
|
4
|
Kipp EJ, Lindsey LL, Khoo B, Faulk C, Oliver JD, Larsen PA. Metagenomic surveillance for bacterial tick-borne pathogens using nanopore adaptive sampling. Sci Rep 2023; 13:10991. [PMID: 37419899 PMCID: PMC10328957 DOI: 10.1038/s41598-023-37134-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/16/2023] [Indexed: 07/09/2023] Open
Abstract
Technological and computational advancements in the fields of genomics and bioinformatics are providing exciting new opportunities for pathogen discovery and genomic surveillance. In particular, single-molecule nucleotide sequence data originating from Oxford Nanopore Technologies (ONT) sequencing platforms can be bioinformatically leveraged, in real-time, for enhanced biosurveillance of a vast array of zoonoses. The recently released nanopore adaptive sampling (NAS) strategy facilitates immediate mapping of individual nucleotide molecules to a given reference as each molecule is being sequenced. User-defined thresholds then allow for the retention or rejection of specific molecules, informed by the real-time reference mapping results, as they are physically passing through a given sequencing nanopore. Here, we show how NAS can be used to selectively sequence DNA of multiple bacterial tick-borne pathogens circulating in wild populations of the blacklegged tick vector, Ixodes scapularis.
Collapse
Affiliation(s)
- Evan J Kipp
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota-Twin Cities, St. Paul, MN, USA.
| | - Laramie L Lindsey
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota-Twin Cities, St. Paul, MN, USA
| | - Benedict Khoo
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - Christopher Faulk
- Department of Animal Science, College of Food, Agricultural and Natural Resource Sciences, University of Minnesota-Twin Cities, St. Paul, MN, USA
| | - Jonathan D Oliver
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - Peter A Larsen
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota-Twin Cities, St. Paul, MN, USA
| |
Collapse
|
5
|
Chen P, Sun Z, Wang J, Liu X, Bai Y, Chen J, Liu A, Qiao F, Chen Y, Yuan C, Sha J, Zhang J, Xu LQ, Li J. Portable nanopore-sequencing technology: Trends in development and applications. Front Microbiol 2023; 14:1043967. [PMID: 36819021 PMCID: PMC9929578 DOI: 10.3389/fmicb.2023.1043967] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/03/2023] [Indexed: 02/04/2023] Open
Abstract
Sequencing technology is the most commonly used technology in molecular biology research and an essential pillar for the development and applications of molecular biology. Since 1977, when the first generation of sequencing technology opened the door to interpreting the genetic code, sequencing technology has been developing for three generations. It has applications in all aspects of life and scientific research, such as disease diagnosis, drug target discovery, pathological research, species protection, and SARS-CoV-2 detection. However, the first- and second-generation sequencing technology relied on fluorescence detection systems and DNA polymerization enzyme systems, which increased the cost of sequencing technology and limited its scope of applications. The third-generation sequencing technology performs PCR-free and single-molecule sequencing, but it still depends on the fluorescence detection device. To break through these limitations, researchers have made arduous efforts to develop a new advanced portable sequencing technology represented by nanopore sequencing. Nanopore technology has the advantages of small size and convenient portability, independent of biochemical reagents, and direct reading using physical methods. This paper reviews the research and development process of nanopore sequencing technology (NST) from the laboratory to commercially viable tools; discusses the main types of nanopore sequencing technologies and their various applications in solving a wide range of real-world problems. In addition, the paper collates the analysis tools necessary for performing different processing tasks in nanopore sequencing. Finally, we highlight the challenges of NST and its future research and application directions.
