1
|
Hushyar S, Doghaheh HP, Arzanlou M. Evaluation of aminoglycoside- and methicillin-resistant Staphylococcus aureus: phenotypic and genotypic insights from clinical specimens in Ardabil, Iran. BMC Infect Dis 2025; 25:285. [PMID: 40016645 PMCID: PMC11869695 DOI: 10.1186/s12879-025-10659-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/17/2025] [Indexed: 03/01/2025] Open
Abstract
BACKGROUND Combination therapy including an aminoglycoside antibiotic and a cell-wall active agent is considered the most suitable option to treat invasive infections with methicillin-resistant Staphylococcus aureus (MRSA). Dual drug therapy enhances the effectiveness of treatment and reduces the risk of resistance development. This study aims to elucidate the phenotypic and molecular resistance to aminoglycosides and methicillin, and the molecular epidemiologic characteristics of S. aureus in Ardabil northwest Iran. METHODS Totally, 118 S. aureus isolates collected from clinical specimens were investigated. Identification was performed using standard microbiological and molecular approaches. Aminoglycoside and methicillin resistance were evaluated using the disk diffusion assay, and the minimum inhibitory concentrations (MICs) of aminoglycosides were determined via the agar dilution method. The mecA gene encoding methicillin resistance and aminoglycoside modifying enzymes (AMEs) genes were detected using PCR. Molecular epidemiologic features of the isolates were determined using staphylococcal cassette chromosome mec (SCCmec) typing spa typing and ERIC-PCR assays. RESULTS Of the isolates, 42.4% (n = 50) and 57.6% (n = 68) were identified as MRSA and MSSA, respectively. All MRSA isolates were mecA-positive. Among MRSA isolates, SCCmec type IVa (17; 34%) was predominant, followed by types IVc, V, III, II, and I. Resistance rates to gentamicin, kanamycin, tobramycin, and amikacin were 16.1%, 17.8%, 8.5%, and 8.5%, respectively. Overall, the aminoglycoside resistance and most non-aminoglycoside antibiotics were significantly higher in MRSA versus MSSA isolates. The prevalence of AME genes was as follows: aac(6')-Ie-aph(2'') (30; 76.9%), aph(2'')-Ib (22; 56.4%), and ant(4')-Ia (14; 35.9%). About 60% of aminoglycoside-resistant isolates harbored ≥ 2 AME genes. The t030 type was the most common spa type identified. The ERIC-PCR profiles categorized the isolates into 19 unique ERIC types. CONCLUSIONS This study reveals high aminoglycoside and methicillin resistance in S. aureus isolates from Ardabil hospitals. Predominant SCCmec type IVa and spa type t030 indicate specific molecular patterns. These findings highlight the need for continuous surveillance and targeted treatment strategies for MRSA infections. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Samira Hushyar
- Department of Microbiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Hadi Peeri Doghaheh
- Department of Microbiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohsen Arzanlou
- Department of Microbiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
- Zoonoses Research Centre, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
2
|
Shoja S, Ghasemi S, Dastranj M, Shamseddin J, Ebrahimi N, Alizade H, Farahani A. Characterization of genotypes and antimicrobial resistance profiles of clinical isolates of Shigella from patients in the southern region of Iran. Eur J Med Res 2023; 28:611. [PMID: 38115112 PMCID: PMC10731726 DOI: 10.1186/s40001-023-01570-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Shigella spp., which are facultative anaerobic bacilli within the Enterobacteriaceae family, present a significant public health burden due to their role as prominent contributors to diarrheal diseases worldwide. A molecular analysis can facilitate the identification and assessment of outbreaks involving this bacterium. So, we aimed to investigate the antibiotic susceptibility pattern and clonal relatedness of clinical Shigella spp. isolates obtained from patients with diarrhea in Hormozgan province, South of Iran. METHODS From 2019 to 2021, a cross-sectional investigation was conducted on 448 stool samples obtained from patients who were experiencing diarrhea, in the southern region of Iran. Shigella spp. isolates were identified based on biochemical and serological tests. All Shigella species were verified using species-specific polymerase chain reaction (PCR), followed by susceptibility testing to antimicrobial agents. Subsequently, genotyping of all Shigella species was conducted using ERIC-PCR. RESULTS Out of a total of 448 stool samples, the presence of Shigella was detected in 62 cases, accounting for a prevalence rate of 13.84%. Among the identified isolates, the majority were attributed to S. flexneri, representing 53.23% of the cases. This was followed by S. sonnei at 24.19% and S. boydii at 22.58%. Notably, no instances of S. dysenteriae were found. The highest prevalence of Shigella isolates was observed in infants and children under the age of five. A significant proportion of the identified isolates demonstrated resistance to various antibiotics. Specifically, high resistance rates were noted for ampicillin (90.78%), piperacillin-tazobactam (87.1%), cefixime (83.87%), trimethoprim-sulfamethoxazole (83.87%), cefotaxime (82.26%), and ceftriaxone (80.65%). In addition, a substantial number (87.1%) of the isolates exhibited a multidrug-resistant (MDR) phenotype. Using the ERIC-PCR method, a total of 11 clusters and 6 distinct single types were identified among all the Shigella isolates. CONCLUSION A notable occurrence of antibiotic-resistant Shigella species has been noted, with multi-drug resistant (MDR) strains presenting an increasing challenge for treating shigellosis worldwide, and this includes Iran. Techniques such as ERIC-PCR are useful for assessing the genetic variation and connections between Shigella strains, which indirectly contributes to understanding antimicrobial resistance patterns. Further research is needed to explore the specific correlation between resistance genes and ERIC genotyping patterns in Shigella strains.
