1
|
Abstract
The global mortality, morbidity, and healthcare costs associated with cardiometabolic disease, including obesity, diabetes, hypertension, and dyslipidemia, are substantial and represent an expanding unmet medical need. Herein, we have identified a physiological role for C-type natriuretic peptide (CNP) in regulating key processes, including thermogenesis and adipogenesis, which combine to coordinate metabolic function and prevent the development of cardiometabolic disorders. This protective mechanism, which is in part mediated via an autocrine action of CNP on adipocytes, is underpinned by activation of cognate natriuretic peptide receptors (NPR)-B and NPR-C. This mechanism advances the fundamental understanding of energy homeostasis and glucose handling and offers the promise of improving the treatment of cardiometabolic disease. Thermogenesis and adipogenesis are tightly regulated mechanisms that maintain lipid homeostasis and energy balance; dysfunction of these critical processes underpins obesity and contributes to cardiometabolic disease. C-type natriuretic peptide (CNP) fulfills a multimodal protective role in the cardiovascular system governing local blood flow, angiogenesis, cardiac function, and immune cell reactivity. Herein, we investigated a parallel, preservative function for CNP in coordinating metabolic homeostasis. Global inducible CNP knockout mice exhibited reduced body weight, higher temperature, lower adiposity, and greater energy expenditure in vivo. This thermogenic phenotype was associated with increased expression of uncoupling protein-1 and preferential lipid utilization by mitochondria, a switch corroborated by a corresponding diminution of insulin secretion and glucose clearance. Complementary studies in isolated murine and human adipocytes revealed that CNP exerts these metabolic regulatory actions by inhibiting sympathetic thermogenic programming via Gi-coupled natriuretic peptide receptor (NPR)-C and reducing peroxisome proliferator-activated receptor-γ coactivator-1α expression, while concomitantly driving adipogenesis via NPR-B/protein kinase-G. Finally, we identified an association between CNP/NPR-C expression and obesity in patient samples. These findings establish a pivotal physiological role for CNP as a metabolic switch to balance energy homeostasis. Pharmacological targeting of these receptors may offer therapeutic utility in the metabolic syndrome and related cardiovascular disorders.
Collapse
|
2
|
Sogawa-Fujiwara C, Fujiwara Y, Hanagata A, Yang Q, Mihara T, Kaji N, Kunieda T, Hori M. Npr2 mutant mice show vasodilation and undeveloped adipocytes in mesentery. BMC Res Notes 2021; 14:438. [PMID: 34838130 PMCID: PMC8626926 DOI: 10.1186/s13104-021-05853-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/15/2021] [Indexed: 11/10/2022] Open
Abstract
Objective The biological importance for the signaling of C-type natriuretic peptide (CNP) and natriuretic peptide receptor B (NPR-B) has been recognized. However, the details remain unclear and are debatable. The Npr2 is a gene of NPR-B, and we previously reported a unique phenotype of a spontaneous mutant mouse lacking Npr2 (Npr2slw/slw), such as severe ileus-like disorder with bloodless blood vessels. In this study, we analyzed the bloodless mesenteric vascular morphology of Npr2slw/slw by histological observation to clarify the effects of the CNP/NPR-B signal deficiency. Results Blood vessels in the mesentery were clearly dilated in the preweaning Npr2slw/slw mice. Additionally, in the Npr2slw/slw mice, the lacteals were partially dilation or randomly direction mucosal epithelial cells in villi, and mesenteric adipocytes were undeveloped. These findings provide important information for understanding the role of CNP/NPR-B signals on intestine with mesentery.
