1
|
Janko MM, Araujo AL, Ascencio EJ, Guedes GR, Vasco LE, Santos RO, Damasceno CP, Medrano PG, Chacón-Uscamaita PR, Gunderson AK, O'Malley S, Kansara PH, Narvaez MB, Coombes C, Pizzitutti F, Salmon-Mulanovich G, Zaitchik BF, Mena CF, Lescano AG, Barbieri AF, Pan WK. Study protocol: improving response to malaria in the Amazon through identification of inter-community networks and human mobility in border regions of Ecuador, Peru and Brazil. BMJ Open 2024; 14:e078911. [PMID: 38626977 PMCID: PMC11029361 DOI: 10.1136/bmjopen-2023-078911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 02/29/2024] [Indexed: 04/19/2024] Open
Abstract
INTRODUCTION Understanding human mobility's role in malaria transmission is critical to successful control and elimination. However, common approaches to measuring mobility are ill-equipped for remote regions such as the Amazon. This study develops a network survey to quantify the effect of community connectivity and mobility on malaria transmission. METHODS We measure community connectivity across the study area using a respondent driven sampling design among key informants who are at least 18 years of age. 45 initial communities will be selected: 10 in Brazil, 10 in Ecuador and 25 in Peru. Participants will be recruited in each initial node and administered a survey to obtain data on each community's mobility patterns. Survey responses will be ranked and the 2-3 most connected communities will then be selected and surveyed. This process will be repeated for a third round of data collection. Community network matrices will be linked with each country's malaria surveillance system to test the effects of mobility on disease risk. ETHICS AND DISSEMINATION This study protocol has been approved by the institutional review boards of Duke University (USA), Universidad San Francisco de Quito (Ecuador), Universidad Peruana Cayetano Heredia (Peru) and Universidade Federal Minas Gerais (Brazil). Results will be disseminated in communities by the end of the study.
Collapse
Affiliation(s)
- Mark M Janko
- Duke Global Health Institute, Durham, North Carolina, USA
| | - Andrea L Araujo
- Instituto de Geografia, Universidad San Francisco de Quito, Quito, Ecuador
| | - Edson J Ascencio
- Emerge, Emerging Diseases and Climate Change Research Unit, School of Public Health and Administration, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Gilvan R Guedes
- Center for Regional Development and Planning (Cedeplar), Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Luis E Vasco
- Instituto de Geografia, Universidad San Francisco de Quito, Quito, Ecuador
| | - Reinaldo O Santos
- Center for Regional Development and Planning (Cedeplar), Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Camila P Damasceno
- Center for Regional Development and Planning (Cedeplar), Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | | | - Pamela R Chacón-Uscamaita
- Emerge, Emerging Diseases and Climate Change Research Unit, School of Public Health and Administration, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Annika K Gunderson
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sara O'Malley
- Duke University Nicholas School of the Environment, Durham, North Carolina, USA
| | - Prakrut H Kansara
- Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Manuel B Narvaez
- Instituto de Geografia, Universidad San Francisco de Quito, Quito, Ecuador
| | - Carolina Coombes
- Emerge, Emerging Diseases and Climate Change Research Unit, School of Public Health and Administration, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | | | - Benjamin F Zaitchik
- Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Carlos F Mena
- Instituto de Geografia, Universidad San Francisco de Quito, Quito, Ecuador
| | - Andres G Lescano
- Emerge, Emerging Diseases and Climate Change Research Unit, School of Public Health and Administration, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Alisson F Barbieri
- Center for Regional Development and Planning (Cedeplar), Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - William K Pan
- Duke Global Health Institute, Durham, North Carolina, USA
- Duke University Nicholas School of the Environment, Durham, North Carolina, USA
| |
Collapse
|
2
|
Janko MM, Araujo AL, Ascencio EJ, Guedes GR, Vasco LE, Santos RA, Damasceno CP, Medrano PG, Chacón-Uscamaita PR, Gunderson AK, O’Malley S, Kansara PH, Narvaez MB, Coombes CS, Pizzitutti F, Salmon-Mulanovich G, Zaitchik BF, Mena CF, Lescano AG, Barbieri AF, Pan WK. Network Profile: Improving Response to Malaria in the Amazon through Identification of Inter-Community Networks and Human Mobility in Border Regions of Ecuador, Peru, and Brazil. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.29.23299202. [PMID: 38076857 PMCID: PMC10705622 DOI: 10.1101/2023.11.29.23299202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Objectives Understanding human mobility's role on malaria transmission is critical to successful control and elimination. However, common approaches to measuring mobility are ill-equipped for remote regions such as the Amazon. This study develops a network survey to quantify the effect of community connectivity and mobility on malaria transmission. Design A community-level network survey. Setting We collect data on community connectivity along three river systems in the Amazon basin: the Pastaza river corridor spanning the Ecuador-Peru border; and the Amazon and Javari river corridors spanning the Brazil-Peru border. Participants We interviewed key informants in Brazil, Ecuador, and Peru, including from indigenous communities: Shuar, Achuar, Shiwiar, Kichwa, Ticuna, and Yagua. Key informants are at least 18 years of age and are considered community leaders. Primary outcome Weekly, community-level malaria incidence during the study period. Methods We measure community connectivity across the study area using a respondent driven sampling design. Forty-five communities were initially selected: 10 in Brazil, 10 in Ecuador, and 25 in Peru. Participants were recruited in each initial node and administered a survey to obtain data on each community's mobility patterns. Survey responses were ranked and the 2-3 most connected communities were then selected and surveyed. This process was repeated for a third round of data collection. Community network matrices will be linked with eadch country's malaria surveillance system to test the effects of mobility on disease risk. Findings To date, 586 key informants were surveyed from 126 communities along the Pastaza river corridor. Data collection along the Amazon and Javari river corridors is ongoing. Initial results indicate that network sampling is a superior method to delineate migration flows between communities. Conclusions Our study provides measures of mobility and connectivity in rural settings where traditional approaches are insufficient, and will allow us to understand mobility's effect on malaria transmission.
