1
|
Li H, Tan X, Li J, Zhang Q. New Progress in the Study of Pathogenesis of Alcoholic Pancreatitis. Digestion 2025:1-15. [PMID: 39827866 DOI: 10.1159/000542548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 10/29/2024] [Indexed: 01/22/2025]
Abstract
BACKGROUND Alcoholic pancreatitis is a progressive condition characterized by susceptibility to recurrence, progression to chronic pancreatitis, complications, and high morbidity. SUMMARY The main causes include long-term alcoholism, excessive drinking, the toxic effects of alcohol metabolites, interactions with biliary diseases, and genetic factors. Alcohol is the second leading cause of acute pancreatitis (AP) in the USA, accounting for one-third of all AP cases. A follow-up study on readmission revealed that the readmission rate of alcoholic acute pancreatitis (AAP) patients within 11 months was 43.1%, of which men dominated the admissions and readmissions of AAP. Among this population, 82.3% have alcohol use disorder, over half have tobacco use disorders, 6.7% have tobacco use disorder, 4.5% have opioid use disorder, and 18.5% of patients exhibit signs of potential alcoholic chronic pancreatitis. Numerous animal and clinical studies suggest that alcohol alone does not cause pancreatitis; rather, additional factors such as smoking, endotoxin lipopolysaccharide (LPS), genetic mutations, or other genetic predispositions - are necessary for the disease's progression. KEY MESSAGES Given the high rates of admission and readmission for alcoholic pancreatitis, it is essential to further investigate its pathogenesis and pathological processes to develop more effective treatment strategies. Therefore, this paper summarizes the current understanding of the pathogenesis and treatment status of alcoholic pancreatitis, drawing on recently published literature and data to provide insights and references for future research and treatment efforts.
Collapse
Affiliation(s)
- Hanhui Li
- Department of Gastroenterology, First Hospital of Yangtze University, Jingzhou, China,
- Digestive Disease Research Institution of Yangtze University, Jingzhou, China,
- Clinical medical college, Yangtze University, Jingzhou, China,
| | - Xiaoping Tan
- Digestive Disease Research Institution of Yangtze University, Jingzhou, China
- Jingzhou Hospital of Traditional Chinese Medicine, The Third Clinical Medical College of Yangtze University, Jingzhou, China
| | - Jie Li
- Department of Gastroenterology, First Hospital of Yangtze University, Jingzhou, China
- Digestive Disease Research Institution of Yangtze University, Jingzhou, China
| | - Qing Zhang
- Department of Gastroenterology, First Hospital of Yangtze University, Jingzhou, China
- Digestive Disease Research Institution of Yangtze University, Jingzhou, China
- Clinical medical college, Yangtze University, Jingzhou, China
| |
Collapse
|
2
|
Li X, Li X, Jinfeng Z, Yu T, Zhang B, Yang Y. Lysine acetylation and its role in the pathophysiology of acute pancreatitis. Inflamm Res 2025; 74:13. [PMID: 39775049 DOI: 10.1007/s00011-024-01989-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025] Open
Abstract
Acute pancreatitis (AP) represents a severe inflammatory condition of the exocrine pancreas, precipitating systemic organ dysfunction and potential failure. The global prevalence of acute pancreatitis is on an ascending trajectory. The condition carries a significant mortality rate during acute episodes. This underscores the imperative to elucidate the etiopathogenic pathways of acute pancreatitis, enhance comprehension of the disease's intricacies, and identify precise molecular targets coupled with efficacious therapeutic interventions. The pathobiology of acute pancreatitis encompasses not only the ectopic activation of trypsinogen but also extends to disturbances in calcium homeostasis, mitochondrial impairment, autophagic disruption, and endoplasmic reticulum stress responses. Notably, the realm of epigenetic regulation has garnered extensive attention and rigorous investigation in acute pancreatitis research over recent years. One of these modifications, lysine acetylation, is a reversible post-translational modification of proteins that affects enzyme activity, DNA binding, and protein stability by changing the charge on lysine residues and altering protein structure. Numerous studies have revealed the importance of acetylation modification in acute pancreatitis, and that it is a favorable target for the design of new drugs for this disease. This review centers on lysine acetylation, examining the strides made in acute pancreatitis research with a focus on the contributory role of acetylomic alterations in the pathophysiological landscape of acute pancreatitis, thereby aiming to delineate novel therapeutic targets and advance the development of more efficacious treatment modalities.