Collapse
Affiliation(s)
- Saeed Shoja
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Saba Ghasemi
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Student Research Committee, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mahsa Dastranj
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Jebreil Shamseddin
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Nasim Ebrahimi
- Hepatitis and AIDS Department, Pasture Institute of Iran, Tehran, Iran
| | - Hesam Alizade
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Abbas Farahani
- Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein, Iran.
- Department of Medical Laboratory Sciences, Khomein University of Medical Sciences, Khomein, Iran.
| |
Collapse
|
3
|
Kundu J, Kansal S, Rathore S, Kaundal M, Angrup A, Biswal M, Walia K, Ray P. Evaluation of ERIC-PCR and MALDI-TOF as typing tools for multidrug resistant Klebsiella pneumoniae clinical isolates from a tertiary care center in India. PLoS One 2022; 17:e0271652. [PMCID: PMC9671336 DOI: 10.1371/journal.pone.0271652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/01/2022] [Indexed: 11/19/2022] Open
Abstract
Background and aim Multidrug resistant Klebsiella pneumoniae is associated with nosocomial infections in both outbreak and non-outbreak situations. The study intends to evaluate the potential of enterobacterial repetitive intergenic consensus- polymerase chain reaction (ERIC-PCR), a genomic based typing and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) proteomic-based typing techniques for clonal relatedness among multidrug resistant Klebsiella pneumoniae isolates. Methodology Multidrug resistant clinical isolates of Klebsiella pneumoniae (n = 137) were collected from March 2019 to February 2020. Identification and protein-based phylogenetic analysis were performed by MALDI-TOF MS. Genomic typing was done by ERIC-PCR and analyzed by an online data analysis service (PyElph). Dice method with unweighted pair group method with arithmetic mean (UPGMA) program was used to compare the ERIC profiles. The samples were also evaluated by PCR for the presence of genes encoding carbapenemases, extended spectrum beta lactamases (ESBLs) and mobile colistin resistance-1 (mcr1). Result and conclusion The study presents ERIC-PCR as more robust and better discriminatory typing tool in comparison to MALDI-TOF for clonal relatedness in multidrug resistant K. pneumoniae clinical isolates. Isolates were typed into 40 ERIC types, and six groups by MALDI-TOF-MS. PCR-based analysis revealed that all the strains harbored two or more ESBL and carbapenemase genes. None of the isolates revealed the presence of the plasmid mediated mcr-1 gene for colistin resistance.
Collapse
Affiliation(s)
- Jyoti Kundu
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Shubhangi Kansal
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Shivali Rathore
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Meenakshi Kaundal
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Archana Angrup
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India,* E-mail:
| | - Manisha Biswal
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Kamini Walia
- Division of Epidemiology and Communicable Diseases, Indian Council of Medical Research, New Delhi, India
| | - Pallab Ray
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
4
|
Phiri AF, Abia ALK, Amoako DG, Mkakosya R, Sundsfjord A, Essack SY, Simonsen GS. Burden, Antibiotic Resistance, and Clonality of Shigella spp. Implicated in Community-Acquired Acute Diarrhoea in Lilongwe, Malawi. Trop Med Infect Dis 2021; 6:tropicalmed6020063. [PMID: 33925030 PMCID: PMC8167763 DOI: 10.3390/tropicalmed6020063] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 11/17/2022] Open
Abstract
Although numerous studies have investigated diarrhoea aetiology in many sub-Saharan African countries, recent data on Shigella species’ involvement in community-acquired acute diarrhoea (CA-AD) in Malawi are scarce. This study investigated the incidence, antibiotic susceptibility profile, genotypic characteristics, and clonal relationships of Shigella flexneri among 243 patients presenting with acute diarrhoea at a District Hospital in Lilongwe, Malawi. Shigella spp. were isolated and identified using standard microbiological and serological methods and confirmed by identifying the ipaH gene using real-time polymerase chain reaction. The isolates’ antibiotic susceptibility to 20 antibiotics was determined using the VITEK 2 system according to EUCAST guidelines. Genes conferring resistance to sulfamethoxazole (sul1, sul2 and sul3), trimethoprim (dfrA1, dfrA12 and dfrA17) and ampicillin (oxa-1 and oxa-2), and virulence genes (ipaBCD, sat, ial, virA, sen, set1A and set1B) were detected by real-time PCR. Clonal relatedness was assessed using ERIC-PCR. Thirty-four Shigella flexneri isolates were isolated (an overall incidence of 14.0%). All the isolates were fully resistant to sulfamethoxazole/trimethoprim (100%) and ampicillin (100%) but susceptible to the other antibiotics tested. The sul1 (79%), sul2 (79%), sul3 (47%), dfrA12 (71%) and dfrA17 (56%) sulfonamide and trimethoprim resistance genes were identified; Oxa-1, oxa-2 and dfrA1 were not detected. The virulence genes ipaBCD (85%), sat (85%), ial (82%), virA (76%), sen (71%), stx (71%), set1A (26%) and set1B (18%) were detected. ERIC-PCR profiling revealed that the Shigella isolates were genetically distinct and clonally unrelated, indicating the potential involvement of genetically distinct S. flexneri in CA-AD in Malawi. The high percentage resistance to ampicillin and sulfamethoxazole/trimethoprim and the presence of several virulence determinants in these isolates emphasises a need for continuous molecular surveillance studies to inform preventive measures and management of Shigella-associated diarrhoeal infections in Malawi.
