1
|
Pitti E, Herling L, Li X, Ajne G, Larsson M. Experimental Assessment of Traction Force and Associated Fetal Brain Deformation in Vacuum-Assisted Delivery. Ann Biomed Eng 2025; 53:825-844. [PMID: 39710825 PMCID: PMC11929728 DOI: 10.1007/s10439-024-03665-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 12/02/2024] [Indexed: 12/24/2024]
Abstract
Vacuum-assisted delivery (VAD) uses a vacuum cup on the fetal scalp to apply traction during uterine contractions, assisting complicated vaginal deliveries. Despite its widespread use, VAD presents a higher risk of neonatal morbidity compared to natural vaginal delivery and biomechanical evidence for safe VAD traction forces is still limited. The aim of this study is to develop and assess the feasibility of an experimental VAD testing setup, and investigate the impact of traction forces on fetal brain deformation. A patient-specific fetal head phantom was developed and subjected to experimental VAD in two testing setups: one with manual and one with automatic force application. The skull phantom was 3D printed using multi-material Polyjet technology. The brain phantom was cast in a 3D-printed mold using a composite hydrogel, and sonomicrometry crystals were used to estimate the brain deformation in three brain regions. The experimental VADs on the fetal head phantom allowed for quantifying brain strain with traction forces up to 112 N. Consistent brain crystal movements aligned with the traction force demonstrated the feasibility of the setup. The estimated brain deformations reached up to 4% and correlated significantly with traction force (p < 0.05) in regions close to the suction cup. Despite limitations such as the absence of scalp modeling and a simplified strain computation, this study provides a baseline for numerical studies and supports further research to optimize the safety of VAD procedures and develop VAD training platforms.
Collapse
Affiliation(s)
- Estelle Pitti
- Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, Stockholm, Sweden.
- Clinical Science Intervention and Technology-CLINTEC, Karolinska Institutet, Stockholm, Sweden.
| | - Lotta Herling
- Clinical Science Intervention and Technology-CLINTEC, Karolinska Institutet, Stockholm, Sweden
- Pregnancy Care & Delivery, Karolinska University Hospital, Stockholm, Sweden
| | - Xiaogai Li
- Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Gunilla Ajne
- Clinical Science Intervention and Technology-CLINTEC, Karolinska Institutet, Stockholm, Sweden
- Pregnancy Care & Delivery, Karolinska University Hospital, Stockholm, Sweden
| | - Matilda Larsson
- Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
2
|
Bradfield C, Voo L, Bhaduri A, Ramesh KT. Validation of a computational biomechanical mouse brain model for rotational head acceleration. Biomech Model Mechanobiol 2024; 23:1347-1367. [PMID: 38662175 DOI: 10.1007/s10237-024-01843-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 03/17/2024] [Indexed: 04/26/2024]
Abstract
Recent mouse brain injury experiments examine diffuse axonal injury resulting from accelerative head rotations. Evaluating brain deformation during these events would provide valuable information on tissue level thresholds for brain injury, but there are many challenges to imaging the brain's mechanical response during dynamic loading events, such as a blunt head impact. To address this shortcoming, we present an experimentally validated computational biomechanics model of the mouse brain that predicts tissue deformation, given the motion of the mouse head during laboratory experiments. First, we developed a finite element model of the mouse brain that computes tissue strains, given the same head rotations as previously conducted in situ hemicephalic mouse brain experiments. Second, we calibrated the model using a single brain segment, and then validated the model based on the spatial and temporal strain responses of other regions. The result is a computational tool that will provide researchers with the ability to predict brain tissue strains that occur during mouse laboratory experiments, and to link the experiments to the resulting neuropathology, such as diffuse axonal injury.
Collapse
Affiliation(s)
- Connor Bradfield
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, 20723, USA, 11100 Johns Hopkins Road.
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA, 3400 North Charles Street.
| | - Liming Voo
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, 20723, USA, 11100 Johns Hopkins Road
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA, 3400 North Charles Street
| | - Anindya Bhaduri
- Department of Civil Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA, 3400 North Charles Street
| | - K T Ramesh
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, 20723, USA, 11100 Johns Hopkins Road
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA, 3400 North Charles Street
- Hopkins Extreme Materials Institute, Johns Hopkins University, Baltimore, MD, 21218, USA, 3400 North Charles Street
| |
Collapse
|
3
|
Bradfield C, Voo L, Drewry D, Koliatsos V, Ramesh KT. Dynamic strain fields of the mouse brain during rotation. Biomech Model Mechanobiol 2024; 23:397-412. [PMID: 37891395 DOI: 10.1007/s10237-023-01781-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023]
Abstract
Mouse models are used to better understand brain injury mechanisms in humans, yet there is a limited understanding of biomechanical relevance, beginning with how the murine brain deforms when the head undergoes rapid rotation from blunt impact. This problem makes it difficult to translate some aspects of diffuse axonal injury from mouse to human. To address this gap, we present the two-dimensional strain field of the mouse brain undergoing dynamic rotation in the sagittal plane. Using a high-speed camera with digital image correlation measurements of the exposed mid-sagittal brain surface, we found that pure rotations (no direct impact to the skull) of 100-200 rad/s are capable of producing complex strain fields that evolve over time with respect to rotational acceleration and deceleration. At the highest rotational velocity tested, the largest tensile strains (≥ 21% elongation) in selected regions of the mouse brain approach strain thresholds previously associated with axonal injury in prior work. These findings provide a benchmark to validate the mechanical response in biomechanical computational models predicting diffuse axonal injury, but much work remains in correlating tissue deformation patterns from computational models with underlying neuropathology.