Collapse
Affiliation(s)
- Xiaoqian Li
- Department of Immunology, School of Basic Medicine, Qingdao University, No. 308 Ningxia Road, Qingdao, 266021, 266071, Shandong, People's Republic of China
| | - Xiaolu Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao, 266021, Shandong, People's Republic of China
| | - Zhang Jinfeng
- Department of Surgery, Songshan Hospital of Qingdao University, Qingdao, 266071, Shandong, People's Republic of China
| | - Tao Yu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao, 266021, Shandong, People's Republic of China
| | - Bei Zhang
- Department of Immunology, School of Basic Medicine, Qingdao University, No. 308 Ningxia Road, Qingdao, 266021, 266071, Shandong, People's Republic of China
| | - Yanyan Yang
- Department of Immunology, School of Basic Medicine, Qingdao University, No. 308 Ningxia Road, Qingdao, 266021, 266071, Shandong, People's Republic of China.
| |
Collapse
|
3
|
Mihoc T, Latcu SC, Secasan CC, Dema V, Cumpanas AA, Selaru M, Pirvu CA, Valceanu AP, Zara F, Dumitru CS, Novacescu D, Pantea S. Pancreatic Morphology, Immunology, and the Pathogenesis of Acute Pancreatitis. Biomedicines 2024; 12:2627. [PMID: 39595191 PMCID: PMC11591934 DOI: 10.3390/biomedicines12112627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/15/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Acute pancreatitis is a complex inflammatory disorder with significant morbidity and mortality. This review aims to integrate the current knowledge of pancreatic morphology and immunology with the pathogenesis of acute pancreatitis, providing a comprehensive understanding of this critical condition. We conducted an extensive literature review, synthesizing data from recent studies and authoritative sources on pancreatic anatomy, histology, immunology, and the pathophysiology of acute pancreatitis. We also incorporated epidemiological data, clinical features, diagnostic criteria, and prognostic factors. The pancreas exhibits a complex morphology with intricate interactions between its exocrine and endocrine components. Its unique immunological landscape plays a crucial role in maintaining homeostasis and orchestrating responses to pathological conditions. In acute pancreatitis, the disruption of intracellular calcium signaling leads to premature enzyme activation, triggering a cascade of events including mitochondrial dysfunction, ATP depletion, and the release of proinflammatory mediators. This process can escalate from localized inflammation to systemic complications. The interplay between pancreatic morphology, immune responses, and pathophysiological mechanisms contributes to the varied clinical presentations and outcomes observed in acute pancreatitis. Understanding the intricate relationships between pancreatic morphology, immunology, and the pathogenesis of acute pancreatitis is crucial for developing more effective diagnostic and therapeutic strategies. This integrated approach provides new insights into the complex nature of acute pancreatitis and may guide future research directions in pancreatic disorders.
Collapse
Affiliation(s)
- Tudorel Mihoc
- Doctoral School, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (T.M.); (V.D.)
- Department X, General Surgery II, Discipline of Surgical Emergencies, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (M.S.); (C.A.P.); (A.P.V.); (S.P.)
| | - Silviu Constantin Latcu
- Doctoral School, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (T.M.); (V.D.)
- Department XV, Discipline of Urology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (C.-C.S.); (A.A.C.)
| | - Cosmin-Ciprian Secasan
- Department XV, Discipline of Urology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (C.-C.S.); (A.A.C.)
| | - Vlad Dema
- Doctoral School, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (T.M.); (V.D.)
- Department XV, Discipline of Urology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (C.-C.S.); (A.A.C.)
| | - Alin Adrian Cumpanas
- Department XV, Discipline of Urology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (C.-C.S.); (A.A.C.)
| | - Mircea Selaru
- Department X, General Surgery II, Discipline of Surgical Emergencies, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (M.S.); (C.A.P.); (A.P.V.); (S.P.)
| | - Catalin Alexandru Pirvu
- Department X, General Surgery II, Discipline of Surgical Emergencies, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (M.S.); (C.A.P.); (A.P.V.); (S.P.)
| | - Andrei Paul Valceanu
- Department X, General Surgery II, Discipline of Surgical Emergencies, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (M.S.); (C.A.P.); (A.P.V.); (S.P.)
| | - Flavia Zara
- Department II of Microscopic Morphology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (F.Z.); (C.-S.D.); (D.N.)
- Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Cristina-Stefania Dumitru
- Department II of Microscopic Morphology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (F.Z.); (C.-S.D.); (D.N.)
- Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Dorin Novacescu
- Department II of Microscopic Morphology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (F.Z.); (C.-S.D.); (D.N.)
- Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Stelian Pantea
- Department X, General Surgery II, Discipline of Surgical Emergencies, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (M.S.); (C.A.P.); (A.P.V.); (S.P.)
| |
Collapse
|
4
|
Tsomidis I, Voumvouraki A, Kouroumalis E. The Pathogenesis of Pancreatitis and the Role of Autophagy. GASTROENTEROLOGY INSIGHTS 2024; 15:303-341. [DOI: 10.3390/gastroent15020022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
The pathogenesis of acute and chronic pancreatitis has recently evolved as new findings demonstrate a complex mechanism operating through various pathways. In this review, the current evidence indicating that several mechanisms act in concert to induce and perpetuate pancreatitis were presented. As autophagy is now considered a fundamental mechanism in the pathophysiology of both acute and chronic pancreatitis, the fundamentals of the autophagy pathway were discussed to allow for a better understanding of the pathophysiological mechanisms of pancreatitis. The various aspects of pathogenesis, including trypsinogen activation, ER stress and mitochondrial dysfunction, the implications of inflammation, and macrophage involvement in innate immunity, as well as the significance of pancreatic stellate cells in the development of fibrosis, were also analyzed. Recent findings on exosomes and the miRNA regulatory role were also presented. Finally, the role of autophagy in the protection and aggravation of pancreatitis and possible therapeutic implications were reviewed.