Collapse
Affiliation(s)
- Mark M. Janko
- Duke Global Health Institute, Duke University, Durham, North Carolina, USA
| | - Andrea L. Araujo
- Instituto de Geografía, Universidad San Francisco de Quito, Quito, Ecuador
| | - Edson J. Ascencio
- Emerge, Emerging Diseases and Climate Change Research Unit, School of Public Health and Administration, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Gilvan R. Guedes
- Center for Regional Development and Planning (Cedeplar), Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Luis E. Vasco
- Instituto de Geografía, Universidad San Francisco de Quito, Quito, Ecuador
| | - Reinaldo A. Santos
- Center for Regional Development and Planning (Cedeplar), Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Camila P. Damasceno
- Center for Regional Development and Planning (Cedeplar), Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Perla G. Medrano
- Duke Global Health Institute, Duke University, Durham, North Carolina, USA
| | - Pamela R. Chacón-Uscamaita
- Emerge, Emerging Diseases and Climate Change Research Unit, School of Public Health and Administration, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Annika K. Gunderson
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sara O’Malley
- Duke Global Health Institute, Duke University, Durham, North Carolina, USA
| | - Prakrut H. Kansara
- Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Manuel B. Narvaez
- Instituto de Geografía, Universidad San Francisco de Quito, Quito, Ecuador
| | - Carolina S. Coombes
- Emerge, Emerging Diseases and Climate Change Research Unit, School of Public Health and Administration, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | | | - Benjamin F. Zaitchik
- Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Carlos F. Mena
- Instituto de Geografía, Universidad San Francisco de Quito, Quito, Ecuador
| | - Andres G. Lescano
- Emerge, Emerging Diseases and Climate Change Research Unit, School of Public Health and Administration, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Alisson F. Barbieri
- Center for Regional Development and Planning (Cedeplar), Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - William K. Pan
- Duke Global Health Institute, Duke University, Durham, North Carolina, USA
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| |
Collapse
|
3
|
Carrasco-Escobar G, Fornace K, Wong D, Padilla-Huamantinco PG, Saldaña-Lopez JA, Castillo-Meza OE, Caballero-Andrade AE, Manrique E, Ruiz-Cabrejos J, Barboza JL, Rodriguez H, Henostroza G, Gamboa D, Castro MC, Vinetz JM, Llanos-Cuentas A. Open-Source 3D Printable GPS Tracker to Characterize the Role of Human Population Movement on Malaria Epidemiology in River Networks: A Proof-of-Concept Study in the Peruvian Amazon. Front Public Health 2020; 8:526468. [PMID: 33072692 PMCID: PMC7542225 DOI: 10.3389/fpubh.2020.526468] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 08/21/2020] [Indexed: 11/13/2022] Open
Abstract
Human movement affects malaria epidemiology at multiple geographical levels; however, few studies measure the role of human movement in the Amazon Region due to the challenging conditions and cost of movement tracking technologies. We developed an open-source low-cost 3D printable GPS-tracker and used this technology in a cohort study to characterize the role of human population movement in malaria epidemiology in a rural riverine village in the Peruvian Amazon. In this pilot study of 20 participants (mean age = 40 years old), 45,980 GPS coordinates were recorded over 1 month. Characteristic movement patterns were observed relative to the infection status and occupation of the participants. Applying two analytical animal movement ecology methods, utilization distributions (UDs) and integrated step selection functions (iSSF), we showed contrasting environmental selection and space use patterns according to infection status. These data suggested an important role of human movement in the epidemiology of malaria in the Peruvian Amazon due to high connectivity between villages of the same riverine network, suggesting limitations of current community-based control strategies. We additionally demonstrate the utility of this low-cost technology with movement ecology analysis to characterize human movement in resource-poor environments.
Collapse
Affiliation(s)
- Gabriel Carrasco-Escobar
- Health Innovation Laboratory, Institute of Tropical Medicine "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru.,Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA, United States.,Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Kimberly Fornace
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Daniel Wong
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Pierre G Padilla-Huamantinco
- Health Innovation Laboratory, Institute of Tropical Medicine "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru.,Departamento de Ingenieria, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Jose A Saldaña-Lopez
- Departamento de Ingenieria, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Ober E Castillo-Meza
- Departamento de Ingenieria, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Armando E Caballero-Andrade
- Departamento de Ingenieria, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Edgar Manrique
- Health Innovation Laboratory, Institute of Tropical Medicine "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru.,Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Jorge Ruiz-Cabrejos
- Health Innovation Laboratory, Institute of Tropical Medicine "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru.,Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Jose Luis Barboza
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - German Henostroza
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Dionicia Gamboa
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru.,Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru.,Instituto de Medicinal Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Marcia C Castro
- Department of Global Health and Population, Harvard T. H. Chan School of Public Health, Boston, MA, United States
| | - Joseph M Vinetz
- Instituto de Medicinal Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru.,Section of Infectious Diseases, Yale School of Medicine, New Haven, CT, United States
| | - Alejandro Llanos-Cuentas
- Instituto de Medicinal Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru.,Facultad de Salud Pública y Administración, Universidad Peruana Cayetano Heredia, Lima, Peru
| |
Collapse
|
4
|
White SE, Harvey SA, Meza G, Llanos A, Guzman M, Gamboa D, Vinetz JM. Acceptability of a herd immunity-focused, transmission-blocking malaria vaccine in malaria-endemic communities in the Peruvian Amazon: an exploratory study. Malar J 2018; 17:179. [PMID: 29703192 PMCID: PMC5921293 DOI: 10.1186/s12936-018-2328-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 04/18/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND A transmission-blocking vaccine (TBV) to prevent malaria-infected humans from infecting mosquitoes has been increasingly considered as a tool for malaria control and elimination. This study tested the hypothesis that a malaria TBV would be acceptable among residents of a malaria-hypoendemic region. METHODS The study was carried out in six Spanish-speaking rural villages in the Department of Loreto in the Peruvian Amazon. These villages comprise a cohort of 430 households associated with the Peru-Brazil International Centre for Excellence in Malaria Research. Individuals from one-third (143) of enrolled households in an ongoing longitudinal, prospective cohort study in 6 communities in Loreto, Peru, were randomly selected to participate by answering a pre-validated questionnaire. RESULTS All 143 participants expressed desire for a malaria vaccine in general; only 1 (0.7%) expressed unwillingness to receive a transmission-blocking malaria vaccine. Injection was considered most acceptable for adults (97.2%); for children drops in the mouth were preferred (96.8%). Acceptability waned marginally with the prospect of multiple injections (83.8%) and different projected efficacies at 70 and 50% (90.1 and 71.8%, respectively). Respondents demonstrated clear understanding that the vaccine was for community, rather than personal, protection against malaria infection. DISCUSSION In this setting of the Peruvian Amazon, a transmission-blocking malaria vaccine was found to be almost universally acceptable. This study is the first to report that residents of a malaria-endemic region have been queried regarding a malaria vaccine strategy that policy-makers in the industrialized world often dismiss as altruistic.