Collapse
Affiliation(s)
- Abel F.N.D. Phiri
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa; (A.F.N.D.P.); (D.G.A.); (S.Y.E.)
- National Microbiology Reference Laboratory, Ministry of Health, Lilongwe 3, Malawi
| | - Akebe Luther King Abia
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa; (A.F.N.D.P.); (D.G.A.); (S.Y.E.)
- Correspondence:
| | - Daniel Gyamfi Amoako
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa; (A.F.N.D.P.); (D.G.A.); (S.Y.E.)
| | - Rajab Mkakosya
- Department of Pathology, College of Medicine, University of Malawi, Blantyre 3, Malawi;
| | - Arnfinn Sundsfjord
- Department of Microbiology and Infection Control, University Hospital of North Norway, 9038 Tromsø, Norway; (A.S.); (G.S.S.)
- Faculty of Health Sciences, UiT—The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Sabiha Y. Essack
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa; (A.F.N.D.P.); (D.G.A.); (S.Y.E.)
| | - Gunnar Skov Simonsen
- Department of Microbiology and Infection Control, University Hospital of North Norway, 9038 Tromsø, Norway; (A.S.); (G.S.S.)
- Faculty of Health Sciences, UiT—The Arctic University of Norway, N-9037 Tromsø, Norway
| |
Collapse
|
5
|
Nour El-Din HT, Yassin AS, Ragab YM, Hashem AM. Phenotype-Genotype Characterization and Antibiotic-Resistance Correlations Among Colonizing and Infectious Methicillin-Resistant Staphylococcus aureus Recovered from Intensive Care Units. Infect Drug Resist 2021; 14:1557-1571. [PMID: 33907431 PMCID: PMC8071083 DOI: 10.2147/idr.s296000] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/12/2021] [Indexed: 12/13/2022] Open
Abstract
Introduction Methicillin-resistant Staphylococcus aureus (MRSA) presents a profound hazard to public health. MRSA colonizing skin, mucous membranes, and the anterior nares without clinical symptoms is termed "colonizing MRSA". Upon manifestation of clinical symptoms, it is termed "infectious MRSA". Here, we characterize and differentiate colonizing and infectious MRSA, and analyze the phenotypic-genotypic and antibiotic susceptibility correlations. Methodology Clinical MRSA isolates were recovered from intensive care units (ICUs) of two major Egyptian hospitals and their biofilm formation ability was tested. Antibiograms against 16 antibiotics were determined, in addition to the minimum inhibitory concentrations (MICs) of vancomycin and linezolid. The entire collection was typed by enterobacterial repetitive intergenic consensus (ERIC)-PCR, as well as multi-locus sequence typing (MLST). Representative resistance and virulence genes were detected by PCR amplification. Results Forty-nine isolates were confirmed as MRSA, of which 30 isolates were infectious and 19 were colonizing. Versatile resistance patterns were observed in both groups of isolates. We report a higher tendency for biofilm-formation and borderline minimum inhibitory concentrations among infectious isolates. A Positive antibiotic correlation was observed between susceptibility to protein synthesis inhibitors and cell wall inhibitors. Positive correlations were observed between isolation site and rifampicin resistance: nasal samples were enriched in rifampicin-resistant isolates, while urine and blood samples were enriched in susceptible ones. Furthermore, biofilm formation ability was slightly associated with amikacin resistance, and an association between teicoplanin resistance and the presence of the Panton-Valentine leukocidin gene was the only significant phenotype-genotype correlation observed. Finally, ERIC typing and MLST had congruent results. Conclusion Linezolid and vancomycin are still the most convenient choice for MRSA treatment. ERIC PCR and MLST show promising typing combination that could be easily used periodically for tracking the genotypic changes of MRSA, especially within the healthcare facilities. Several correlations were established between groups of antibiotics and the genotypes/phenotypes of the selected isolates.
Collapse
Affiliation(s)
- Hanzada T Nour El-Din
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Aymen S Yassin
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Yasser M Ragab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Abdelgawad M Hashem
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.,Department of Microbiology and Immunology, Faculty of Pharmacy, British University in Egypt, El-Sherouk City, Cairo, 11837, Egypt
| |
Collapse
|
6
|
Igwaran A, Okoh AI. Molecular determination of genetic diversity among Campylobacter jejuni and Campylobacter coli isolated from milk, water, and meat samples using enterobacterial repetitive intergenic consensus PCR (ERIC-PCR). Infect Ecol Epidemiol 2020; 10:1830701. [PMID: 33133420 PMCID: PMC7580821 DOI: 10.1080/20008686.2020.1830701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Consumption of contaminated meat, milk, and water are among the major routes of human campylobacteriosis. This study aimed to determined the genetic diversity of C. coli and C. jejuni isolated from meat, milk, and water samples collected from different locations. From the 376 samples (meat = 248, cow milk = 72, and water = 56) collected, a total of 1238 presumptive Campylobacter isolates were recovered and the presence of the genus Campylobacter were detected in 402 isolates, and from which, 85 and 67 isolates were identified asC. jejuni and C. coli respectively. Of which, 71 isolates identified as C. coli (n = 35) and C. jejuni (n = 36) were randomly selected from meat, milk, and water samples and were genotyped using enterobacterial repetitive intergenic consensus PCR (ERIC-PCR). The digital images of the ERIC-PCR genotype were analyzed by GelJ v.2.0 software. The diversity and similarity of the isolates were assessed via an unweighted-pair group method using average linkages clustering algorithm. The results showed that the 36 C. jejuni strains separated into 29 ERIC-genotypes and 4 clusters while the 35 C. coli were delineated into 29 ERIC-genotypes and 6 clusters. The study revealed the genetic diversity among C. coli and C. jejuni strains recovered from different matrices characterized by Gelj.