Collapse
Affiliation(s)
- Ioannis Tsomidis
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Crete, Greece
| | - Argyro Voumvouraki
- 1st Department of Internal Medicine, AHEPA University Hospital, 54621 Thessaloniki, Greece
| | - Elias Kouroumalis
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Crete, Greece
| |
Collapse
|
5
|
Qiu M, Zhou X, Zippi M, Goyal H, Basharat Z, Jagielski M, Hong W. Comprehensive review on the pathogenesis of hypertriglyceridaemia-associated acute pancreatitis. Ann Med 2023; 55:2265939. [PMID: 37813108 PMCID: PMC10563627 DOI: 10.1080/07853890.2023.2265939] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 09/26/2023] [Indexed: 10/11/2023] Open
Abstract
It is well known, that the inflammatory process that characterizes acute pancreatitis (AP) can lead to both pancreatic damage and systemic inflammatory response syndrome (SIRS). During the last 20 years, there has been a growing incidence of episodes of acute pancreatitis associated with hypertriglyceridaemia (HTAP). This review provides an overview of triglyceride metabolism and the potential mechanisms that may contribute to developing or exacerbating HTAP. The article comprehensively discusses the various pathological roles of free fatty acid, inflammatory response mechanisms, the involvement of microcirculation, serum calcium overload, oxidative stress and the endoplasmic reticulum, genetic polymorphism, and gut microbiota, which are known to trigger or escalate this condition. Future perspectives on HTAP appear promising, with ongoing research focused on developing more specific and effective treatment strategies.
Collapse
Affiliation(s)
- Minhao Qiu
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Xiaoying Zhou
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Maddalena Zippi
- Unit of Gastroenterology and Digestive Endoscopy, Sandro Pertini Hospital, Rome, Italy
| | - Hemant Goyal
- Department of Surgery, University of TX Health Sciences Center, Houston, TX, United States
| | | | - Mateusz Jagielski
- Department of General, Gastroenterological and Oncological Surgery, Nicolaus Copernicus University in Toruń, Poland
| | - Wandong Hong
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
6
|
Sharma MK, Priyam K, Kumar P, Garg PK, Roy TS, Jacob TG. Effect of calorie-restriction and rapamycin on autophagy and the severity of caerulein-induced experimental acute pancreatitis in mice. FRONTIERS IN GASTROENTEROLOGY 2022; 1. [DOI: 10.3389/fgstr.2022.977169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
BackgroundImpaired autophagy contributes to development of acute pancreatitis (AP). We studied the effect of inducing autophagy by calorie-restriction and rapamycin, separately, in the caerulein-induced model of severe AP.MethodsAdult, male, Swiss albino mice were given eight, hourly, intraperitoneal injections of caerulein (Ce) (50µg/Kg/dose). The interventions were calorie restriction (CR) and rapamycin (2mg/Kg). Mice were sacrificed at the 9th hour. Pancreas was harvested for histopathology and immunoblotting. Amylase activity and the levels of cytokines were measured in plasma.ResultsThe histopathological score and amylase activity were significantly lower in calorie-restricted caerulein-induced AP (CRCeAP) in comparison to animals that had unrestricted access to chow. In the CRCeAP group, levels of IL-6 and GM-CSF in plasma were lower and the expression of LC3II and Beclin-1 were higher. On transmission electron-microscopy, the area occupied by autophagic vacuoles was higher in CRCeAP. The expression of caspase-8 and caspase-9 was also higher in CRCeAP. In rapamycin with caerulein-induced AP (Rapa+CeAP), the histopathological score and amylase activity were significantly lower than caerulein-induced AP (CeAP). In Rapa+CeAP, the expression of LC3II and Beclin-1 were higher, whereas; SQSTM1 was decreased. The number of autophagic vacuoles in Rapa+CeAP group was fewer. Interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and monocyte chemoattractant protein-1 (MCP-1) were lower in Rapa+CeAP. Caspase-3 increased and high mobility group box 1 (HMGB1) decreased in Rapa+CeAP.ConclusionCalorie-restriction and rapamycin can individually decrease the severity of injury in the caerulein-induced model of severe AP.