Collapse
Affiliation(s)
- Sara E White
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego School of Medicine, 9500 Gilman Drive 0760, Biomedical Research Facility Room 4A16, La Jolla, CA, 92093-0760, USA
| | - Steven A Harvey
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St. E5030, Baltimore, MD, 21205, USA.
| | - Graciela Meza
- Facultad de Medicina Humana, Universidad Nacional de la Amazonia Peruana, Iquitos, Peru
| | - Alejandro Llanos
- Malaria and Leishmaniasis Division, Instituto de Medicina Tropical Alexander von Humboldt, Av. Honorio Delgado 430, San Martín de Porres, Lima, Peru
| | - Mitchel Guzman
- Malaria and Leishmaniasis Division, Instituto de Medicina Tropical Alexander von Humboldt, Av. Honorio Delgado 430, San Martín de Porres, Lima, Peru
| | - Dionicia Gamboa
- Malaria and Leishmaniasis Division, Instituto de Medicina Tropical Alexander von Humboldt, Av. Honorio Delgado 430, San Martín de Porres, Lima, Peru.,Department of Cellular and Molecular Sciences, Faculty of Sciences and Laboratory of Research and Development, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Joseph M Vinetz
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego School of Medicine, 9500 Gilman Drive 0760, Biomedical Research Facility Room 4A16, La Jolla, CA, 92093-0760, USA. .,Malaria and Leishmaniasis Division, Instituto de Medicina Tropical Alexander von Humboldt, Av. Honorio Delgado 430, San Martín de Porres, Lima, Peru. .,Department of Cellular and Molecular Sciences, Faculty of Sciences and Laboratory of Research and Development, Universidad Peruana Cayetano Heredia, Lima, Peru.
| |
Collapse
|
5
|
Carrasco-Escobar G, Miranda-Alban J, Fernandez-Miñope C, Brouwer KC, Torres K, Calderon M, Gamboa D, Llanos-Cuentas A, Vinetz JM. High prevalence of very-low Plasmodium falciparum and Plasmodium vivax parasitaemia carriers in the Peruvian Amazon: insights into local and occupational mobility-related transmission. Malar J 2017; 16:415. [PMID: 29037202 PMCID: PMC5644076 DOI: 10.1186/s12936-017-2063-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/11/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The incidence of malaria due both to Plasmodium falciparum and Plasmodium vivax in the Peruvian Amazon has risen in the past 5 years. This study tested the hypothesis that the maintenance and emergence of malaria in hypoendemic regions such as Amazonia is determined by submicroscopic and asymptomatic Plasmodium parasitaemia carriers. The present study aimed to precisely quantify the rate of very-low parasitaemia carriers in two sites of the Peruvian Amazon in relation to transmission patterns of P. vivax and P. falciparum in this area. METHODS This study was carried out within the Amazonian-ICEMR longitudinal cohort. Blood samples were collected for light microscopy diagnosis and packed red blood cell (PRBC) samples were analysed by qPCR. Plasma samples were tested for total IgG reactivity against recombinant PvMSP-10 and PfMSP-10 antigens by ELISA. Occupation and age 10 years and greater were considered surrogates of occupation-related mobility. Risk factors for P. falciparum and P. vivax infections detected by PRBC-qPCR were assessed by multilevel logistic regression models. RESULTS Among 450 subjects, the prevalence of P. vivax by PRBC-PCR (25.1%) was sixfold higher than that determined by microscopy (3.6%). The prevalence of P. falciparum infection was 4.9% by PRBC-PCR and 0.2% by microscopy. More than 40% of infections had parasitaemia under 5 parasites/μL. Multivariate analysis for infections detected by PRBC-PCR showed that participants with recent settlement in the study area (AOR 2.1; 95% CI 1.03:4.2), age ≥ 30 years (AOR 3.3; 95% CI 1.6:6.9) and seropositivity to P. vivax (AOR 1.8; 95% CI 1.0:3.2) had significantly higher likelihood of P. vivax infection, while the odds of P. falciparum infection was higher for participants between 10 and 29 years (AOR 10.7; 95% CI 1.3:91.1) and with a previous P. falciparum infection (AOR 10.4; 95% CI 1.5:71.1). CONCLUSIONS This study confirms the contrasting transmission patterns of P. vivax and P. falciparum in the Peruvian Amazon, with stable local transmission for P. vivax and the source of P. falciparum to the study villages dominated by very low parasitaemia carriers, age 10 years and older, who had travelled away from home for work and brought P. falciparum infection with them.
Collapse
Affiliation(s)
- Gabriel Carrasco-Escobar
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
- Facultad de Salud Pública, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Julio Miranda-Alban
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Carlos Fernandez-Miñope
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Kimberly C. Brouwer
- Division of Epidemiology, Department of Family Medicine & Public Health, University of California, San Diego, La Jolla, CA USA
| | - Katherine Torres
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Maritza Calderon
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Dionicia Gamboa
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Medicinal Tropical “Alexander von Humboldt”, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Alejandro Llanos-Cuentas
- Facultad de Salud Pública, Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Medicinal Tropical “Alexander von Humboldt”, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Joseph M. Vinetz
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Medicinal Tropical “Alexander von Humboldt”, Universidad Peruana Cayetano Heredia, Lima, Peru
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, 9500 Gilman Drive MC0760, Biomedical Research Facility-2, Room 4A16, La Jolla, CA USA
| |
Collapse
|
6
|
Carrasco-Escobar G, Gamboa D, Castro MC, Bangdiwala SI, Rodriguez H, Contreras-Mancilla J, Alava F, Speybroeck N, Lescano AG, Vinetz JM, Rosas-Aguirre A, Llanos-Cuentas A. Micro-epidemiology and spatial heterogeneity of P. vivax parasitaemia in riverine communities of the Peruvian Amazon: A multilevel analysis. Sci Rep 2017; 7:8082. [PMID: 28808240 PMCID: PMC5556029 DOI: 10.1038/s41598-017-07818-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 07/04/2017] [Indexed: 01/07/2023] Open
Abstract
Malaria has steadily increased in the Peruvian Amazon over the last five years. This study aimed to determine the parasite prevalence and micro-geographical heterogeneity of Plasmodium vivax parasitaemia in communities of the Peruvian Amazon. Four cross-sectional active case detection surveys were conducted between May and July 2015 in four riverine communities in Mazan district. Analysis of 2785 samples of 820 individuals nested within 154 households for Plasmodium parasitaemia was carried out using light microscopy and qPCR. The spatio-temporal distribution of Plasmodium parasitaemia, dominated by P. vivax, was shown to cluster at both household and community levels. Of enrolled individuals, 47% had at least one P. vivax parasitaemia and 10% P. falciparum, by qPCR, both of which were predominantly sub-microscopic and asymptomatic. Spatial analysis detected significant clustering in three communities. Our findings showed that communities at small-to-moderate spatial scales differed in P. vivax parasite prevalence, and multilevel Poisson regression models showed that such differences were influenced by factors such as age, education, and location of households within high-risk clusters, as well as factors linked to a local micro-geographic context, such as travel and occupation. Complex transmission patterns were found to be related to human mobility among communities in the same micro-basin.