Collapse
Affiliation(s)
- Aboi Igwaran
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa.,Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| | - Anthony Ifeanyi Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa.,Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| |
Collapse
|
7
|
Gonzales JC, Seribelli AA, Gomes CN, Dos Prazeres Rodrigues D, Campioni F, Passaglia J, da Silva P, Falcão JP. A high number of multidrug-resistant and predominant genetically related cluster of Shigella flexneri strains isolated over 34 years in Brazil. Braz J Microbiol 2020; 51:1563-1571. [PMID: 32710175 DOI: 10.1007/s42770-020-00332-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 06/29/2020] [Indexed: 11/26/2022] Open
Abstract
Shigella flexneri has been a major public health problem in developing countries. This work analyzed the frequency of 16 virulence genes, the genotypic diversity, and the antimicrobial resistance profiles of 130 S. flexneri strains isolated in Brazil. The ipaH gene was found in all the 130 strains. The frequencies of the other genes were variable ial (88.5%), sigA (82.3%), iuc (74.6%), virA (73%), pic (72.3%), virF (57.7%), sat (48.5%), ipaBCD (37%), sen (36%), set1A (35.4%), sepA (30%), set1B (30%), virB (14%), icsA (10%), and ipgD (5.4%). A total of 57 (43.8%) strains were multidrug-resistant. ERIC-PCR grouped 96 of the strains into a single cluster with ≥ 70.4% of similarity, 75 of these strains presented a similarity ≥ 80.9%. PFGE grouped 120 of the strains into a single cluster with 57.4% of similarity and 82 of these strains presented a similarity ≥ 70.6%. In conclusion, the high frequency of some virulence genes reinforces the pathogenic potential of the strains studied. The high rates of MDR strains are alarming once it may lead to failure when antimicrobial treatment is necessary. Genotype techniques reveled a major cluster with high genetic similarity including S. flexneri strains from the different Brazilian states and distinct years of isolation, showing that they probably emerged from a common ancestor.
Collapse
Affiliation(s)
- Júlia Cunha Gonzales
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo-USP, Av. do Café, s/no-Campus Universitário USP, Ribeirão Preto, SP, 14040-903, Brazil
| | - Amanda Aparecida Seribelli
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo-USP, Av. do Café, s/no-Campus Universitário USP, Ribeirão Preto, SP, 14040-903, Brazil
| | - Carolina Nogueira Gomes
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo-USP, Av. do Café, s/no-Campus Universitário USP, Ribeirão Preto, SP, 14040-903, Brazil
| | | | - Fábio Campioni
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo-USP, Av. do Café, s/no-Campus Universitário USP, Ribeirão Preto, SP, 14040-903, Brazil
| | - Jaqueline Passaglia
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo-USP, Av. do Café, s/no-Campus Universitário USP, Ribeirão Preto, SP, 14040-903, Brazil
| | - Paulo da Silva
- Instituto Adolfo Lutz de Ribeirão Preto, São Paulo, Brazil
| | - Juliana Pfrimer Falcão
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo-USP, Av. do Café, s/no-Campus Universitário USP, Ribeirão Preto, SP, 14040-903, Brazil.
| |
Collapse
|
8
|
Shooshtari FS, Navidifar T, Amin M, Goodarzi H. Coexistence of genes encoding aminoglycoside modifying enzymes among clinical Acinetobacter baumannii isolates in Ahvaz, Southwest Iran. Acta Microbiol Immunol Hung 2019; 67:33-41. [PMID: 31833384 DOI: 10.1556/030.66.2019.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 10/16/2019] [Indexed: 11/19/2022]
Abstract
Aminoglycosides are widely recommended for treatment of Acinetobacter baumannii infections in combination with β-lactams or quinolones. This cross-sectional study was aimed to investigate the coexistence of aminoglycoside modifying enzyme (AME) genes among A. baumannii isolates from clinical samples in Ahvaz, Iran. A total of 85 clinical A. baumannii isolates typed by ERIC-PCR were investigated for the presence of AME genes, including ant(3″)-Ia, aac(6')-Ib, aac(3')-Ia, ant(2″)-Ia, and aph(3')-VIa by PCR. The resistance rates to aminoglycoside agents were evaluated by disk diffusion. In this study, 84 out of 85 A. baumannii isolates were resistant to at least one of the aminoglycosides and harbored at least one AME gene. The most common gene encoding AMEs was aph (3')VIa, followed by aac(3')-Ia, ant(3″)-Ia, ant (2″)-Ia, and aac(6')-Ib. The aminoglycoside-resistant genotypes were completely matched to resistant phenotypes to each one of the aminoglycoside agents. There was a clear association between AME gene types and the phenotype of resistance to aminoglycosides with their ERIC-PCR types. Our findings highlight the coexistence of AME genes and clonal dissemination of multiresistant A. baumannii in hospital setting.