Collapse
|
7
|
Zhirong Z, Li H, Yiqun H, Chunyang H, Lichen Z, Zhen T, Tao W, Ruiwu D. Enhancing or inhibiting apoptosis? The effects of ucMSC-Ex in the treatment of different degrees of traumatic pancreatitis. Apoptosis 2022; 27:521-530. [PMID: 35612769 DOI: 10.1007/s10495-022-01732-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2022] [Indexed: 11/28/2022]
Abstract
The animal models of traumatic pancreatitis (TP) were established to evaluate the specific mechanisms by which umbilical cord mesenchymal stem cell-derived exosomes (ucMSC-Ex) exert therapeutic effects. Sixty four rats were randomly divided into eight groups, including TP groups with three different degrees and relevant groups with ucMSC-Ex treated. The degrees of pancreatic tissue injury were evaluated by Histological Examination. Furthermore, enzyme-linked immunosorbent assay were applied to evaluate the activity of pancreatic enzymes and levels of inflammatory factors in serum. Finally, the apoptotic effects of each group were evaluated by TUNEL, western blot (WB), and real time fluorescence quantitative polymerase chain reaction (RT-qPCR). The pancreatic histopathological score and serum amylase and lipase levels gradually increased in various degrees of TP and the levels in the treatment group were all significantly decreased. The apoptosis index gradually increased in each TP group and significantly decreased in the treatment group in TUNEL results. WB and RT-qPCR showed the same trend, that bax and caspase-3 gradually increased and bcl-2 gradually decreased in TP groups. Compared with TP groups, the expression of bax and caspase-3 were lower while bcl-2 expression was higher in the treatment group. ucMSC-Ex suppressed the inflammatory response and inhibited pancreatic acinar cell apoptosis to promote repair of injured pancreatic tissue.
Collapse
Affiliation(s)
- Zhao Zhirong
- College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Han Li
- General Surgery Center, General Hospital of Western Theater Command, No. 270, Rongdu Rd, Jinniu District, Chengdu, 610083, Sichuan, China
- College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - He Yiqun
- The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - He Chunyang
- Hyperbaric Oxygen Department, General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Zhou Lichen
- General Surgery Center, General Hospital of Western Theater Command, No. 270, Rongdu Rd, Jinniu District, Chengdu, 610083, Sichuan, China
- College of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Tan Zhen
- General Surgery Center, General Hospital of Western Theater Command, No. 270, Rongdu Rd, Jinniu District, Chengdu, 610083, Sichuan, China
| | - Wang Tao
- General Surgery Center, General Hospital of Western Theater Command, No. 270, Rongdu Rd, Jinniu District, Chengdu, 610083, Sichuan, China
| | - Dai Ruiwu
- General Surgery Center, General Hospital of Western Theater Command, No. 270, Rongdu Rd, Jinniu District, Chengdu, 610083, Sichuan, China.
- College of Medicine, Southwest Jiaotong University, Chengdu, China.
- College of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
8
|
Martinez-Ramirez AS, Borders TL, Paul L, Schipma M, Wang X, Korobova F, Wright CV, Sosa-Pineda B. Specific Temporal Requirement of Prox1 Activity During Pancreatic Acinar Cell Development. GASTRO HEP ADVANCES 2022; 1:807-823. [PMID: 37829188 PMCID: PMC10569262 DOI: 10.1016/j.gastha.2022.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
BACKGROUND AND AIMS An interactive regulatory network assembled through the induction and downregulation of distinct transcription factors governs acinar cell maturation. Understanding how this network is built is relevant for protocols of directed pancreatic acinar differentiation. The murine transcription factor Prox1 is highly expressed in multipotent pancreatic progenitors and in various mature pancreatic cell types except for acinar cells. In this study, we investigated when is Prox1 expression terminated in developing acinar cells and the potential involvement of its activity in acinar cell specification/differentiation. We also investigated the effects of sustained Prox1 expression in acinar maturation and maintenance. METHODS Prox1 acinar expression was analyzed by immunofluorescence and confocal microscopy. Prox1-null embryos (Prox1GFPCre/Δ), Prox1AcOE transgenic mice, histologic and immunostaining methods, transmission electron microscopy, functional assays, and quantitative RNA and RNA-sequencing methods were used to investigate the effects of Prox1 functional deficiency and sustained Prox1 expression in acinar maturation and homeostasis. RESULTS Immunostaining results reveal transient Prox1 expression in newly committed embryonic acinar cells. RNA-sequencing demonstrate precocious expression of multiple "late" acinar genes in the pancreas of Prox1GFPCre/Δ embryos. Prox1AcOE transgenic mice carrying sustained Prox1 acinar expression have relatively normal pancreas development. In contrast, Prox1AcOE adult mice have severe pancreatic alterations involving reduced acinar gene expression, abnormal acinar secretory granules, acinar atrophy, increased endoplasmic reticulum stress, and mild chronic inflammation. CONCLUSION Prox1 transient expression in early acinar cells is necessary for correct sequential gene expression. Prox1 expression is terminated in developing acinar cells to complete maturation and to preserve homeostasis.