Collapse
Affiliation(s)
- Pin Chen
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Zepeng Sun
- China Mobile (Chengdu) Industrial Research Institute, Chengdu, China
| | - Jiawei Wang
- School of Computer Science and Technology, Southeast University, Nanjing, China
| | - Xinlong Liu
- China Mobile (Chengdu) Industrial Research Institute, Chengdu, China
| | - Yun Bai
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Jiang Chen
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Anna Liu
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Feng Qiao
- China Mobile (Chengdu) Industrial Research Institute, Chengdu, China
| | - Yang Chen
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Chenyan Yuan
- Clinical Laboratory, Southeast University Zhongda Hospital, Nanjing, China
| | - Jingjie Sha
- School of Mechanical Engineering, Southeast University, Nanjing, China
| | - Jinghui Zhang
- School of Computer Science and Technology, Southeast University, Nanjing, China
| | - Li-Qun Xu
- China Mobile (Chengdu) Industrial Research Institute, Chengdu, China,*Correspondence: Li-Qun Xu, ✉
| | - Jian Li
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, Nanjing, China,Jian Li, ✉
| |
Collapse
|
6
|
MinION Whole-Genome Sequencing in Resource-Limited Settings: Challenges and Opportunities. CURRENT CLINICAL MICROBIOLOGY REPORTS 2022; 9:52-59. [DOI: 10.1007/s40588-022-00183-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2022] [Indexed: 11/18/2022]
Abstract
Abstract
Purpose of Review
The introduction of MinION whole-genome sequencing technology greatly increased and simplified complete genome sequencing in various fields of science across the globe. Sequences have been generated from complex organisms to microorganisms and are stored in genome databases that are readily accessible by researchers. Various new software for genome analysis, along with upgrades to older software packages, are being generated. New protocols are also being validated that enable WGS technology to be rapidly and increasingly used for sequencing in field settings.
Recent Findings
MinION WGS technology has been implemented in developed countries due to its advantages: portability, real-time analysis, and lower cost compared to other sequencing technologies. While these same advantages are critical in developing countries, MinION WGS technology is still under-utilized in resource-limited settings.
Summary
In this review, we look at the applications, advantages, challenges, and opportunities of using MinION WGS in resource-limited settings.
Collapse
|
7
|
Kato CY, Chung IH, Robinson LK, Eremeeva ME, Dasch GA. Genetic typing of isolates of Rickettsia typhi. PLoS Negl Trop Dis 2022; 16:e0010354. [PMID: 35639778 PMCID: PMC9203007 DOI: 10.1371/journal.pntd.0010354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 06/16/2022] [Accepted: 03/24/2022] [Indexed: 11/18/2022] Open
Abstract
Murine typhus, which is caused by Rickettsia typhi, has a wide range of clinical manifestations. It has a low mortality rate but may result in meningoencephalitis and interstitial pneumonia in severe cases. Comparisons of complete genome sequences of R. typhi isolates from North Carolina, USA (Wilmington), Myanmar (B9991PP), and Thailand (TH1527) identified only 26 single nucleotide polymorphism (SNP) and 7 insertion-deletion (INDEL) sites in these highly syntenic genomes. Assays were developed to further define the distribution of these variant sites among 15 additional isolates of R. typhi with different histories from Asia, the USA, and Africa. Mismatch amplification mutation assays (MAMA) were validated for 22 SNP sites, while the 7 INDEL sites were analyzed directly on agarose gels. Six SNP types, 9 INDEL types, 11 total types were identified among these 18 isolates. Replicate DNA samples as well as comparisons of isolates with different passage and source histories gave consistent genetic typing profiles. Comparison of the SNP and INDEL markers to R. typhi’s nearest neighbor Rickettsia prowazekii demonstrated that the majority of the SNPs represent intra-species variation that arose post divergence of these two species while several INDEL sites also exhibited intraspecies variability among the R. prowazekii genomes that have been completely sequenced. The assays for the presence of these SNP and INDEL sites, particularly the latter, comprise a low technology gel method for consistently distinguishing R. typhi and R. prowazekii as well as for differentiating genetic types of R. typhi. Rickettsia typhi is an obligately intracellular bacterium which is most commonly transmitted by rat fleas to humans and can cause the disease murine (endemic) typhus wherever both humans and infected rats are present. However, this agent is also present in a variety of other arthropod species associated with other vertebrate animals. Its closest relative is Rickettsia prowazekii, the etiologic agent of epidemic typhus (human louse-borne) and sylvatic typhus (associated with flying squirrels and its ectoparasites in the Eastern United States). Both classic louse-borne and flea-borne typhus rickettsiae can cause fatal infections and have the potential for use as biothreat agents as they can be grown in large quantities. We investigated the genetic differences that can be found in different stocks of R. typhi. Our work is important for two reasons. We have developed robust and sensitive methods for distinguishing isolates of R. typhi originating from different continents; these new assays require only simple instrumentation which is available in nearly all biology laboratories. Our results also provided new insights confirming the probable origin of R. typhi in Asia and its likely cosmopolitan spread by rats on ships around the world.