Collapse
Affiliation(s)
- Farkhondeh Saleh Shooshtari
- 1 Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- 2 Infertility Research and Treatment Center of Jahad Daneshgahi, Ahvaz, Iran
| | - Tahereh Navidifar
- 1 Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mansour Amin
- 1 Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- 3 Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hamed Goodarzi
- 1 Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
9
|
Moosavian M, Ghaderiyan GH, Shahin M, Navidifar T. First investigation of the presence of SPATE genes in Shigella species isolated from children with diarrhea infection in Ahvaz, southwest Iran. Infect Drug Resist 2019; 12:795-804. [PMID: 31114261 PMCID: PMC6497838 DOI: 10.2147/idr.s194740] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 03/04/2019] [Indexed: 11/29/2022] Open
Abstract
Background:SPATE (serine protease autotransporters of enterobacteriaceae) genes are considered as a group of the main virulence factors of Shigella species This study aimed to investigate for the first time the distribution of SPATE genes among Shigella spp. isolated from children with diarrhea infection in Ahvaz, Iran. Methodology: In this study, a total of 74 Shigella isolates were collected between August 2016 and June 2017 from feces of children with diarrhea and identified by biochemical and molecular methods for Shigella species. The frequency distribution of the SPATE genes, including pic, pet, sat, sigA and sepA, was evaluated using PCR. The genetic relationship of all isolates was evaluated by enterobacterial repetitive intergenic consensus-PCR. Results: The most common species of Shigella was S. flexneri, followed by S. sonnei and S. boydii. In total, 95.94% of Shigella isolates had at least one of the SPATE genes. The presence of pic, pet, sat, sigA and sepA genes was confirmed among 35.13%, 27%, 47.29%, 58.1% and 39.18% of Shigella isolates, respectively. Of these SPATE genes, the sat and sigA genes were recognized as the most common autotransporters among S. flexneri and S. sonnei isolates, respectively. Also, either S. flexneri or S. sonnei isolates belonging to a same clone type had similar SPATE genes profile. Conclusion: Our results revealed that the high distribution of SPATE genes among Shigella isolates in our region. Hence, this study highlights a need for epidemiological programs to monitor the distribution of SPATE genes locally for prevention from further dissemination of the Shigella isolates harboring them.
Collapse
Affiliation(s)
- Mojtaba Moosavian
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Gholam Hossein Ghaderiyan
- Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mojtaba Shahin
- Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Tahereh Navidifar
- Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
10
|
Evaluation of BOX-PCR and ERIC-PCR as Molecular Typing Tools for Pathogenic Leptospira. DISEASE MARKERS 2018; 2018:1351634. [PMID: 30154937 PMCID: PMC6092967 DOI: 10.1155/2018/1351634] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/05/2018] [Accepted: 07/18/2018] [Indexed: 01/17/2023]
Abstract
In the last decades, leptospirosis had gained public health concern due to morbidity and mortality rates caused by pathogenic Leptospira. The need for rapid and robust molecular typing methods to differentiate this zoonotic pathogen is of utmost importance. Various studies had been conducted to determine the genetic relatedness of Leptospira isolates using molecular typing methods. In this study, 29 pathogenic Leptospira isolates from rat, soil, and water samples in Sarawak, Malaysia, were characterized using BOX-PCR and ERIC-PCR. The effectiveness of these two methods with regard to the ease of interpretation, reproducibility, typeability, and discriminatory power was also being evaluated. Using BOX-PCR, six clusters and 3 single isolates were defined at a genetic distance percentage of 11.2%. ERIC-PCR clustered the isolates into 6 clusters and 2 single isolates at a genetic distance percentage of 6.8%. Both BOX-PCR and ERIC-PCR produced comparable results though the discriminatory index for ERIC-PCR (0.826) was higher than that for BOX-PCR (0.809). From the constructed dendrogram, it could be summarized that the isolates in this study were highly heterogeneous and genetically diverse. The findings from this study indicated that there is no genetic relatedness among the pathogenic Leptospira isolates in relation to the locality, source, and identity, with some exceptions. Out of the 29 pathogenic Leptospira isolates studied, BOX-PCR and ERIC-PCR successfully discriminated 4 isolates (2 isolates each) into the same cluster in relation to sample sources, as well as 2 isolates into the same cluster in association with the sample locality. Future studies shall incorporate the use of other molecular typing methods to make a more thorough comparison on the genetic relatedness of pathogenic Leptospira.
Collapse
|
11
|
Jena J, Debata NK, Sahoo RK, Gaur M, Subudhi E. Genetic diversity study of various β-lactamase-producing multidrug-resistant Escherichia coli isolates from a tertiary care hospital using ERIC-PCR. Indian J Med Res 2017; 146:S23-S29. [PMID: 29205192 PMCID: PMC5735567 DOI: 10.4103/ijmr.ijmr_575_16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND & OBJECTIVES The prevalence of multidrug-resistant (MDR) Escherichia coli isolates producing β-lactamase enzyme is a growing problem across the globe. Strain typing is an epidemiologically important tool not only for detecting the cross transmission of nosocomial pathogens but also for determining the source of infection. The present study was conducted to understand the clonal relationship among various β-lactamase-producing MDR E. coli isolates using enterobacterial repetitive intergenic consensus (ERIC) polymerase chain reaction (PCR). METHODS A total of 41 MDR E. coli isolates were randomly collected from various clinical samples and processed. Isolated organisms were tested for antibiotics resistance pattern. Phenotypic detection of metallo β-lactamases (MBL) was carried out by the imipenem-ethylenediaminetetraacetic acid disc diffusion/double-disc synergy test. AmpC enzyme production was tested by a modified three-dimensional extract test. RESULTS Almost all isolates were found sensitive to colistin. A high percentage of drug resistance was observed in these isolates against ceftazidime (100%), cefotaxime (100%), cefepime (100%), ofloxacin (97.56%), amoxicillin/clavulanic acid (97.56%) and norfloxacin (85.36%). Of the 41 isolates, ESBL producers were found to be predominant, i.e., 22 (53.65%), followed by AmpC (6, 14.63%) and MBL (5, 12.19%). INTERPRETATION & CONCLUSIONS At 60 per cent similarity cut-off value, the dendrogram analysis showed that there were a total of 14 unique clusters of ERIC (CL-1 - CL-14) within the 41 E. coli isolates, which revealed the genetic diversity existing between them.