Collapse
Affiliation(s)
- Angelica S. Martinez-Ramirez
- Department of Medicine, Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Thomas L. Borders
- Department of Medicine, Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Leena Paul
- Department of Genetics, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Matthew Schipma
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Xinkun Wang
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Farida Korobova
- Center for Advanced Microscopy, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Christopher V. Wright
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
| | - Beatriz Sosa-Pineda
- Department of Medicine, Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
9
|
Cridge H, Lim SY, Algül H, Steiner JM. New insights into the etiology, risk factors, and pathogenesis of pancreatitis in dogs: Potential impacts on clinical practice. J Vet Intern Med 2022; 36:847-864. [PMID: 35546513 PMCID: PMC9151489 DOI: 10.1111/jvim.16437] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 12/11/2022] Open
Abstract
While most cases of pancreatitis in dogs are thought to be idiopathic, potential risk factors are identified. In this article we provide a state‐of‐the‐art overview of suspected risk factors for pancreatitis in dogs, allowing for improved awareness and detection of potential dog‐specific risk factors, which might guide the development of disease prevention strategies. Additionally, we review important advances in our understanding of the pathophysiology of pancreatitis and potential areas for therapeutic manipulation based thereof. The outcome of pathophysiologic mechanisms and the development of clinical disease is dependent on the balance between stressors and protective mechanisms, which can be evaluated using the critical threshold theory.
Collapse
Affiliation(s)
- Harry Cridge
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Sue Yee Lim
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, Texas, USA
| | - Hana Algül
- Gastrointestinal Cancer and Inflammatory Research Laboratory, Technical University of Munich, Munich, Germany
| | - Jörg M Steiner
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, Texas, USA
| |
Collapse
|
10
|
Duan F, Wang X, Wang H, Wang Y, Zhang Y, Chen J, Zhu X, Chen B. GDF11 ameliorates severe acute pancreatitis through modulating macrophage M1 and M2 polarization by targeting the TGFβR1/SMAD-2 pathway. Int Immunopharmacol 2022; 108:108777. [PMID: 35461108 DOI: 10.1016/j.intimp.2022.108777] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/01/2022] [Accepted: 04/12/2022] [Indexed: 02/07/2023]
Abstract
Severe acute pancreatitis (SAP), as a typical acute inflammatory injury disease, is one of the acute gastrointestinal diseases with a remarkable mortality rate. Macrophages, typical inflammatory cells involved in SAP, play an important role in the pathogenesis of SAP, which are separated into proinflammation M1 and antiinflammation M2. Growth and differentiation factor 11 (GDF11), as a member of the TGF-β family also called BMP-11, has been discovered to suppress inflammation. However, the mechanism by which GDF11 inhibits inflammation and whether it can ameliorate SAP are still elusive. The present research aimed to investigate the roles of GDF11 in SAP and the potential immunomodulatory effect of macrophage polarization. The mouse and rat SAP model were constructed by caerulein and retrograde injection of sodium taurocholate respectively. The effects of GDF11 on SAP were observed by serology, histopathology and tissue inflammation, and the effects of GDF11 on the polarization of macrophages in vivo were observed. Raw264.7 and THP1 crells were used to study the effect of GDF11 on macrophage polarization in vitro. To further investigate the causal link underneath, our team first completed RNA and proteome sequencing, and utilized specific suppressor to determine the implicated signal paths. Herein, we discovered that GDF11 alleviated the damage of pancreatic tissues in cerulein induced SAP mice and SAP rats induced by retrograde injection of sodium taurocholate, and further found that GDF11 facilitated M2 macrophage polarization and diminished M1 macrophage polarization in vivo and in vitro. Subsequently, we further found that the regulation of GDF11 on macrophage polarization through TGFβR1/smad2 pathway. Our results revealed that GDF11 ameliorated SAP and diminished M1 macrophage polarization and facilitated M2 macrophage polarization. The Role of GDF11 in modulating macrophage polarization might be one of the mechanisms by which GDF11 played a protective role in pancreatic tissues during SAP.
Collapse
Affiliation(s)
- Feixiang Duan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China
| | - Xiaowu Wang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China; Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China
| | - Hongwei Wang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China
| | - Yongqiang Wang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China; Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China
| | - Yan Zhang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China
| | - Jiawei Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China
| | - Xiandong Zhu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China; Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China.
| | - Bicheng Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China; Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China.
| |
Collapse
|
11
|
Ravichandran R, PriyaDharshini LC, Sakthivel KM, Rasmi RR. Role and regulation of autophagy in cancer. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166400. [PMID: 35341960 DOI: 10.1016/j.bbadis.2022.166400] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 02/07/2023]
Abstract
Autophagy is an intracellular self-degradative mechanism which responds to cellular conditions like stress or starvation and plays a key role in regulating cell metabolism, energy homeostasis, starvation adaptation, development and cell death. Numerous studies have stipulated the participation of autophagy in cancer, but the role of autophagy either as tumor suppressor or tumor promoter is not clearly understood. However, mechanisms by which autophagy promotes cancer involves a diverse range of modifications of autophagy associated proteins such as ATGs, Beclin-1, mTOR, p53, KRAS etc. and autophagy pathways like mTOR, PI3K, MAPK, EGFR, HIF and NFκB. Furthermore, several researches have highlighted a context-dependent, cell type and stage-dependent regulation of autophagy in cancer. Alongside this, the interaction between tumor cells and their microenvironment including hypoxia has a great potential in modulating autophagy response in favour to substantiate cancer cell metabolism, self-proliferation and metastasis. In this review article, we highlight the mechanism of autophagy and their contribution to cancer cell proliferation and development. In addition, we discuss about tumor microenvironment interaction and their consequence on selective autophagy pathways and the involvement of autophagy in various tumor types and their therapeutic interventions concentrated on exploiting autophagy as a potential target to improve cancer therapy.