Collapse
Affiliation(s)
- Cecilia Y. Kato
- Rickettsial Zoonoses Branch, Centers for Disease Control, Atlanta, Georgia, United States of America
| | - Ida H. Chung
- Rickettsial Zoonoses Branch, Centers for Disease Control, Atlanta, Georgia, United States of America
| | - Lauren K. Robinson
- Rickettsial Zoonoses Branch, Centers for Disease Control, Atlanta, Georgia, United States of America
| | - Marina E. Eremeeva
- Rickettsial Zoonoses Branch, Centers for Disease Control, Atlanta, Georgia, United States of America
| | - Gregory A. Dasch
- Rickettsial Zoonoses Branch, Centers for Disease Control, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
8
|
Vaca DJ, Dobler G, Fischer SF, Keller C, Konrad M, von Loewenich FD, Orenga S, Sapre SU, van Belkum A, Kempf VAJ. Contemporary diagnostics for medically relevant fastidious microorganisms belonging to the genera Anaplasma, Bartonella, Coxiella, Orientia, and Rickettsia. FEMS Microbiol Rev 2022; 46:6530194. [PMID: 35175353 PMCID: PMC9300619 DOI: 10.1093/femsre/fuac013] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/07/2022] [Accepted: 02/15/2022] [Indexed: 12/02/2022] Open
Abstract
Many of the human infectious pathogens—especially the zoonotic or vector-borne bacteria—are fastidious organisms that are difficult to cultivate because of their strong adaption to the infected host culminating in their near-complete physiological dependence on this environment. These bacterial species exhibit reduced multiplication rates once they are removed from their optimal ecological niche. This fact complicates the laboratory diagnosis of the disease and hinders the detection and further characterization of the underlying organisms, e.g. at the level of their resistance to antibiotics due to their slow growth. Here, we describe the current state of microbiological diagnostics for five genera of human pathogens with a fastidious laboratory lifestyle. For Anaplasma spp., Bartonella spp., Coxiella burnetii, Orientia spp. and Rickettsia spp., we will summarize the existing diagnostic protocols, the specific limitations for implementation of novel diagnostic approaches and the need for further optimization or expansion of the diagnostic armamentarium. We will reflect upon the diagnostic opportunities provided by new technologies including mass spectrometry and next-generation nucleic acid sequencing. Finally, we will review the (im)possibilities of rapidly developing new in vitro diagnostic tools for diseases of which the causative agents are fastidiously growing and therefore hard to detect.
Collapse
Affiliation(s)
- Diana J Vaca
- Institute of Medical Microbiology and Infection Control, Goethe University of Frankfurt, Germany
| | - Gerhard Dobler
- Department of Virology and Rickettsiology, Bundeswehr Institute of Microbiology, Germany
| | - Silke F Fischer
- National Consulting Laboratory for Coxiella burnetii, State Health Office Baden-Württemberg, Germany
| | | | - Maik Konrad
- National Consulting Laboratory for Coxiella burnetii, State Health Office Baden-Württemberg, Germany
| | | | | | | | | | - Volkhard A J Kempf
- Institute of Medical Microbiology and Infection Control, Goethe University of Frankfurt, Germany
| |
Collapse
|
9
|
Wick RR, Judd LM, Cerdeira LT, Hawkey J, Méric G, Vezina B, Wyres KL, Holt KE. Trycycler: consensus long-read assemblies for bacterial genomes. Genome Biol 2021; 22:266. [PMID: 34521459 PMCID: PMC8442456 DOI: 10.1186/s13059-021-02483-z] [Citation(s) in RCA: 238] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/31/2021] [Indexed: 01/23/2023] Open
Abstract
While long-read sequencing allows for the complete assembly of bacterial genomes, long-read assemblies contain a variety of errors. Here, we present Trycycler, a tool which produces a consensus assembly from multiple input assemblies of the same genome. Benchmarking showed that Trycycler assemblies contained fewer errors than assemblies constructed with a single tool. Post-assembly polishing further reduced errors and Trycycler+polishing assemblies were the most accurate genomes in our study. As Trycycler requires manual intervention, its output is not deterministic. However, we demonstrated that multiple users converge on similar assemblies that are consistently more accurate than those produced by automated assembly tools.