Collapse
Affiliation(s)
- Gabriel Carrasco-Escobar
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigacióny Desarrollo, Facultad de Cienciasy Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru.
- Facultad de Salud Públicay Administración, Universidad Peruana Cayetano Heredia, Lima, Peru.
| | - Dionicia Gamboa
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigacióny Desarrollo, Facultad de Cienciasy Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru
- Departamento de Ciencias Celularesy Moleculares, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Marcia C Castro
- Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Shrikant I Bangdiwala
- Department of Biostatistics, University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC, USA
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, ON, Canada
| | | | - Juan Contreras-Mancilla
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigacióny Desarrollo, Facultad de Cienciasy Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - Niko Speybroeck
- Research Institute of Health and Society (IRSS), Université Catholique de Louvain, Brussels, Belgium
| | - Andres G Lescano
- Facultad de Salud Públicay Administración, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Joseph M Vinetz
- Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru
- Departamento de Ciencias Celularesy Moleculares, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
- Division of Infectious Diseases, Department of Medicine, University of California San Diego School of Medicine, La Jolla, California, USA
| | - Angel Rosas-Aguirre
- Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru
- Research Institute of Health and Society (IRSS), Université Catholique de Louvain, Brussels, Belgium
| | - Alejandro Llanos-Cuentas
- Facultad de Salud Públicay Administración, Universidad Peruana Cayetano Heredia, Lima, Peru.
- Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru.
| |
Collapse
|
7
|
Rosas-Aguirre A, Gamboa D, Manrique P, Conn JE, Moreno M, Lescano AG, Sanchez JF, Rodriguez H, Silva H, Llanos-Cuentas A, Vinetz JM. Epidemiology of Plasmodium vivax Malaria in Peru. Am J Trop Med Hyg 2016; 95:133-144. [PMID: 27799639 PMCID: PMC5201219 DOI: 10.4269/ajtmh.16-0268] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 09/29/2016] [Indexed: 01/01/2023] Open
Abstract
Malaria in Peru, dominated by Plasmodium vivax, remains a public health problem. The 1990s saw newly epidemic malaria emerge, primarily in the Loreto Department in the Amazon region, including areas near to Iquitos, the capital city, but sporadic malaria transmission also occurred in the 1990s–2000s in both north-coastal Peru and the gold mining regions of southeastern Peru. Although a Global Fund-supported intervention (PAMAFRO, 2005–2010) was temporally associated with a decrease of malaria transmission, from 2012 to the present, both P. vivax and Plasmodium falciparum malaria cases have rapidly increased. The Peruvian Ministry of Health continues to provide artemesinin-based combination therapy for microscopy-confirmed cases of P. falciparum and chloroquine–primaquine for P. vivax. Malaria transmission continues in remote areas nonetheless, where the mobility of humans and parasites facilitates continued reintroduction outside of ongoing surveillance activities, which is critical to address for future malaria control and elimination efforts. Ongoing P. vivax research gaps in Peru include the following: identification of asymptomatic parasitemics, quantification of the contribution of patent and subpatent parasitemics to mosquito transmission, diagnosis of nonparasitemic hypnozoite carriers, and implementation of surveillance for potential emergence of chloroquine- and 8-aminoquinoline-resistant P. vivax. Clinical trials of tafenoquine in Peru have been promising, and glucose-6-phosphate dehydrogenase deficiency in the region has not been observed to be a limitation to its use. Larger-scale challenges for P. vivax (and malaria in general) in Peru include logistical difficulties in accessing remote riverine populations, consequences of government policy and poverty trends, and obtaining international funding for malaria control and elimination.
Collapse
Affiliation(s)
- Angel Rosas-Aguirre
- Research Institute of Health and Society, Université Catholique de Louvain, Brussels, Belgium.,Instituto de Medicina Tropical "Alexander von Humboldt," Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Dionicia Gamboa
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru.,Instituto de Medicina Tropical "Alexander von Humboldt," Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Paulo Manrique
- Instituto de Medicina Tropical "Alexander von Humboldt," Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Jan E Conn
- Wadsworth Center, New York State Department of Health, Albany, New York.,Department of Biomedical Sciences, School of Public Health, University at Albany (State University of New York), Albany, New York
| | - Marta Moreno
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, San Diego, California
| | - Andres G Lescano
- Facultad de Salud Pública, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Juan F Sanchez
- Facultad de Salud Pública, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Hugo Rodriguez
- Dirección Regional de Salud Loreto, Ministerio de Salud, Iquitos, Peru
| | - Hermann Silva
- Dirección Regional de Salud Loreto, Ministerio de Salud, Iquitos, Peru
| | - Alejandro Llanos-Cuentas
- Instituto de Medicina Tropical "Alexander von Humboldt," Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Joseph M Vinetz
- Instituto de Medicina Tropical "Alexander von Humboldt," Universidad Peruana Cayetano Heredia, Lima, Peru.,Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru.,Division of Infectious Diseases, Department of Medicine, University of California San Diego, San Diego, California
| |
Collapse
|
8
|
Quispe AM, Llanos-Cuentas A, Rodriguez H, Clendenes M, Cabezas C, Leon LM, Chuquiyauri R, Moreno M, Kaslow DC, Grogl M, Herrera S, Magill AJ, Kosek M, Vinetz JM, Lescano AG, Gotuzzo E. Accelerating to Zero: Strategies to Eliminate Malaria in the Peruvian Amazon. Am J Trop Med Hyg 2016; 94:1200-1207. [PMID: 30851016 PMCID: PMC4889734 DOI: 10.4269/ajtmh.15-0369] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AbstractIn February 2014, the Malaria Elimination Working Group, in partnership with the Peruvian Ministry of Health (MoH), hosted its first international conference on malaria elimination in Iquitos, Peru. The 2-day meeting gathered 85 malaria experts, including 18 international panelists, 23 stakeholders from different malaria-endemic regions of Peru, and 11 MoH authorities. The main outcome was consensus that implementing a malaria elimination project in the Amazon region is achievable, but would require: 1) a comprehensive strategic plan, 2) the altering of current programmatic guidelines from control toward elimination by including symptomatic as well as asymptomatic individuals for antimalarial therapy and transmission-blocking interventions, and 3) the prioritization of community-based active case detection with proper rapid diagnostic tests to interrupt transmission. Elimination efforts must involve key stakeholders and experts at every level of government and include integrated research activities to evaluate, implement, and tailor sustainable interventions appropriate to the region.