Collapse
Affiliation(s)
- Connor Bradfield
- Applied Physics Laboratory, Johns Hopkins University, 11100 Johns Hopkins Road, Laurel, MD, 20723, USA.
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.
| | - Liming Voo
- Applied Physics Laboratory, Johns Hopkins University, 11100 Johns Hopkins Road, Laurel, MD, 20723, USA
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - David Drewry
- Applied Physics Laboratory, Johns Hopkins University, 11100 Johns Hopkins Road, Laurel, MD, 20723, USA
| | - Vassilis Koliatsos
- Division of Neuropathology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - K T Ramesh
- Applied Physics Laboratory, Johns Hopkins University, 11100 Johns Hopkins Road, Laurel, MD, 20723, USA
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Hopkins Extreme Materials Institute, Johns Hopkins University, 3400 N Charles St, Baltimore, MD, 21218, USA
| |
Collapse
|
4
|
Rooks TF, Chancey VC, Baisden JL, Yoganandan N. Regional Strain Response of an Anatomically Accurate Human Finite Element Head Model Under Frontal Versus Lateral Loading. Mil Med 2023; 188:420-427. [PMID: 37948232 DOI: 10.1093/milmed/usad178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 04/25/2023] [Accepted: 05/09/2023] [Indexed: 11/12/2023] Open
Abstract
INTRODUCTION Because brain regions are responsible for specific functions, regional damage may cause specific, predictable symptoms. However, the existing brain injury criteria focus on whole brain response. This study developed and validated a detailed human brain computational model with sufficient fidelity to include regional components and demonstrate its feasibility to obtain region-specific brain strains under selected loading. METHODS Model development used the Simulated Injury Monitor (SIMon) model as a baseline. Each SIMon solid element was split into 8, with each shell element split into 4. Anatomical regions were identified from FreeSurfer fsaverage neuroimaging template. Material properties were obtained from literature. The model was validated against experimental intracranial pressure, brain-skull displacement, and brain strain data. Model simulations used data from laboratory experiments with a rigid arm pendulum striking a helmeted head-neck system. Data from impact tests (6 m/s) at 2 helmet sites (front and left) were used. RESULTS Model validation showed good agreement with intracranial pressure response, fair to good agreement with brain-skull displacement, and good agreement for brain strain. CORrelation Analysis scores were between 0.72 and 0.93 for both maximum principal strain (MPS) and shear strain. For frontal impacts, regional MPS was between 0.14 and 0.36 (average of left and right hemispheres). For lateral impacts, MPS was between 0.20 and 0.48 (left hemisphere) and between 0.22 and 0.51 (right hemisphere). For frontal impacts, regional cumulative strain damage measure (CSDM20) was between 0.01 and 0.87. For lateral impacts, CSDM20 was between 0.36 and 0.99 (left hemisphere) and between 0.09 and 0.93 (right hemisphere). CONCLUSIONS Recognizing that neural functions are related to anatomical structures and most model-based injury metrics focus on whole brain response, this study developed an anatomically accurate human brain model to capture regional responses. Model validation was comparable with current models. The model provided sufficient anatomical detail to describe brain regional responses under different impact conditions.