Collapse
Affiliation(s)
- Jayanti Jena
- Department of Microbiology, Institute of Medical Sciences & SUM Hospital, Bhubaneswar, India
| | - Nagen Kumar Debata
- Department of Microbiology, Institute of Medical Sciences & SUM Hospital, Bhubaneswar, India
| | - Rajesh Kumar Sahoo
- Centre of Biotechnology, Siksha 'O' Anusandhan University, Bhubaneswar, India
| | - Mahendra Gaur
- Centre of Biotechnology, Siksha 'O' Anusandhan University, Bhubaneswar, India
| | - Enketeswara Subudhi
- Centre of Biotechnology, Siksha 'O' Anusandhan University, Bhubaneswar, India
| |
Collapse
|
12
|
Li X, Liu L, Li Q, Xu G, Zheng J. Salmonella Contamination in Layer Farms in China: Detection and Genetic Analysis. J Poult Sci 2017; 55:1-9. [PMID: 32055150 PMCID: PMC6756376 DOI: 10.2141/jpsa.0160144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 06/23/2017] [Indexed: 11/21/2022] Open
Abstract
Salmonella is the most common cause of foodborne illnesses worldwide. Poultry eggs are a major contamination source of Salmonella. The prevalence of Salmonella has been effectively reduced since a series of measures were taken to reduce contamination in egg-laying houses. In the present study, 1,512 environmental samples obtained from layer farms of different production scales were screened in a voluntary Salmonella survey study. Contaminations were detected using a PCR method. Genetic relationships among Salmonella samples were specified using molecular typing by enterobacterial repetitive intergenic consensus (ERIC)-PCR. The survey results showed that two layer farms, located in the Shandong and Hebei provinces, were contaminated with Salmonella. Thirty-one samples from these two farms, including feed, drinking nipples, egg collection belt, air inlets and outlets, air, overshoes, and eggshells, were identified as Salmonella-positive. It was observed that certain samples within the henhouses as well as in the egg collecting areas showed relatively high genetic similarities. The survey conclusively revealed minor Salmonella contamination in northern China. Moreover, various areas within the layer farms were identified as part of the propagation chain of Salmonella. Furthermore, evidence of cross-contamination of Salmonella was found in the laying houses and egg collection areas, even between these two regions. Therefore, it is necessary to establish routine Salmonella detection and subsequent environmental control measures in order to decrease the prevalence of Salmonella.
Collapse
Affiliation(s)
- Xingzheng Li
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Lei Liu
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Quanlin Li
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Guiyun Xu
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jiangxia Zheng
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
13
|
|
14
|
Das A, Natarajan M, Mandal J. The Emergence of Quinolone Resistant Shigella sonnei, Pondicherry, India. PLoS One 2016; 11:e0160290. [PMID: 27494616 PMCID: PMC4975386 DOI: 10.1371/journal.pone.0160290] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/15/2016] [Indexed: 11/24/2022] Open
Abstract
Ciprofloxacin resistant Shigella sonnei across the globe have been increasing alarmingly. In order to understand the emergence of S.sonnei with respect to ciprofloxacin resistance in our patient population, the following study was carried out. Of the 184 Shigella sp. Isolated from 2012 to 2015, 34 S.sonnei which were confirmed by standard methods and subjected to antimicrobial susceptibility testing were selected. The minimum inhibitory concentrations (MICs) of 16/34 quinolone resistant isolates tested ranged from 4micrograms/ml to 16micrograms/ml for ciprofloxacin, from 16 micrograms/ml to 64 micrograms/ml for ofloxacin and from 16micrograms/ml to 64micrograms/ml for levofloxacin. Sequence determination of the quinolone resistance determining regions of gyrA, gyrB, parC, and parE genes showed mutations in GyrA at Gln69/Trp, Phe71/Ser, Ser72/Pro, Met75/Leu, Ser90/Cys, Met94/Leu, His106/Pro, Asn161/His, Thr163/Ala and in ParC at Ala64/Asp. Among the plasmid-mediated quinolone resistance (PMQRs) targets investigated,qnrB was the most (93.7%) prevalent followed by qnrC (18.7%). None hadqnrA, qnrS and qepA. Two (0.1%) of the isolates harboured theaac(6’)-lb gene. Drug accumulation assay detected the presence of efflux pump activity in 9/15 (60%) among ciprofloxacin resistant isolates. All isolates harboured the ipaH gene followed by ial (17.6%), sen (11.7%), set1A&set1B (5.8%) genes. None had stx1 element. PCR for Enterobacterial repetitive intergenic consensus (ERIC) sequences resulted in 4 unique clusters, of which Type III was the most (44%) dominant but there was no correlation between the ERIC types and the antibiotic resistance pattern or the virulence profile. A documented increase in S.sonnei harbouring the qnrgenes and some unusual genes like set1Aand indicate an ongoing process of horizontal gene transfer. The accumulation of novel mutations in GyrA and ParC in the presence of efflux pump and PMQR genes contributed to the raised MIC to quinolones. These findings are crucial in our understanding of quinolone resistance in these isolates.