Collapse
Affiliation(s)
- Rakesh Ravichandran
- Department of Biotechnology, PSG College of Arts and Science, Civil Aerodrome Post, Coimbatore 641 014, Tamil Nadu, India
| | | | - Kunnathur Murugesan Sakthivel
- Department of Biochemistry, PSG College of Arts and Science, Civil Aerodrome Post, Coimbatore 641 014, Tamil Nadu, India
| | - Rajan Radha Rasmi
- Department of Biotechnology, PSG College of Arts and Science, Civil Aerodrome Post, Coimbatore 641 014, Tamil Nadu, India.
| |
Collapse
|
12
|
Srinivasan MP, Bhopale KK, Caracheo AA, Kaphalia L, Gong B, Popov VL, Boor PJ, Shakeel Ansari GA, Kaphalia BS. Exposure to binge ethanol and fatty acid ethyl esters exacerbates chronic ethanol-induced pancreatic injury in hepatic alcohol dehydrogenase-deficient deer mice. Am J Physiol Gastrointest Liver Physiol 2022; 322:G327-G345. [PMID: 34984929 PMCID: PMC8816639 DOI: 10.1152/ajpgi.00263.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Alcoholic chronic pancreatitis (ACP) is a fibroinflammatory disease of the pancreas. However, metabolic basis of ACP is not clearly understood. In this study, we evaluated differential pancreatic injury in hepatic alcohol dehydrogenase-deficient (ADH-) deer mice fed chronic ethanol (EtOH), chronic plus binge EtOH, and chronic plus binge EtOH and fatty acid ethyl esters (FAEEs, nonoxidative metabolites of EtOH) to understand the metabolic basis of ACP. Hepatic ADH- and ADH normal (ADH+) deer mice were fed Lieber-DeCarli liquid diet containing 3% (wt/vol) EtOH for 3 mo. One week before the euthanization, chronic EtOH-fed mice were further administered with an oral gavage of binge EtOH with/without FAEEs. Blood alcohol concentration (BAC), pancreatic injury, and inflammatory markers were measured. Pancreatic morphology, ultrastructural changes, and endoplasmic reticulum (ER)/oxidative stress were examined using H&E staining, electron microscopy, immunostaining, and/or Western blot, respectively. Overall, BAC was substantially increased in chronic EtOH-fed groups of ADH- versus ADH+ deer mice. A significant change in pancreatic acinar cell morphology, with mild to moderate fibrosis and ultrastructural changes evident by dilatations and disruption of ER cisternae, ER/oxidative stress along with increased levels of inflammatory markers were observed in the pancreas of chronic EtOH-fed groups of ADH- versus ADH+ deer mice. Furthermore, chronic plus binge EtOH and FAEEs exposure elevated BAC, enhanced ER/oxidative stress, and exacerbated chronic EtOH-induced pancreatic injury in ADH- deer mice suggesting a role of increased body burden of EtOH and its metabolism under reduced hepatic ADH in initiation and progression of ACP.NEW & NOTEWORTHY We established a chronic EtOH feeding model of hepatic alcohol dehydrogenase-deficient (ADH-) deer mice, which mimics several fibroinflammatory features of human alcoholic chronic pancreatitis (ACP). The fibroinflammatory and morphological features exacerbated by chronic plus binge EtOH and FAEEs exposure provide a strong case for metabolic basis of ACP. Most importantly, several pathological and molecular targets identified in this study provide a much broader understanding of the mechanism and avenues to develop therapeutics for ACP.