Collapse
Affiliation(s)
- Ryan R Wick
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia.
| | - Louise M Judd
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - Louise T Cerdeira
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - Jane Hawkey
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - Guillaume Méric
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
- Cambridge Baker Systems Genomics Initiative, Baker Heart & Diabetes Institute, Melbourne, VIC, 3004, Australia
| | - Ben Vezina
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - Kelly L Wyres
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - Kathryn E Holt
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, WC1E 7HT, London, UK
| |
Collapse
|
10
|
Wick RR, Judd LM, Wyres KL, Holt KE. Recovery of small plasmid sequences via Oxford Nanopore sequencing. Microb Genom 2021; 7:000631. [PMID: 34431763 PMCID: PMC8549360 DOI: 10.1099/mgen.0.000631] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 06/11/2021] [Indexed: 12/13/2022] Open
Abstract
Oxford Nanopore Technologies (ONT) sequencing platforms currently offer two approaches to whole-genome native-DNA library preparation: ligation and rapid. In this study, we compared these two approaches for bacterial whole-genome sequencing, with a specific aim of assessing their ability to recover small plasmid sequences. To do so, we sequenced DNA from seven plasmid-rich bacterial isolates in three different ways: ONT ligation, ONT rapid and Illumina. Using the Illumina read depths to approximate true plasmid abundance, we found that small plasmids (<20 kbp) were underrepresented in ONT ligation read sets (by a mean factor of ~4) but were not underrepresented in ONT rapid read sets. This effect correlated with plasmid size, with the smallest plasmids being the most underrepresented in ONT ligation read sets. We also found lower rates of chimaeric reads in the rapid read sets relative to ligation read sets. These results show that when small plasmid recovery is important, ONT rapid library preparations are preferable to ligation-based protocols.
Collapse
Affiliation(s)
- Ryan R. Wick
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - Louise M. Judd
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - Kelly L. Wyres
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - Kathryn E. Holt
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| |
Collapse
|
11
|
Juma M, Sankaradoss A, Ndombi R, Mwaura P, Damodar T, Nazir J, Pandit A, Khurana R, Masika M, Chirchir R, Gachie J, Krishna S, Sowdhamini R, Anzala O, Meenakshi IS. Antimicrobial Resistance Profiling and Phylogenetic Analysis of Neisseria gonorrhoeae Clinical Isolates From Kenya in a Resource-Limited Setting. Front Microbiol 2021; 12:647565. [PMID: 34385981 PMCID: PMC8353456 DOI: 10.3389/fmicb.2021.647565] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
Background Africa has one of the highest incidences of gonorrhea. Neisseria gonorrhoeae is gaining resistance to most of the available antibiotics, compromising treatment across the world. Whole-genome sequencing (WGS) is an efficient way of predicting AMR determinants and their spread in the population. Recent advances in next-generation sequencing technologies like Oxford Nanopore Technology (ONT) have helped in the generation of longer reads of DNA in a shorter duration with lower cost. Increasing accuracy of base-calling algorithms, high throughput, error-correction strategies, and ease of using the mobile sequencer MinION in remote areas lead to its adoption for routine microbial genome sequencing. To investigate whether MinION-only sequencing is sufficient for WGS and downstream analysis in resource-limited settings, we sequenced the genomes of 14 suspected N. gonorrhoeae isolates from Nairobi, Kenya. Methods Using WGS, the isolates were confirmed to be cases of N. gonorrhoeae (n = 9), and there were three co-occurrences of N. gonorrhoeae with Moraxella osloensis and N. meningitidis (n = 2). N. meningitidis has been implicated in sexually transmitted infections in recent years. The near-complete N. gonorrhoeae genomes (n = 10) were analyzed further for mutations/factors causing AMR using an in-house database of mutations curated from the literature. Results We observe that ciprofloxacin resistance is associated with multiple mutations in both gyrA and parC. Mutations conferring tetracycline (rpsJ) and sulfonamide (folP) resistance and plasmids encoding beta-lactamase were seen in all the strains, and tet(M)-containing plasmids were identified in nine strains. Phylogenetic analysis clustered the 10 isolates into clades containing previously sequenced genomes from Kenya and countries across the world. Based on homology modeling of AMR targets, we see that the mutations in GyrA and ParC disrupt the hydrogen bonding with quinolone drugs and mutations in FolP may affect interaction with the antibiotic. Conclusion Here, we demonstrate the utility of mobile DNA sequencing technology in producing a consensus genome for sequence typing and detection of genetic determinants of AMR. The workflow followed in the study, including AMR mutation dataset creation and the genome identification, assembly, and analysis, can be used for any clinical isolate. Further studies are required to determine the utility of real-time sequencing in outbreak investigations, diagnosis, and management of infections, especially in resource-limited settings.