Collapse
Affiliation(s)
- Tyler F Rooks
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Valeta Carol Chancey
- Injury Biomechanics and Protection Group, U.S. Army Aeromedical Research Laboratory, Fort Rucker, AL 36362, USA
| | - Jamie L Baisden
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Narayan Yoganandan
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
5
|
Approximating subject-specific brain injury models via scaling based on head-brain morphological relationships. Biomech Model Mechanobiol 2023; 22:159-175. [PMID: 36201071 DOI: 10.1007/s10237-022-01638-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 09/07/2022] [Indexed: 11/02/2022]
Abstract
Most human head/brain models represent a generic adult male head/brain. They may suffer in accuracy when investigating traumatic brain injury (TBI) on a subject-specific basis. Subject-specific models can be developed from neuroimages; however, neuroimages are not typically available in practice. In this study, we establish simple and elegant regression models between brain outer surface morphology and head dimensions measured from neuroimages along with age and sex information (N = 191; 141 males and 50 females with age ranging 14-25 years). The regression models are then used to approximate subject-specific brain models by scaling a generic counterpart, without using neuroimages. Model geometrical accuracy is assessed using adjusted [Formula: see text] and absolute percentage error (e.g., 0.720 and 3.09 ± 2.38%, respectively, for brain volume when incorporating tragion-to-top). For a subset of 11 subjects (from smallest to largest in brain volume), impact-induced brain strains are compared with those from "morphed models" derived from neuroimage-based mesh warping. We find that regional peak strains from the scaled subject-specific models are comparable to those of the morphed counterparts but could be considerably different from those of the generic model (e.g., linear regression slope of 1.01-1.03 for gray and white matter regions versus 1.16-1.19, or up to ~ 20% overestimation for the smallest brain studied). These results highlight the importance of incorporating brain morphological variations in impact simulation and demonstrate the feasibility of approximating subject-specific brain models without neuroimages using age, sex, and easily measurable head dimensions. The scaled models may improve subject specificity for future TBI investigations.
Collapse
|
6
|
Zhou Z, Li X, Domel AG, Dennis EL, Georgiadis M, Liu Y, Raymond SJ, Grant G, Kleiven S, Camarillo D, Zeineh M. The Presence of the Temporal Horn Exacerbates the Vulnerability of Hippocampus During Head Impacts. Front Bioeng Biotechnol 2022; 10:754344. [PMID: 35392406 PMCID: PMC8980591 DOI: 10.3389/fbioe.2022.754344] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
Hippocampal injury is common in traumatic brain injury (TBI) patients, but the underlying pathogenesis remains elusive. In this study, we hypothesize that the presence of the adjacent fluid-containing temporal horn exacerbates the biomechanical vulnerability of the hippocampus. Two finite element models of the human head were used to investigate this hypothesis, one with and one without the temporal horn, and both including a detailed hippocampal subfield delineation. A fluid-structure interaction coupling approach was used to simulate the brain-ventricle interface, in which the intraventricular cerebrospinal fluid was represented by an arbitrary Lagrangian-Eulerian multi-material formation to account for its fluid behavior. By comparing the response of these two models under identical loadings, the model that included the temporal horn predicted increased magnitudes of strain and strain rate in the hippocampus with respect to its counterpart without the temporal horn. This specifically affected cornu ammonis (CA) 1 (CA1), CA2/3, hippocampal tail, subiculum, and the adjacent amygdala and ventral diencephalon. These computational results suggest that the presence of the temporal horn exacerbate the vulnerability of the hippocampus, highlighting the mechanobiological dependency of the hippocampus on the temporal horn.
Collapse
Affiliation(s)
- Zhou Zhou
- Department of Bioengineering, Stanford University, Stanford, CA, United States
- Neuronic Engineering, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Xiaogai Li
- Neuronic Engineering, KTH Royal Institute of Technology, Stockholm, Sweden
| | - August G. Domel
- Department of Bioengineering, Stanford University, Stanford, CA, United States
| | - Emily L. Dennis
- TBI and Concussion Center, Department of Neurology, University of Utah, Salt Lake City, UT, United States
- Department of Radiology, Stanford University, Stanford, CA, United States
| | - Marios Georgiadis
- Department of Radiology, Stanford University, Stanford, CA, United States
| | - Yuzhe Liu
- Department of Bioengineering, Stanford University, Stanford, CA, United States
| | - Samuel J. Raymond
- Department of Bioengineering, Stanford University, Stanford, CA, United States
| | - Gerald Grant
- Department of Neurosurgery, Stanford University, Stanford, CA, United States
- Department of Neurology, Stanford University, Stanford, CA, United States
| | - Svein Kleiven
- Neuronic Engineering, KTH Royal Institute of Technology, Stockholm, Sweden
| | - David Camarillo
- Department of Bioengineering, Stanford University, Stanford, CA, United States
- Department of Neurosurgery, Stanford University, Stanford, CA, United States
- Department of Mechanical Engineering, Stanford University, Stanford, CA, United States
| | - Michael Zeineh
- Department of Radiology, Stanford University, Stanford, CA, United States
| |
Collapse
|
7
|
Toward subject-specific evaluation: methods of evaluating finite element brain models using experimental high-rate rotational brain motion. Biomech Model Mechanobiol 2021; 20:2301-2317. [PMID: 34432184 DOI: 10.1007/s10237-021-01508-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 08/13/2021] [Indexed: 10/20/2022]
Abstract
Computational models of the brain have become the gold standard in biomechanics to understand, predict, and mitigate traumatic brain injuries. Many models have been created and evaluated with limited experimental data and without accounting for subject-specific morphometry of the specimens in the dataset. Recent advancements in the measurement of brain motion using sonomicrometry allow for a comprehensive evaluation of brain model biofidelity using a high-rate, rotational brain motion dataset. In this study, four methods were used to determine the best technique to compare nodal displacement to experimental brain motion, including a new morphing method to match subject-specific inner skull geometry. Three finite element brain models were evaluated in this study: the isotropic GHBMC and SIMon models, as well as an anisotropic model with explicitly embedded axons (UVA-EAM). Using a weighted cross-correlation score (between 0 and 1), the anisotropic model yielded the highest average scores across specimens and loading conditions ranging from 0.53 to 0.63, followed by the isotropic GHBMC with average scores ranging from 0.46 to 0.58, and then the SIMon model with average scores ranging from 0.36 to 0.51. The choice of comparison method did not significantly affect the cross-correlation score, and differences of global strain up to 0.1 were found for the morphed geometry relative to baseline models. The morphed or scaled geometry is recommended when evaluating computational brain models to capture the subject-specific skull geometry of the experimental specimens.