Collapse
Affiliation(s)
- Ankita Das
- Department of Microbiology, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry, India
| | - Mailan Natarajan
- Department of Microbiology, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry, India
| | - Jharna Mandal
- Department of Microbiology, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry, India
- * E-mail:
| |
Collapse
|
15
|
Seribelli AA, Frazão MR, Medeiros MIC, Falcão JP. Molecular and phenotypic characterization of strains of Shigella sonnei isolated over 31 years suggests the circulation of two prevalent subtypes in São Paulo State, Brazil. J Med Microbiol 2016; 65:666-677. [PMID: 27267912 DOI: 10.1099/jmm.0.000290] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Shigella sonnei is an important causative agent of bacillary dysentery worldwide that has recently emerged in developing countries. However, there are few studies that have characterized strains ofS. sonnei isolated in Brazil. The aims of this study were to assess the presence of 12 virulence genes, the antimicrobial resistance profile against 16 drugs and the genotypic diversity of strains of S. sonnei isolated in this country. Seventy-two strains of S. sonnei isolated from human diarrhoeic faeces in São Paulo State, Brazil from 1983-2014 were studied. All of the strains contained the ipaH, iuc and sigA genes. The ipaBCD gene was detected in 19 % of the strains, the ial and virF genes in 18 % and the sen gene in 10 % of the strains. The set1A, set1B, pic,sepA and sat genes were not detected. A total of 42 (58.3 %) strains were resistant to trimethoprim-sulfamethoxazole. Thirty (41.6 %) strains were resistant to tetracycline. The S. sonnei strains were grouped in two clusters called A and B by PFGE and ERIC-PCR, and the majority of the strains comprised in each cluster presented ≥80 % similarity. In conclusion, the pathogenic potential of the strains studied was highlighted by the presence of important virulence genes. The high rates of resistance to trimethoprim-sulfamethoxazole and tetracycline are alarming once those drugs can be used in the treatment of shigellosis. The PFGE and ERIC-PCR results suggest that there are two prevalent subtypes in the studied strains of S. sonnei that differed little over 31 years and have been contaminating humans and causing diseases in São Paulo State, Brazil.
Collapse
Affiliation(s)
- Amanda Ap Seribelli
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Miliane R Frazão
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | | | - Juliana P Falcão
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
16
|
Secundo de Souza AI, Freitas Neto OCD, Batista DFA, Estupinan ALDPC, Almeida AMD, Barrow PA, Berchieri A. ERIC-PCR genotyping of field isolates ofSalmonella entericasubsp.entericaserovar Gallinarum biovars Gallinarum and Pullorum. Avian Pathol 2015; 44:475-9. [DOI: 10.1080/03079457.2015.1086975] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
17
|
Sakhaei A, Savari M, Shokoohizadeh L, Hadian M, Ekrami A. Characterization of Shigella Strains by Plasmid Profile Analysis and Antibiotic Susceptibility Patterns in a Pediatric Hospital in Ahvaz. INTERNATIONAL JOURNAL OF ENTERIC PATHOGENS 2015. [DOI: 10.17795/ijep29924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
18
|
Ranjbar R, Memariani M, Memariani H. Diversity of Variable Number Tandem Repeat Loci in Shigella Species Isolated from Pediatric Patients. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2015; 4:174-81. [PMID: 26629486 PMCID: PMC4644529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Multilocus variable number tandem repeat (VNTR) analysis (MLVA) is a new typing method with several advantages compared to other methods. Dissemination of Shigella is highly significant in developing countries. Whilst Shigella is becoming increasingly important as an etiologic agent of pediatric shigellosis in Iran, little is known about the genetic diversity of the local strains. Therefore, the aim of this study was to describe the genetic diversity of Shigella species isolated from pediatric patients in Tehran, Iran. A total of 53 Shigella isolates were obtained from 1070 patients with diarrhea (less than 12 years of age). All isolates were identified by routine biochemical and serological tests. The confirmed Shigella isolates were further serogrouped (by the slide agglutination) using slide agglutination method. MLVA assay with the seven loci resolved 53 Shigella isolates into 36 different genotypes. Almost all the isolates were classified into five clonal complexes. Furthermore, our MLVA assay could effectively distinguish the four Shigella species. This study has provided valuable insights into the genetic heterogeneity of Shigella species in Tehran, Iran. Our findings can be helpful for further epidemiological surveillance of Shigella species in this country in the future.