Collapse
Affiliation(s)
- Chizuru Sogawa-Fujiwara
- Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| | - Yasuhiro Fujiwara
- Laboratory of Pathology and Development, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Atsuki Hanagata
- Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Qunhui Yang
- Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Taiki Mihara
- Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Noriyuki Kaji
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan
| | - Tetsuo Kunieda
- Faculty of Veterinary Medcine, Okayama University of Science, 1-3 Ikoino-oka, Imabari, Ehime, 794-8555, Japan
| | - Masatoshi Hori
- Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
3
|
Cabiati M, Sgalippa A, Federico G, Del Ry S. C-type natriuretic peptide in childhood obesity. Peptides 2021; 145:170639. [PMID: 34425175 DOI: 10.1016/j.peptides.2021.170639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/23/2021] [Accepted: 08/17/2021] [Indexed: 11/30/2022]
Abstract
According to the World Health Organization obesity is the result of an energy imbalance between calories assumed and expended and over the past 30 years its incidence has dramatically increased. Recently, the problem of obesity has drastically increased also in childhood, assuming a social relevance. Childhood obesity, in fact, increases the possibility to be obese in adulthood, representing a risk for cardiovascular morbidity and mortality. Aim of this review was to carry out a revision of the literature on childhood obesity focusing on natriuretic peptides (NPs) and in particular on the role of C-type natriuretic peptide (CNP). In obesity NPs play a fundamental role in the regulation of body weight and energy metabolism. Data on plasma CNP levels in children are scarce. The review of the literature relating to the role of CNP in adolescents showed a progressive reduction in the CNP plasma levels in overweight/obese adolescents compared to normal-weight subjects, as previously observed in obese adults, as well as a different modulation in CNP mRNA expression. An independent association between CNP levels and obesity as well as a significant association with the endothelial dysfunction index was reported, indicating that the peptide could play a very important role as a marker of risk of developing obesity. The results of these studies indicate the importance of adopting healthy lifestyles to improve glucometabolic control as well as to provide the rationale for designing and developing new drugs to modulate the NPs system.
Collapse
Affiliation(s)
- Manuela Cabiati
- Laboratory of Biochemistry and Molecular Biology, Institute of Clinical Physiology, CNR, Pisa, Italy
| | - Agnese Sgalippa
- Laboratory of Biochemistry and Molecular Biology, Institute of Clinical Physiology, CNR, Pisa, Italy
| | - Giovanni Federico
- Unit of Pediatric Endocrinology and Diabetes, Dep. Clinical and Experimental Medicine, University of Pisa, Italy
| | - Silvia Del Ry
- Laboratory of Biochemistry and Molecular Biology, Institute of Clinical Physiology, CNR, Pisa, Italy.
| |
Collapse
|
4
|
Cabiati M, Randazzo E, Salvadori C, Peroni D, Federico G, Del Ry S. Circulating microRNAs associated with C-type natriuretic peptide in childhood obesity. Peptides 2020; 133:170387. [PMID: 32828851 DOI: 10.1016/j.peptides.2020.170387] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/18/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022]
Abstract
Circulating microRNAs (miRNAs) are potential biomarkers of metabolic disease implicated in the pathogenesis of obesity and at present, no data are available on a possible contribution of C-type natriuretic peptides (CNP)-linked miRNAs to childhood obesity. Our aims were to 1) perform an in silico-analysis to identify miRNAs targeting CNP gene; 2) recognize CNP-linked miRNAs associated with obesity; 3) characterize their circulating profiling in normal-weight (N) and obese adolescents (O). A clinical examination was performed in 25 N and 52 O adolescents. CNP plasma levels were detected by immunometric assay while miRNA expression was carried out on peripheral blood using Real-Time PCR. Plasma CNP resulted significantly lower in O than in N (5.58 ± 0.62 vs.14.78 ± 1.35 pg/mL, p < 0.0001). In silico-analysis disclosed several specific circulating CNP-linked miRNAs among which miR-33a-3p, miR-223-5p and miR-142-5p also associated with obesity. MiR-199-5p and miR-4454, known to be associated with obesity but not with CNP, were also studied. miR-223-5p and miR-33a-3p resulted significantly (p = 0.05) higher in O (0.97 ± 0.1; 0.85 ± 0.1, respectively) than in N (0.66 ± 0.11; 0.51 ± 0.08, respectively). Plasma CNP correlated inversely with miR-33a-3p (p = 0.036), miR-223-5p (p = 0.004), miR-199-5p (p = 0.003) and miR-4454 (p < 0.0001). Significantly positive correlations were observed between miR-33a-3p and miR-223-5p (p = 0.002) and between miR-199-5p and miR-4454 (p = 0.0001). Applying a multiple linear regression model, miR-142-5p, miR-199a-5p, miR-223-5p, miR33a-3p, diastolic blood pressure (DBP) and age were independent determinants of CNP. Our results underline the concept that expanding our knowledge on the behaviour of circulating miRNA profile may have a promising role for early identification of obese children at increased risk of cardiometabolic alterations.