Collapse
|
8
|
A Review of Validation Methods for the Intracranial Response of FEHM to Blunt Impacts. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10207227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The following is a review of the processes currently employed when validating the intracranial response of Finite Element Head Models (FEHM) against blunt impacts. The authors aim to collate existing validation tools, their applications and findings on their effectiveness to aid researchers in the validation of future FEHM and potential efforts in improving procedures. In this vain, publications providing experimental data on the intracranial pressure, relative brain displacement and brain strain responses to impacts in human subjects are surveyed and key data are summarised. This includes cases that have previously been used in FEHM validation and alternatives with similar potential uses. The processes employed to replicate impact conditions and the resulting head motion are reviewed, as are the analytical techniques used to judge the validity of the models. Finally, publications exploring the validation process and factors affecting it are critically discussed. Reviewing FEHM validation in this way highlights the lack of a single best practice, or an obvious solution to create one using the tools currently available. There is clear scope to improve the validation process of FEHM, and the data available to achieve this. By collecting information from existing publications, it is hoped this review can help guide such developments and provide a point of reference for researchers looking to validate or investigate FEHM in the future, enabling them to make informed choices about the simulation of impacts, how they are generated numerically and the factors considered during output assessment, whilst being aware of potential limitations in the process.
Collapse
|
9
|
Anderson ED, Giudice JS, Wu T, Panzer MB, Meaney DF. Predicting Concussion Outcome by Integrating Finite Element Modeling and Network Analysis. Front Bioeng Biotechnol 2020; 8:309. [PMID: 32351948 PMCID: PMC7174699 DOI: 10.3389/fbioe.2020.00309] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 03/23/2020] [Indexed: 12/11/2022] Open
Abstract
Concussion is a significant public health problem affecting 1.6-2.4 million Americans annually. An alternative to reducing the burden of concussion is to reduce its incidence with improved protective equipment and injury mitigation systems. Finite element (FE) models of the brain response to blunt trauma are often used to estimate injury potential and can lead to improved helmet designs. However, these models have yet to incorporate how the patterns of brain connectivity disruption after impact affects the relay of information in the injured brain. Furthermore, FE brain models typically do not consider the differences in individual brain structural connectivities and their purported role in concussion risk. Here, we use graph theory techniques to integrate brain deformations predicted from FE modeling with measurements of network efficiency to identify brain regions whose connectivity characteristics may influence concussion risk. We computed maximum principal strain in 129 brain regions using head kinematics measured from 53 professional football impact reconstructions that included concussive and non-concussive cases. In parallel, using diffusion spectrum imaging data from 30 healthy subjects, we simulated structural lesioning of each of the same 129 brain regions. We simulated lesioning by removing each region one at a time along with all its connections. In turn, we computed the resultant change in global efficiency to identify regions important for network communication. We found that brain regions that deformed the most during an impact did not overlap with regions most important for network communication (Pearson's correlation, ρ = 0.07; p = 0.45). Despite this dissimilarity, we found that predicting concussion incidence was equally accurate when considering either areas of high strain or of high importance to global efficiency. Interestingly, accuracy for concussion prediction varied considerably across the 30 healthy connectomes. These results suggest that individual network structure is an important confounding variable in concussion prediction and that further investigation of its role may improve concussion prediction and lead to the development of more effective protective equipment.
Collapse
Affiliation(s)
- Erin D. Anderson
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | - J. Sebastian Giudice
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, United States
| | - Taotao Wu
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, United States
| | - Matthew B. Panzer
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, United States
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States
| | - David F. Meaney
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|