Collapse
Affiliation(s)
- Meshack Juma
- KAVI Institute of Clinical Research, University of Nairobi, Nairobi, Kenya
| | - Arun Sankaradoss
- National Centre for Biological Sciences, Tata Institute of Fundamental Research (TIFR), Bengaluru, India
| | - Redcliff Ndombi
- KAVI Institute of Clinical Research, University of Nairobi, Nairobi, Kenya
| | - Patrick Mwaura
- KAVI Institute of Clinical Research, University of Nairobi, Nairobi, Kenya
| | - Tina Damodar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research (TIFR), Bengaluru, India
| | - Junaid Nazir
- National Centre for Biological Sciences, Tata Institute of Fundamental Research (TIFR), Bengaluru, India
| | - Awadhesh Pandit
- National Centre for Biological Sciences, Tata Institute of Fundamental Research (TIFR), Bengaluru, India
| | - Rupsy Khurana
- National Centre for Biological Sciences, Tata Institute of Fundamental Research (TIFR), Bengaluru, India
| | - Moses Masika
- KAVI Institute of Clinical Research, University of Nairobi, Nairobi, Kenya
| | - Ruth Chirchir
- KAVI Institute of Clinical Research, University of Nairobi, Nairobi, Kenya
| | - John Gachie
- KAVI Institute of Clinical Research, University of Nairobi, Nairobi, Kenya
| | - Sudhir Krishna
- National Centre for Biological Sciences, Tata Institute of Fundamental Research (TIFR), Bengaluru, India.,School of Interdisciplinary Life Sciences, Indian Institute of Technology Goa, Ponda, India
| | - Ramanathan Sowdhamini
- National Centre for Biological Sciences, Tata Institute of Fundamental Research (TIFR), Bengaluru, India
| | - Omu Anzala
- KAVI Institute of Clinical Research, University of Nairobi, Nairobi, Kenya
| | - Iyer S Meenakshi
- National Centre for Biological Sciences, Tata Institute of Fundamental Research (TIFR), Bengaluru, India
| |
Collapse
|
12
|
Genome sequence of the cardiopulmonary canid nematode Angiostrongylus vasorum reveals species-specific genes with potential involvement in coagulopathy. Genomics 2021; 113:2695-2701. [PMID: 34118383 DOI: 10.1016/j.ygeno.2021.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 05/21/2021] [Accepted: 06/07/2021] [Indexed: 11/22/2022]
Abstract
Angiostrongylus vasorum is an emerging parasitic nematode of canids and causes respiratory distress, bleeding, and other signs in dogs. Despite its clinical importance, the molecular toolbox allowing the study of the parasite is incomplete. To address this gap, we have sequenced its nuclear genome using Oxford nanopore sequencing, polished with Illumina reads. The size of the final genome is 280 Mb comprising 468 contigs, with an N50 value of 1.68 Mb and a BUSCO score of 93.5%. Ninety-three percent of 13,766 predicted genes were assigned to putative functions. Three folate carriers were found exclusively in A. vasorum, with potential involvement in host coagulopathy. A screen for previously identified vaccine candidates, the aminopeptidase H11 and the somatic protein rHc23, revealed homologs in A. vasorum. The genome sequence will provide a foundation for the development of new tools against canine angiostrongylosis, supporting the identification of potential drug and vaccine targets.