Collapse
Affiliation(s)
- Antonio M. Quispe
- *Address correspondence to Antonio M. Quispe, Department of International Health, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD 21205. E-mail:
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Delgado-Ratto C, Gamboa D, Soto-Calle VE, Van den Eede P, Torres E, Sánchez-Martínez L, Contreras-Mancilla J, Rosanas-Urgell A, Rodriguez Ferrucci H, Llanos-Cuentas A, Erhart A, Van geertruyden JP, D’Alessandro U. Population Genetics of Plasmodium vivax in the Peruvian Amazon. PLoS Negl Trop Dis 2016; 10:e0004376. [PMID: 26766548 PMCID: PMC4713096 DOI: 10.1371/journal.pntd.0004376] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 12/18/2015] [Indexed: 11/18/2022] Open
Abstract
Background Characterizing the parasite dynamics and population structure provides useful information to understand the dynamic of transmission and to better target control interventions. Despite considerable efforts for its control, vivax malaria remains a major health problem in Peru. In this study, we have explored the population genetics of Plasmodium vivax isolates from Iquitos, the main city in the Peruvian Amazon, and 25 neighbouring peri-urban as well as rural villages along the Iquitos-Nauta Road. Methodology/ Results From April to December 2008, 292 P. vivax isolates were collected and successfully genotyped using 14 neutral microsatellites. Analysis of the molecular data revealed a similar proportion of monoclonal and polyclonal infections in urban areas, while in rural areas monoclonal infections were predominant (p = 0.002). Multiplicity of infection was higher in urban (MOI = 1.5–2) compared to rural areas (MOI = 1) (p = 0.003). The level of genetic diversity was similar in all areas (He = 0.66–0.76, p = 0.32) though genetic differentiation between areas was substantial (PHIPT = 0.17, p<0.0001). Principal coordinate analysis showed a marked differentiation between parasites from urban and rural areas. Linkage disequilibrium was detected in all the areas ( IAs = 0.08–0.49, for all p<0.0001). Gene flow among the areas was stablished through Bayesian analysis of migration models. Recent bottleneck events were detected in 4 areas and a recent parasite expansion in one of the isolated areas. In total, 87 unique haplotypes grouped in 2 or 3 genetic clusters described a sub-structured parasite population. Conclusion/Significance Our study shows a sub-structured parasite population with clonal propagation, with most of its components recently affected by bottleneck events. Iquitos city is the main source of parasite spreading for all the peripheral study areas. The routes of transmission and gene flow and the reduction of the parasite population described are important from the public health perspective as well for the formulation of future control policies. We present the population genetics of malaria vivax parasites in a large area of the Peruvian Amazon. Our results showed that the parasite population had a predominant clonal propagation, reproducing themselves with identically or closely related parasites; therefore, the same genetic characteristics are maintained in the offspring. The clonal propagation may favour the higher levels of genetic differentiation among the parasites from isolated areas compared to areas where human migration is common. The patterns of gene flow have been established, finding Iquitos city as a reservoir of parasite genetic variability. Moreover, a recent reduction of the parasite population was observed in areas where recent control activities were performed. This research provides a picture of the nature and dynamics of the parasite population which have a significant impact in the malaria epidemiology; therefore, this knowledge is crucial for the development of efficient control policies.
Collapse
Affiliation(s)
| | - Dionicia Gamboa
- Institute of Tropical Medicine Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Veronica E. Soto-Calle
- Institute of Tropical Medicine Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Peter Van den Eede
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Eliana Torres
- Institute of Tropical Medicine Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Luis Sánchez-Martínez
- Institute of Tropical Medicine Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Juan Contreras-Mancilla
- Institute of Tropical Medicine Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Anna Rosanas-Urgell
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | | | - Alejandro Llanos-Cuentas
- Institute of Tropical Medicine Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Annette Erhart
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | | | - Umberto D’Alessandro
- Department of Public Health, Institute of Tropical Medicine, Antwerp, Belgium
- Medical Research Council Unit, Fajara, The Gambia
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
10
|
Flannery EL, Wang T, Akbari A, Corey VC, Gunawan F, Bright AT, Abraham M, Sanchez JF, Santolalla ML, Baldeviano GC, Edgel KA, Rosales LA, Lescano AG, Bafna V, Vinetz JM, Winzeler EA. Next-Generation Sequencing of Plasmodium vivax Patient Samples Shows Evidence of Direct Evolution in Drug-Resistance Genes. ACS Infect Dis 2015; 1:367-79. [PMID: 26719854 DOI: 10.1021/acsinfecdis.5b00049] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Understanding the mechanisms of drug resistance in Plasmodium vivax, the parasite that causes the most widespread form of human malaria, is complicated by the lack of a suitable long-term cell culture system for this parasite. In contrast to P. falciparum, which can be more readily manipulated in the laboratory, insights about parasite biology need to be inferred from human studies. Here we analyze the genomes of parasites within 10 human P. vivax infections from the Peruvian Amazon. Using next-generation sequencing we show that some P. vivax infections analyzed from the region are likely polyclonal. Despite their polyclonality we observe limited parasite genetic diversity by showing that three or fewer haplotypes comprise 94% of the examined genomes, suggesting the recent introduction of parasites into this geographic region. In contrast we find more than three haplotypes in putative drug-resistance genes, including the gene encoding dihydrofolate reductase-thymidylate synthase and the P. vivax multidrug resistance associated transporter, suggesting that resistance mutations have arisen independently. Additionally, several drug-resistance genes are located in genomic regions with evidence of increased copy number. Our data suggest that whole genome sequencing of malaria parasites from patients may provide more insight about the evolution of drug resistance than genetic linkage or association studies, especially in geographical regions with limited parasite genetic diversity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Juan F. Sanchez