Collapse
Affiliation(s)
- Reza Ranjbar
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Mojtaba Memariani
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.,Corresponding author: Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran. E-mail:
| | - Hamed Memariani
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran.,Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
19
|
Ranjbar R, Memariani M. Multilocus variable-number tandem-repeat analysis for genotyping of Shigella sonnei strains isolated from pediatric patients. GASTROENTEROLOGY AND HEPATOLOGY FROM BED TO BENCH 2015; 8:225-32. [PMID: 26328045 PMCID: PMC4553163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 11/10/2014] [Indexed: 10/29/2022]
Abstract
AIM The aims of this study were to characterize Iranian Shigella sonnei strains isolated from pediatric cases and evaluate the utility of multilocus variable-number tandem-repeat (VNTR) analysis (MLVA) for genotyping of local S. sonnei strains. BACKGROUND S. sonnei has become the dominant species in certain parts of Iran. Although PFGE is still a gold standard for genotyping and source tracking of food-borne pathogens, it is laborious, expensive, time-consuming, and often difficult to interpret. However, MLVA is a PCR-based method, which is rapid, relatively inexpensive and easy to perform. PATIENTS AND METHODS A total of 47 S. sonnei isolates were obtained from sporadic cases of pediatric shigellosis in Tehran, Iran, during the years 2002-2003 (n=10) and 2008-2010 (n=37). The patients suffered from acute diarrhea and had evidence of more than three episodes of watery, loose, or bloody stools per day. A MLVA scheme based on 7 VNTR loci was established to assess the diversity of 47 S. sonnei isolates. RESULTS Based on the results, it was clear that the S. sonnei isolates were heterogeneous. Overall, 47 S. sonnei isolates were discriminated into 21 different genotypes. Analysis of the MLVA profiles using a minimum spanning tree (MST) algorithm showed the usefulness of the MLVA assay in discriminating S. sonnei isolates collected over different time periods. However, no correlation was found between the MLVA genotypes and age, gender or clinical symptoms of the patients. CONCLUSION It is assumed that our S. sonnei isolates are derived from a limited number of clones that undergo minor genetic changes in the course of time. The present study has provided some valuable insights into the genetic relatedness of S. sonnei in Tehran, Iran.
Collapse
|
20
|
Hung C, Marschall J, Burnham CAD, Byun AS, Henderson JP. The bacterial amyloid curli is associated with urinary source bloodstream infection. PLoS One 2014; 9:e86009. [PMID: 24465838 PMCID: PMC3896446 DOI: 10.1371/journal.pone.0086009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 12/03/2013] [Indexed: 12/20/2022] Open
Abstract
Urinary tract infections are the most common cause of E. coli bloodstream infections (BSI) but the mechanism of bloodstream invasion is poorly understood. Some clinical isolates have been observed to shield themselves with extracellular amyloid fibers called curli at physiologic temperature. We hypothesize that curli fiber assembly at 37°C promotes bacteremic progression by urinary E. coli strains. Curli expression by cultured E. coli isolates from bacteriuric patients in the presence and absence of bacteremia were compared using Western blotting following amyloid fiber disruption with hexafluoroisopropanol. At 37°C, urinary isolates from bacteremic patients were more likely to express curli than those from non-bacteremic patients [16/22 (73%) vs. 7/21 (33%); p = 0.01]. No significant difference in curli expression was observed at 30°C [86% (19/22) vs. 76% (16/21); p = 0.5]. Isolates were clonally diverse between patients, indicating that this phenotype is distributed across multiple lineages. Most same-patient urine and blood isolates were highly related, consistent with direct invasion of urinary bacteria into the bloodstream. 37°C curli expression was associated with bacteremic progression of urinary E. coli isolates in this population. These findings suggest new future diagnostic and virulence-targeting therapeutic approaches.
Collapse
Affiliation(s)
- Chia Hung
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Center for Women’s Infectious Diseases Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Jonas Marschall
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Center for Women’s Infectious Diseases Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Infectious Diseases, Bern University Hospital, Bern, Switzerland
| | - Carey-Ann D. Burnham
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Albert S. Byun
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Center for Women’s Infectious Diseases Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Jeffrey P. Henderson
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Center for Women’s Infectious Diseases Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
21
|
Ranjbar R, Mirsaeed Ghazi F. Antibiotic Sensitivity Patterns and Molecular Typing of Shigella sonnei Strains Using ERIC-PCR. IRANIAN JOURNAL OF PUBLIC HEALTH 2013; 42:1151-7. [PMID: 26060624 PMCID: PMC4436544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 09/27/2013] [Indexed: 10/24/2022]
Abstract
BACKGROUND Shigella sonnei is considered as a major cause of diarrheal disease in both developing and developed countries. Iran is one of the endemic areas of shigellosis. The present study was undertaken to investigate the antibiotic susceptibility and genetic relatedness of S. sonnei strains isolated from pediatric patients in Tehran, Iran. METHODS The study included all S. sonnei strains isolated from pediatric patients with diarrhea admitted to several hospitals in Tehran, Iran, during 2008-2010. Shigella spp. strains were recovered from patients using standard microbiological methods. S. sonnei strains were further studied by antimicrobial susceptibility testing and Enterobacterial Repetitive Intergenic Consensus (ERIC) - PCR analysis. RESULTS Eighty nine Shigella isolates were isolated. S. sonnei was themost prevalent Shigella species (60.7%) followed by, S. flexneri (31.5%). Eleven antimicrobial resistance patterns (R1-R11) were identified among S. sonnei isolates. The majority of the strains were resistant to trimethoprim-sulfamethoxazole, tetracycline and streptomycin. All isolates were susceptible to ciprofloxacin, ceftizoxime and chloramphenicol. All strains were typable by ERIC-PCR. Five ERIC-PCR patterns (E1-E5) were found among S. sonnei isolates; however the half of the isolates was clustered in E4 pattern. CONCLUSION The antibiotic resistance rates are increasing among S. sonnei strains. Moreover, a predominant clone or limited clones of S. sonnei were responsible for shigellosis caused by this Shigella species in pediatric patients in Tehran, Iran.
Collapse
Affiliation(s)
- Reza Ranjbar
- 1. Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran,* Corresponding Author: Tel: +98-2188039883
| | | |
Collapse
|