Collapse
|
13
|
Caravedo Martinez MA, Ramírez-Hernández A, Blanton LS. Manifestations and Management of Flea-Borne Rickettsioses. Res Rep Trop Med 2021; 12:1-14. [PMID: 33574726 PMCID: PMC7873028 DOI: 10.2147/rrtm.s274724] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 01/26/2021] [Indexed: 12/16/2022] Open
Abstract
Murine typhus and flea-borne spotted fever are undifferentiated febrile illnesses caused by Rickettsia typhi and Rickettsia felis, respectively. These organisms are small obligately intracellular bacteria and are transmitted to humans by fleas. Murine typhus is endemic to coastal areas of the tropics and subtropics (especially port cities), where rats are the primary mammalian host and rat fleas (Xenopsylla cheopis) are the vector. In the United States, a cycle of transmission involving opossums and cat fleas (Ctenocephalides felis) are the presumed reservoir and vector, respectively. The incidence and distribution of murine typhus appear to be increasing in endemic areas of the US. Rickettsia felis has also been reported throughout the world and is found within the ubiquitous cat flea. Flea-borne rickettsioses manifest as an undifferentiated febrile illness. Headache, malaise, and myalgia are frequent symptoms that accompany fever. The incidence of rash is variable, so its absence should not dissuade the clinician to consider a rickettsial illness as part of the differential diagnosis. When present, the rash is usually macular or papular. Although not a feature of murine typhus, eschar has been found in 12% of those with flea-borne spotted fever. Confirmatory laboratory diagnosis is usually obtained by serology; the indirect immunofluorescence assay is the serologic test of choice. Antibodies are seldom present during the first few days of illness. Thus, the diagnosis requires acute- and convalescent-phase specimens to document seroconversion or a four-fold increase in antibody titer. Since laboratory diagnosis is usually retrospective, when a flea-borne rickettsiosis is considered, empiric treatment should be initiated. The treatment of choice for both children and adults is doxycycline, which results in a swift and effective response. The following review is aimed to summarize the key clinical, epidemiological, ecological, diagnostic, and treatment aspects of flea-borne rickettsioses.
Collapse
Affiliation(s)
- Maria A Caravedo Martinez
- Department of Internal Medicine – Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX, USA
| | | | - Lucas S Blanton
- Department of Internal Medicine – Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
14
|
Genome skimming and NMR chemical fingerprinting provide quality assurance biotechnology to validate Sarsaparilla identity and purity. Sci Rep 2020; 10:19192. [PMID: 33154455 PMCID: PMC7645426 DOI: 10.1038/s41598-020-76073-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/15/2020] [Indexed: 02/04/2023] Open
Abstract
Sarsaparilla is a popular natural health product (NHP) that has been reported to be one of the most adulterated botanicals in the marketplace. Several plausible explanations are documented including economically motivated product substitution, unintentional errors due to ambiguous trade name associated with several different taxa, and wild harvesting of incorrect non-commercial plants. Unfortunately, this includes the case of an adulterant species Decalepis hamiltonii, a Red listed medicinal plant species by the International Union for Conservation of Nature (IUCN) and declared as a species with high conservation concern by the National Biodiversity Authority of India (NBA). This study provides validated genomic (genome skimming & DNA probes) and metabolomic (NMR chemical fingerprints) biotechnology solutions to prevent adulteration on both raw materials and finished products. This is also the first use of Oxford Nanopore on herbal products enabling the use of genome skimming as a tool for quality assurance within the supply chain of botanical ingredients. The validation of both genomics and metabolomics approach provided quality assurance perspective for both product identity and purity. This research enables manufactures and retailers to verify their supply chain is authentic and that consumers can enjoy safe, healthy products.
Collapse
|
15
|
Lysenin Channels as Sensors for Ions and Molecules. SENSORS 2020; 20:s20216099. [PMID: 33120957 PMCID: PMC7663491 DOI: 10.3390/s20216099] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/19/2020] [Accepted: 10/23/2020] [Indexed: 12/18/2022]
Abstract
Lysenin is a pore-forming protein extracted from the earthworm Eisenia fetida, which inserts large conductance pores in artificial and natural lipid membranes containing sphingomyelin. Its cytolytic and hemolytic activity is rather indicative of a pore-forming toxin; however, lysenin channels present intricate regulatory features manifested as a reduction in conductance upon exposure to multivalent ions. Lysenin pores also present a large unobstructed channel, which enables the translocation of analytes, such as short DNA and peptide molecules, driven by electrochemical gradients. These important features of lysenin channels provide opportunities for using them as sensors for a large variety of applications. In this respect, this literature review is focused on investigations aimed at the potential use of lysenin channels as analytical tools. The described explorations include interactions with multivalent inorganic and organic cations, analyses on the reversibility of such interactions, insights into the regulation mechanisms of lysenin channels, interactions with purines, stochastic sensing of peptides and DNA molecules, and evidence of molecular translocation. Lysenin channels present themselves as versatile sensing platforms that exploit either intrinsic regulatory features or the changes in ionic currents elicited when molecules thread the conducting pathway, which may be further developed into analytical tools of high specificity and sensitivity or exploited for other scientific biotechnological applications.
Collapse
|