- U.S. Naval Medical Research Unit No. 6 (NAMRU-6), Avenida Venezuela Cuadra 36 S/N, Centro Médico
Naval, Lima Callao 02, Peru
| | - Meddly L. Santolalla
- U.S. Naval Medical Research Unit No. 6 (NAMRU-6), Avenida Venezuela Cuadra 36 S/N, Centro Médico
Naval, Lima Callao 02, Peru
| | - G. Christian Baldeviano
- U.S. Naval Medical Research Unit No. 6 (NAMRU-6), Avenida Venezuela Cuadra 36 S/N, Centro Médico
Naval, Lima Callao 02, Peru
| | - Kimberly A. Edgel
- U.S. Naval Medical Research Unit No. 6 (NAMRU-6), Avenida Venezuela Cuadra 36 S/N, Centro Médico
Naval, Lima Callao 02, Peru
| | - Luis A. Rosales
- U.S. Naval Medical Research Unit No. 6 (NAMRU-6), Avenida Venezuela Cuadra 36 S/N, Centro Médico
Naval, Lima Callao 02, Peru
| | - Andrés G. Lescano
- U.S. Naval Medical Research Unit No. 6 (NAMRU-6), Avenida Venezuela Cuadra 36 S/N, Centro Médico
Naval, Lima Callao 02, Peru
| | | | | | | |
Collapse
|
11
|
Escalante AA, Ferreira MU, Vinetz JM, Volkman SK, Cui L, Gamboa D, Krogstad DJ, Barry AE, Carlton JM, van Eijk AM, Pradhan K, Mueller I, Greenhouse B, Andreina Pacheco M, Vallejo AF, Herrera S, Felger I. Malaria Molecular Epidemiology: Lessons from the International Centers of Excellence for Malaria Research Network. Am J Trop Med Hyg 2015; 93:79-86. [PMID: 26259945 PMCID: PMC4574277 DOI: 10.4269/ajtmh.15-0005] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 05/15/2015] [Indexed: 01/31/2023] Open
Abstract
Molecular epidemiology leverages genetic information to study the risk factors that affect the frequency and distribution of malaria cases. This article describes molecular epidemiologic investigations currently being carried out by the International Centers of Excellence for Malaria Research (ICEMR) network in a variety of malaria-endemic settings. First, we discuss various novel approaches to understand malaria incidence and gametocytemia, focusing on Plasmodium falciparum and Plasmodium vivax. Second, we describe and compare different parasite genotyping methods commonly used in malaria epidemiology and population genetics. Finally, we discuss potential applications of molecular epidemiological tools and methods toward malaria control and elimination efforts.
Collapse
Affiliation(s)
- Ananias A. Escalante
- *Address correspondence to Ananias A. Escalante, Institute for Genomics and Evolutionary Medicine, Temple University, SERC Building, 1925 N. 12th Street Philadelphia, PA 19122-1801, E-mail: or Marcelo U. Ferreira, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 1374 - Edifício Biomédicas II, São Paulo, Brazil CEP CEP 05508-900, E-mail: or Ingrid Felger, Swiss Tropical and Public Health Institute, 4002 Basel, Switzerland, E-mail:
| | - Marcelo U. Ferreira
- *Address correspondence to Ananias A. Escalante, Institute for Genomics and Evolutionary Medicine, Temple University, SERC Building, 1925 N. 12th Street Philadelphia, PA 19122-1801, E-mail: or Marcelo U. Ferreira, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 1374 - Edifício Biomédicas II, São Paulo, Brazil CEP CEP 05508-900, E-mail: or Ingrid Felger, Swiss Tropical and Public Health Institute, 4002 Basel, Switzerland, E-mail:
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Ingrid Felger
- *Address correspondence to Ananias A. Escalante, Institute for Genomics and Evolutionary Medicine, Temple University, SERC Building, 1925 N. 12th Street Philadelphia, PA 19122-1801, E-mail: or Marcelo U. Ferreira, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 1374 - Edifício Biomédicas II, São Paulo, Brazil CEP CEP 05508-900, E-mail: or Ingrid Felger, Swiss Tropical and Public Health Institute, 4002 Basel, Switzerland, E-mail:
| |
Collapse
|
12
|
Chuquiyauri R, Molina DM, Moss EL, Wang R, Gardner MJ, Brouwer KC, Torres S, Gilman RH, Llanos-Cuentas A, Neafsey DE, Felgner P, Liang X, Vinetz JM. Genome-Scale Protein Microarray Comparison of Human Antibody Responses in Plasmodium vivax Relapse and Reinfection. Am J Trop Med Hyg 2015; 93:801-9. [PMID: 26149860 DOI: 10.4269/ajtmh.15-0232] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 05/13/2015] [Indexed: 11/07/2022] Open
Abstract
Large scale antibody responses in Plasmodium vivax malaria remains unexplored in the endemic setting. Protein microarray analysis of asexual-stage P. vivax was used to identify antigens recognized in sera from residents of hypoendemic Peruvian Amazon. Over 24 months, of 106 participants, 91 had two symptomatic P. vivax malaria episodes, 11 had three episodes, 3 had four episodes, and 1 had five episodes. Plasmodium vivax relapse was distinguished from reinfection by a merozoite surface protein-3α restriction fragment length polymorphism polymerase chain reaction (MSP3α PCR-RFLP) assay. Notably, P. vivax reinfection subjects did not have higher reactivity to the entire set of recognized P. vivax blood-stage antigens than relapse subjects, regardless of the number of malaria episodes. The most highly recognized P. vivax proteins were MSP 4, 7, 8, and 10 (PVX_003775, PVX_082650, PVX_097625, and PVX_114145); sexual-stage antigen s16 (PVX_000930); early transcribed membrane protein (PVX_090230); tryptophan-rich antigen (Pv-fam-a) (PVX_092995); apical merozoite antigen 1 (PVX_092275); and proteins of unknown function (PVX_081830, PVX_117680, PVX_118705, PVX_121935, PVX_097730, PVX_110935, PVX_115450, and PVX_082475). Genes encoding reactive proteins exhibited a significant enrichment of non-synonymous nucleotide variation, an observation suggesting immune selection. These data identify candidates for seroepidemiological tools to support malaria elimination efforts in P. vivax-endemic regions.