Collapse
Affiliation(s)
- Manuela Cabiati
- Laboratory of Biochemistry and Molecular Biology, Institute of Clinical Physiology, CNR, Pisa, Italy
| | - Emioli Randazzo
- Unit of Pediatric Endocrinology and Diabetes, Dep. Clinical and Experimental Medicine, University of Pisa, Italy
| | - Costanza Salvadori
- Laboratory of Biochemistry and Molecular Biology, Institute of Clinical Physiology, CNR, Pisa, Italy
| | - Diego Peroni
- Unit of Pediatric Endocrinology and Diabetes, Dep. Clinical and Experimental Medicine, University of Pisa, Italy
| | - Giovanni Federico
- Unit of Pediatric Endocrinology and Diabetes, Dep. Clinical and Experimental Medicine, University of Pisa, Italy
| | - Silvia Del Ry
- Laboratory of Biochemistry and Molecular Biology, Institute of Clinical Physiology, CNR, Pisa, Italy.
| |
Collapse
|
5
|
Prickett TC, A Espiner E. Circulating products of C-type natriuretic peptide and links with organ function in health and disease. Peptides 2020; 132:170363. [PMID: 32634451 DOI: 10.1016/j.peptides.2020.170363] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/08/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023]
Abstract
Paracrine actions of CNP and rapid degradation at source severely limit study of CNP's many roles in vivo. However provided sensitive and validated assays are used, there is increasing evidence that low concentrations of bioactive CNP in plasma, and the readily detectable concentrations of the bio-inactive processed product of proCNP (aminoterminal proCNP), can be used to advance understanding of the hormone's role in pathophysiology. Provided renal function is normal, concordant changes in both CNP and NTproCNP reflect change in tissue production of proCNP whereas change in CNP alone results from altered rates of bioactive CNP degradation and are reflected in the ratio of NTproCNP to CNP. As already shown in juveniles, where plasma concentration of CNP products are higher and are associated with concurrent endochondral bone growth, measurements of plasma CNP products in mature adults have potential to clarify organ response to stress and injury. Excepting the role of CNP in fetal-maternal welfare, this review examines evidence linking plasma CNP products with function of a wide range of tissues in adults, including the impact of extraneous factors such as nutrients, hormone therapy and exercise.
Collapse
Affiliation(s)
- Timothy Cr Prickett
- Department of Medicine, University of Otago, PO Box 4345, Christchurch, 8140 New Zealand.
| | - Eric A Espiner
- Department of Medicine, University of Otago, PO Box 4345, Christchurch, 8140 New Zealand
| |
Collapse
|
6
|
Del Ry S, Cabiati M, Bianchi V, Randazzo E, Peroni D, Clerico A, Federico G. C-type natriuretic peptide plasma levels and whole blood mRNA expression show different trends in adolescents with different degree of endothelial dysfunction. Peptides 2020; 124:170218. [PMID: 31794787 DOI: 10.1016/j.peptides.2019.170218] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/15/2019] [Accepted: 11/26/2019] [Indexed: 12/13/2022]
Abstract
C-type natriuretic peptide (CNP) is an endogenous adipogenesis regulator whose plasma levels in childhood are known, while no data are available on its expression. Our aim was to evaluate both CNP plasma levels and CNP system expression in whole blood obtained from normal-weight (N, n = 24) and obese (O, n = 16) adolescents (age:13.5 ± 0.4 years). Endothelial function was assessed measuring reactive hyperemia index (RHI). CNP plasma levels, evaluated with specific RIA, resulted significantly lower in O than in N (6.1 ± 0.8 vs.15.2 ± 1.3 pg/mL; p < 0.0001), while CNP/NPR-B/NPR-C mRNA, measured by Real-Time PCR, resulted similar in N (4.1 ± 1.7; 5.0 ± 1.6; 2.2 ± 0.9) and in O (4.3 ± 1.6; 3.5 ± 1.1; 2.3 ± 0.8). RHI was significantly lower in O than in N (1.4 ± 0.08 vs.2.1 ± 0.04, p < 0.0001). Dividing all subjects according to the RHI median value, irrespective of the presence or absence of obesity (Group 1 > 1.9, n = 23, Group 2 < 1.9, n = 17), CNP plasma concentrations resulted significantly (p = 0.014) higher in Group 1 (14.6 ± 1.6) than in Group 2 (7.5 ± 1.0), showing a significant correlation with RHI (p = 0.0026), while CNP mRNA expression was, surprisingly, higher in Group 2 (7.0 ± 2.3) than in Group 1 (1.8 ± 0.4; p = 0.02). NPR-B mRNA resulted similar in both Groups (4.3 ± 1.6; 4.7 ± 1.3) and NPR-C significantly higher in Group 2 (p = 0.02). Our data suggest different trends between CNP plasma levels and expression, assessed for the first time in whole blood, that could reflect changes occurring both at CNP transcriptional level in activated leukocytes due to inflammation, and at circulating levels, due to CNP paracrine/autocrine activities. This could represent an interesting area for new therapies able to modulate endothelial dysfunction.