Collapse
Affiliation(s)
- Mukund P. Srinivasan
- 1Department of Pathology, The University of Texas Medical Branch, Galveston, Texas
| | - Kamlesh K. Bhopale
- 1Department of Pathology, The University of Texas Medical Branch, Galveston, Texas
| | - Anna A. Caracheo
- 1Department of Pathology, The University of Texas Medical Branch, Galveston, Texas
| | - Lata Kaphalia
- 2Department of Internal Medicine, The University of Texas Medical Branch, Galveston, Texas
| | - Bin Gong
- 1Department of Pathology, The University of Texas Medical Branch, Galveston, Texas
| | - Vsevolod L. Popov
- 1Department of Pathology, The University of Texas Medical Branch, Galveston, Texas
| | - Paul J. Boor
- 1Department of Pathology, The University of Texas Medical Branch, Galveston, Texas
| | - G. A. Shakeel Ansari
- 1Department of Pathology, The University of Texas Medical Branch, Galveston, Texas
| | | |
Collapse
|
13
|
Sun S, Han Y, Zhang C, Liu H, Wang B, Cao S, Yuan Q, Wei S, Chen Y. Adenosine Kinase Inhibition Prevents Severe Acute Pancreatitis via Suppressing Inflammation and Acinar Cell Necroptosis. Front Cell Dev Biol 2022; 10:827714. [PMID: 35281076 PMCID: PMC8904929 DOI: 10.3389/fcell.2022.827714] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/07/2022] [Indexed: 12/14/2022] Open
Abstract
Background: Inflammatory disorder and acinar cell death contribute to the initiation and progression of severe acute pancreatitis (SAP). Adenosine kinase (ADK) has potential effects on both inflammation and cell death. However, the role of ADK in SAP remains to be explored. Methods: To establish an experimental SAP model, male C57BL/6 mice were intraperitoneally injected with cerulein (50 μg/kg, seven doses at hourly intervals) and LPS (10 mg/kg, at the last cerulein injection). For ADK inhibition, ABT702 (1.5 mg/kg) was intraperitoneally injected 1 h before cerulein treatment. The pancreas and serum were collected and analyzed to determine the severity of pancreatic injury and explore the potential pathophysiological mechanisms. Pancreatic acinar cells (AR42J) were used to explore the in vitro effects of ADK inhibition on cerulein–induced inflammation and necroptotic cell death. Results: ADK inhibition notably attenuated the severity of SAP, as indicated by the decreased serum amylase (7,416.76 ± 1,457.76 vs. 4,581.89 ± 1,175.04 U/L) and lipase (46.51 ± 11.50 vs. 32.94 ± 11.46 U/L) levels and fewer pancreatic histopathological alterations (histological scores: 6.433 ± 0.60 vs. 3.77 ± 0.70). MOMA-2 and CD11b staining confirmed that ADK inhibition prevented the infiltration of neutrophils and macrophages. The phosphorylation of nuclear factor-κB (NF-κB) was also reduced by ADK inhibition. ADK inhibition markedly limited the necrotic area of the pancreas and prevented the activation of the necroptotic signaling pathway. Endoplasmic reticulum (ER) stress was activated in the pancreas using the SAP model and cerulein–treated AR42J cells whereas ADK inhibition reversed the activation of ER stress both in vivo and in vitro. Moreover, the alleviating effects of ADK inhibition on ER stress, inflammation, and cell necroptosis were eliminated by the adenosine A2A receptor antagonist. Conclusion: ADK inhibition reduced inflammation and necroptotic acinar cell death in SAP via the adenosine A2A receptor/ER stress pathway, suggesting that ADK might be a potential therapeutic target for SAP.
Collapse
Affiliation(s)
- Shukun Sun
- Department of Emergency and Chest Pain Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Chinese Ministry of Education, Qilu Hospital, Cheeloo College of Medicine, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Shandong University, Jinan, China
| | - Yu Han
- Department of Emergency and Chest Pain Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Chinese Ministry of Education, Qilu Hospital, Cheeloo College of Medicine, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Shandong University, Jinan, China
| | - Chuanxin Zhang
- Department of Emergency and Chest Pain Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Chinese Ministry of Education, Qilu Hospital, Cheeloo College of Medicine, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Shandong University, Jinan, China
| | - Han Liu
- Department of Emergency and Chest Pain Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Chinese Ministry of Education, Qilu Hospital, Cheeloo College of Medicine, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Shandong University, Jinan, China
| | - Bailu Wang
- Clinical Trial Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shengchuan Cao
- Department of Emergency and Chest Pain Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Chinese Ministry of Education, Qilu Hospital, Cheeloo College of Medicine, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Shandong University, Jinan, China
| | - Qiuhuan Yuan
- Department of Emergency and Chest Pain Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Chinese Ministry of Education, Qilu Hospital, Cheeloo College of Medicine, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Shandong University, Jinan, China
| | - Shujian Wei
- Department of Emergency and Chest Pain Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Chinese Ministry of Education, Qilu Hospital, Cheeloo College of Medicine, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Shandong University, Jinan, China
- *Correspondence: Shujian Wei, ; Yuguo Chen,
| | - Yuguo Chen
- Department of Emergency and Chest Pain Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Chinese Ministry of Education, Qilu Hospital, Cheeloo College of Medicine, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Shandong University, Jinan, China
- *Correspondence: Shujian Wei, ; Yuguo Chen,
| |
Collapse
|
14
|
Autophagy in Acute Pancreatitis: Organelle Interaction and microRNA Regulation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8811935. [PMID: 33628384 PMCID: PMC7884169 DOI: 10.1155/2021/8811935] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/23/2020] [Accepted: 01/07/2021] [Indexed: 12/16/2022]
Abstract
Acute pancreatitis (AP) is a common disorder with significant hospital admission and mortality. Due to the unclarified pathological mechanism, there is still no effective and specific treatment for AP. Recently, autophagy has been found to be closely related with occurrence and development of AP, which is crucial in determining its severity and outcomes. Emerging evidence indicates that autophagy can be regulated and influenced by microRNAs and organelles, including mitochondria, endoplasmic reticulum and lysosome, through various ways in AP. Of note, the complex interplays and close relationships among autophagy, microRNA and organelles in AP are vital for figuring out pathogenesis but not clear yet. Thus, this review summarizes the role of autophagy in the pathological mechanism of AP, especially the relationship between impaired autophagy and organelles, and discusses the regulatory mechanism of microRNA on autophagy, which could offer new insights into understanding the pathogenesis of AP and developing new potential therapeutic targets against AP.