Collapse
Affiliation(s)
- Raul Chuquiyauri
- Department of Medicine, Division of Infectious Diseases, University of California San Diego, La Jolla, California; Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú; Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Perú; Antigen Discovery Inc., Irvine, California; Malaria Research Group, Broad Institute of MIT and Harvard University, Cambridge, Massachusetts; Seattle Biomed, Seattle, Washington; Department of Medicine, Division of Global Public Health, University of California San Diego, La Jolla, California; Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Douglas M Molina
- Department of Medicine, Division of Infectious Diseases, University of California San Diego, La Jolla, California; Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú; Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Perú; Antigen Discovery Inc., Irvine, California; Malaria Research Group, Broad Institute of MIT and Harvard University, Cambridge, Massachusetts; Seattle Biomed, Seattle, Washington; Department of Medicine, Division of Global Public Health, University of California San Diego, La Jolla, California; Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Eli L Moss
- Department of Medicine, Division of Infectious Diseases, University of California San Diego, La Jolla, California; Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú; Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Perú; Antigen Discovery Inc., Irvine, California; Malaria Research Group, Broad Institute of MIT and Harvard University, Cambridge, Massachusetts; Seattle Biomed, Seattle, Washington; Department of Medicine, Division of Global Public Health, University of California San Diego, La Jolla, California; Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Ruobing Wang
- Department of Medicine, Division of Infectious Diseases, University of California San Diego, La Jolla, California; Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú; Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Perú; Antigen Discovery Inc., Irvine, California; Malaria Research Group, Broad Institute of MIT and Harvard University, Cambridge, Massachusetts; Seattle Biomed, Seattle, Washington; Department of Medicine, Division of Global Public Health, University of California San Diego, La Jolla, California; Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Malcolm J Gardner
- Department of Medicine, Division of Infectious Diseases, University of California San Diego, La Jolla, California; Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú; Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Perú; Antigen Discovery Inc., Irvine, California; Malaria Research Group, Broad Institute of MIT and Harvard University, Cambridge, Massachusetts; Seattle Biomed, Seattle, Washington; Department of Medicine, Division of Global Public Health, University of California San Diego, La Jolla, California; Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Kimberly C Brouwer
- Department of Medicine, Division of Infectious Diseases, University of California San Diego, La Jolla, California; Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú; Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Perú; Antigen Discovery Inc., Irvine, California; Malaria Research Group, Broad Institute of MIT and Harvard University, Cambridge, Massachusetts; Seattle Biomed, Seattle, Washington; Department of Medicine, Division of Global Public Health, University of California San Diego, La Jolla, California; Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Sonia Torres
- Department of Medicine, Division of Infectious Diseases, University of California San Diego, La Jolla, California; Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú; Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Perú; Antigen Discovery Inc., Irvine, California; Malaria Research Group, Broad Institute of MIT and Harvard University, Cambridge, Massachusetts; Seattle Biomed, Seattle, Washington; Department of Medicine, Division of Global Public Health, University of California San Diego, La Jolla, California; Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Robert H Gilman
- Department of Medicine, Division of Infectious Diseases, University of California San Diego, La Jolla, California; Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú; Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Perú; Antigen Discovery Inc., Irvine, California; Malaria Research Group, Broad Institute of MIT and Harvard University, Cambridge, Massachusetts; Seattle Biomed, Seattle, Washington; Department of Medicine, Division of Global Public Health, University of California San Diego, La Jolla, California; Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Alejandro Llanos-Cuentas
- Department of Medicine, Division of Infectious Diseases, University of California San Diego, La Jolla, California; Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú; Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Perú; Antigen Discovery Inc., Irvine, California; Malaria Research Group, Broad Institute of MIT and Harvard University, Cambridge, Massachusetts; Seattle Biomed, Seattle, Washington; Department of Medicine, Division of Global Public Health, University of California San Diego, La Jolla, California; Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Daniel E Neafsey
- Department of Medicine, Division of Infectious Diseases, University of California San Diego, La Jolla, California; Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú; Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Perú; Antigen Discovery Inc., Irvine, California; Malaria Research Group, Broad Institute of MIT and Harvard University, Cambridge, Massachusetts; Seattle Biomed, Seattle, Washington; Department of Medicine, Division of Global Public Health, University of California San Diego, La Jolla, California; Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Philip Felgner
- Department of Medicine, Division of Infectious Diseases, University of California San Diego, La Jolla, California; Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú; Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Perú; Antigen Discovery Inc., Irvine, California; Malaria Research Group, Broad Institute of MIT and Harvard University, Cambridge, Massachusetts; Seattle Biomed, Seattle, Washington; Department of Medicine, Division of Global Public Health, University of California San Diego, La Jolla, California; Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Xiaowu Liang
- Department of Medicine, Division of Infectious Diseases, University of California San Diego, La Jolla, California; Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú; Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Perú; Antigen Discovery Inc., Irvine, California; Malaria Research Group, Broad Institute of MIT and Harvard University, Cambridge, Massachusetts; Seattle Biomed, Seattle, Washington; Department of Medicine, Division of Global Public Health, University of California San Diego, La Jolla, California; Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Joseph M Vinetz
- Department of Medicine, Division of Infectious Diseases, University of California San Diego, La Jolla, California; Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú; Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Perú; Antigen Discovery Inc., Irvine, California; Malaria Research Group, Broad Institute of MIT and Harvard University, Cambridge, Massachusetts; Seattle Biomed, Seattle, Washington; Department of Medicine, Division of Global Public Health, University of California San Diego, La Jolla, California; Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| |
Collapse
|
13
|
McCollum AM, Soberon V, Salas CJ, Santolalla ML, Udhayakumar V, Escalante AA, Graf PCF, Durand S, Cabezas C, Bacon DJ. Genetic variation and recurrent parasitaemia in Peruvian Plasmodium vivax populations. Malar J 2014; 13:67. [PMID: 24568141 PMCID: PMC3941685 DOI: 10.1186/1475-2875-13-67] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 02/13/2014] [Indexed: 11/12/2022] Open
Abstract
Background Plasmodium vivax is a predominant species of malaria in parts of South America and there is increasing resistance to drugs to treat infections by P. vivax. The existence of latent hypnozoites further complicates the ability to classify recurrent infections as treatment failures due to relapse, recrudescence of hyponozoites or re-infections. Antigen loci are putatively under natural selection and may not be an optimal molecular marker to define parasite haplotypes in paired samples. Putatively neutral microsatellite loci, however, offer an assessment of neutral haplotypes. The objective here was to assess the utility of neutral microsatellite loci to reconcile cases of recurrent parasitaemia in Amazonian P. vivax populations in Peru. Methods Patient blood samples were collected from three locations in or around Iquitos in the Peruvian Amazon. Five putatively neutral microsatellite loci were characterized from 445 samples to ascertain the within and amongst population variation. A total of 30 day 0 and day of recurrent parasitaemia samples were characterized at microsatellite loci and five polymorphic antigen loci for haplotype classification. Results The genetic diversity at microsatellite loci was consistent with neutral levels of variation measured in other South American P. vivax populations. Results between antigen and microsatellite loci for the 30 day 0 and day of recurrent parasitaemia samples were the same for 80% of the pairs. The majority of non-concordant results were the result of differing alleles at microsatellite loci. This analysis estimates that 90% of the paired samples with the same microsatellite haplotype are unlikely to be due to a new infection. Conclusions A population-level approach was used to yield a better estimate of the probability of a new infection versus relapse or recrudescence of homologous hypnozoites; hypnozoite activation was common for this cohort. Population studies are critical with the evaluation of genetic markers to assess P. vivax biology and epidemiology. The additional demonstration of microsatellite loci as neutral markers capable of distinguishing the origin of the recurrent parasites (new infection or originating from the patient) lends support to their use in assessment of treatment outcomes.