Collapse
Affiliation(s)
- Silvia Del Ry
- Laboratory of Biochemistry and Molecular Biology, Institute of Clinical Physiology, CNR, Pisa, Italy; Institute of Life Science, Scuola Superiore Sant'Anna, Pisa, Italy.
| | - Manuela Cabiati
- Laboratory of Biochemistry and Molecular Biology, Institute of Clinical Physiology, CNR, Pisa, Italy
| | - Vanessa Bianchi
- Unit of Pediatric Endocrinology and Diabetes, Dep. Clinical and Experimental Medicine, University of Pisa, Italy
| | - Emioli Randazzo
- Unit of Pediatric Endocrinology and Diabetes, Dep. Clinical and Experimental Medicine, University of Pisa, Italy
| | - Diego Peroni
- Unit of Pediatric Endocrinology and Diabetes, Dep. Clinical and Experimental Medicine, University of Pisa, Italy
| | - Aldo Clerico
- Institute of Life Science, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Giovanni Federico
- Unit of Pediatric Endocrinology and Diabetes, Dep. Clinical and Experimental Medicine, University of Pisa, Italy
| |
Collapse
|
7
|
Espiner E, Prickett T, Olney R. Plasma C-Type Natriuretic Peptide: Emerging Applications in Disorders of Skeletal Growth. Horm Res Paediatr 2019; 90:345-357. [PMID: 30844819 DOI: 10.1159/000496544] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 12/30/2018] [Indexed: 11/19/2022] Open
Abstract
Although studies in experimental animals show that blood levels of C-type natriuretic peptide (CNP) and its bioinactive aminoterminal propeptide (NTproCNP) are potential biomarkers of long bone growth, a lack of suitable assays and appropriate reference ranges has limited the application of CNP measurements in clinical practice. Plasma concentrations of the processed product of proCNP, NTproCNP - and to a lesser extent CNP itself - correlate with concurrent height velocity throughout all phases of normal skeletal growth, as well as during interventions known to affect skeletal growth in children. Since a change in levels precedes a measurable change in height velocity during interventions, measuring NTproCNP may have predictive value in clinical practice. Findings from a variety of genetic disorders affecting CNP signaling suggest that plasma concentrations of both peptides may be helpful in diagnosis, provided factors such as concurrent height velocity, feedback regulation of CNP, and differential changes in peptide clearance are considered when interpreting values. An improved understanding of factors affecting plasma levels, and the availability of commercial kits enabling accurate measurement using small volumes of plasma, can be expected to facilitate potential applications in growth disorders including genetic causes -affecting the CNP signaling pathway.
Collapse
Affiliation(s)
- Eric Espiner
- Department of Medicine, University of Otago, Christchurch, Christchurch, New Zealand
| | - Tim Prickett
- Department of Medicine, University of Otago, Christchurch, Christchurch, New Zealand,
| | - Robert Olney
- Division of Endocrinology, Nemours Children's Specialty Care, Jacksonville, Florida, USA
| |
Collapse
|