Collapse
Affiliation(s)
- Andrea M McCollum
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Delgado-Ratto C, Soto-Calle VE, Van den Eede P, Gamboa D, Rosas A, Abatih EN, Rodriguez Ferrucci H, Llanos-Cuentas A, Van Geertruyden JP, Erhart A, D'Alessandro U. Population structure and spatio-temporal transmission dynamics of Plasmodium vivax after radical cure treatment in a rural village of the Peruvian Amazon. Malar J 2014; 13:8. [PMID: 24393454 PMCID: PMC3893378 DOI: 10.1186/1475-2875-13-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 12/28/2013] [Indexed: 11/23/2022] Open
Abstract
Background Despite the large burden of Plasmodium vivax, little is known about its transmission dynamics. This study explored the population structure and spatio-temporal dynamics of P. vivax recurrent infections after radical cure in a two-year cohort study carried out in a rural community of the Peruvian Amazon. Methods A total of 37 P. vivax participants recruited in San Carlos community (Peru) between April and December 2008 were treated radically with chloroquine and primaquine and followed up monthly for two years with systematic blood sampling. All samples were screened for malaria parasites and subsequently all P. vivax infections genotyped using 15 microsatellites. Parasite population structure and dynamics were determined by computing different genetic indices and using spatio-temporal statistics. Results After radical cure, 76% of the study participants experienced one or more recurrent P. vivax infections, most of them sub-patent and asymptomatic. The parasite population displayed limited genetic diversity (He = 0.49) and clonal structure, with most infections (84%) being monoclonal. Spatio-temporal clusters of specific haplotypes were found throughout the study and persistence of highly frequent haplotypes were observed over several months within the same participants/households. Conclusions In San Carlos community, P. vivax recurrences were commonly observed after radical treatment, and characterized by asymptomatic, sub-patent and clustered infections (within and between individuals from a few neighbouring households). Moreover low genetic diversity as well as parasite inbreeding are likely to define a clonal parasite population which has important implications on the malaria epidemiology of the study area.
Collapse
Affiliation(s)
- Christopher Delgado-Ratto
- Unit of International Health, ESOC Department, Faculty of Medicine, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Chuquiyauri R, Peñataro P, Brouwer KC, Fasabi M, Calderon M, Torres S, Gilman RH, Kosek M, Vinetz JM. Microgeographical differences of Plasmodium vivax relapse and re-infection in the Peruvian Amazon. Am J Trop Med Hyg 2013; 89:326-38. [PMID: 23836566 DOI: 10.4269/ajtmh.13-0060] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
To determine the magnitude of Plasmodium vivax relapsing malaria in rural Amazonia, we carried out a study in four sites in northeastern Peru. Polymerase chain reaction-restriction fragment length polymorphism of PvMSP-3α and tandem repeat (TR) markers were compared for their ability to distinguish relapse versus reinfection. Of 1,507 subjects with P. vivax malaria, 354 developed > 1 episode during the study; 97 of 354 (27.5%) were defined as relapse using Pvmsp-3α alone. The addition of TR polymorphism analysis significantly reduced the number of definitively defined relapses to 26 of 354 (7.4%) (P < 0.05). Multivariate logistic regression modeling showed that the probability of having > 1 infection was associated with the following: subjects in Mazan (odds ratio [OR] = 2.56; 95% confidence interval [CI] 1.87, 3.51), 15-44 years of age (OR = 1.49; 95% CI 1.03, 2.15), traveling for job purposes (OR = 1.45; 95%CI 1.03, 2.06), and travel within past month (OR = 1.46; 95% CI 1.0, 2.14). The high discriminatory capacity of the molecular tools shown here is useful for understanding the micro-geography of malaria transmission.
Collapse
Affiliation(s)
- Raul Chuquiyauri
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, La Jolla, California 92093-0741, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Plasmodium vivax merozoite surface protein-3 (PvMSP3): expression of an 11 member multigene family in blood-stage parasites. PLoS One 2013; 8:e63888. [PMID: 23717506 PMCID: PMC3662707 DOI: 10.1371/journal.pone.0063888] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Accepted: 04/07/2013] [Indexed: 02/02/2023] Open
Abstract
Background Three members of the Plasmodium vivax merozoite surface protein-3 (PvMSP3) family (PvMSP3-α, PvMSP3-β and PvMSP3-γ) were initially characterized and later shown to be part of a larger highly diverse family, encoded by a cluster of genes arranged head-to-tail in chromosome 10. PvMSP3-α and PvMSP3-β have become genetic markers in epidemiological studies, and are being evaluated as vaccine candidates. This research investigates the gene and protein expression of the entire family and pertinent implications. Methodology/Principal Findings A 60 kb multigene locus from chromosome 10 in P. vivax (Salvador 1 strain) was studied to classify the number of pvmsp3 genes present, and compare their transcription, translation and protein localization patterns during blood-stage development. Eleven pvmsp3 paralogs encode an N-terminal NLRNG signature motif, a central domain containing repeated variable heptad sequences, and conserved hydrophilic C-terminal features. One additional ORF in the locus lacks these features and was excluded as a member of the family. Transcripts representing all eleven pvmsp3 genes were detected in trophozoite- and schizont-stage RNA. Quantitative immunoblots using schizont-stage extracts and antibodies specific for each PvMSP3 protein demonstrated that all but PvMSP3.11 could be detected. Homologs were also detected by immunoblot in the closely related simian species, P. cynomolgi and P. knowlesi. Immunofluorescence assays confirmed that eight of the PvMSP3s are present in mature schizonts. Uniquely, PvMSP3.7 was expressed exclusively at the apical end of merozoites. Conclusion/Significance Specific proteins were detected representing the expression of 10 out of 11 genes confirmed as members of the pvmsp3 family. Eight PvMSP3s were visualized surrounding merozoites. In contrast, PvMSP3.7 was detected at the apical end of the merozoites. Pvmsp3.11 transcripts were present, though no corresponding protein was detected. PvMSP3 functions remain unknown. The ten expressed PvMSP3s are predicted to have unique and complementary functions in merozoite biology.
Collapse
|