Collapse
|
15
|
McCarty MF, Assanga SI, Lujan LL. Age-adjusted mortality from pancreatic cancer increased NINE-FOLD in japan from 1950 to 1995 - Was a low-protein quasi-vegan diet a key factor in their former low risk? Med Hypotheses 2021; 149:110518. [PMID: 33582316 DOI: 10.1016/j.mehy.2021.110518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 01/23/2021] [Indexed: 12/18/2022]
Abstract
During the last half of the twentieth century, age-adjusted mortality from pancreatic cancer in Japan rose about nine-fold in both sexes. Well-characterized risk factors such as smoking, obesity/metabolic syndrome, and heavy alcohol use appear to explain only a modest part of this rise. It is proposed that a diet relatively low in protein, and particularly low in animal protein, was a key determinant of the low risk for pancreatic cancer in mid-century Japan. It is further proposed that pancreatic acinar cells, owing to their extraordinarily high rate of protein synthesis, are at high risk for ER stress; that such stress plays a fundamental role in the induction of most pancreatic cancers; and that low-protein diets help to offset such stress by modulating activities of the kinases GCN2 and mTORC1 while increasing autocrine and systemic production of fibroblast growth factor 21. This model appears to clarify the role of various risk factors and protective factors in pancreatic cancer induction. A vegan or quasi-vegan low-protein diet may have broader potential for decreasing risk for a range of common "Western" cancers.
Collapse
Affiliation(s)
- Mark F McCarty
- Catalytic Longevity Foundation, San Diego, CA, United States.
| | | | | |
Collapse
|
16
|
Zheng Z, Ding YX, Qu YX, Cao F, Li F. A narrative review of acute pancreatitis and its diagnosis, pathogenetic mechanism, and management. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:69. [PMID: 33553362 PMCID: PMC7859757 DOI: 10.21037/atm-20-4802] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Acute pancreatitis (AP) is an inflammatory disease that can progress to severe acute pancreatitis (SAP), which increases the risk of death. AP is characterized by inappropriate activation of trypsinogen, infiltration of inflammatory cells, and destruction of secretory cells. Other contributing factors may include calcium (Ca2+) overload, mitochondrial dysfunction, impaired autophagy, and endoplasmic reticulum (ER) stress. In addition, exosomes are also associated with pathophysiological processes of many human diseases and may play a biological role in AP. However, the pathogenic mechanism has not been fully elucidated and needs to be further explored to inform treatment. Recently, the treatment guidelines have changed; minimally invasive therapy is advocated more as the core multidisciplinary participation and "step-up" approach. The surgical procedures have gradually changed from open surgery to minimally invasive surgery that primarily includes percutaneous catheter drainage (PCD), endoscopy, small incision surgery, and video-assisted surgery. The current guidelines for the management of AP have been updated and revised in many aspects. The type of fluid to be used, the timing, volume, and speed of administration for fluid resuscitation has been controversial. In addition, the timing and role of nutritional support and prophylactic antibiotic therapy, as well as the timing of the surgical or endoscopic intervention, and the management of complications still have many uncertainties that could negatively impact the prognosis and patients' quality of life. Consequently, to inform clinicians about optimal treatment, we aimed to review recent advances in the understanding of the pathogenesis of AP and its diagnosis and management.
Collapse
Affiliation(s)
- Zhi Zheng
- Department of General Surgery, Xuan Wu Hospital, Capital Medical University, Beijing, China
- Clinical Center for Acute Pancreatitis, Capital Medical University, Beijing, China
| | - Yi-Xuan Ding
- Department of General Surgery, Xuan Wu Hospital, Capital Medical University, Beijing, China
- Clinical Center for Acute Pancreatitis, Capital Medical University, Beijing, China
| | - Yuan-Xu Qu
- Department of General Surgery, Xuan Wu Hospital, Capital Medical University, Beijing, China
- Clinical Center for Acute Pancreatitis, Capital Medical University, Beijing, China
| | - Feng Cao
- Department of General Surgery, Xuan Wu Hospital, Capital Medical University, Beijing, China
- Clinical Center for Acute Pancreatitis, Capital Medical University, Beijing, China
| | - Fei Li
- Department of General Surgery, Xuan Wu Hospital, Capital Medical University, Beijing, China
- Clinical Center for Acute Pancreatitis, Capital Medical University, Beijing, China
| |
Collapse
|
17
|
Cooley MM, Thomas DDH, Deans K, Peng Y, Lugea A, Pandol SJ, Puglielli L, Groblewski GE. Deficient Endoplasmic Reticulum Acetyl-CoA Import in Pancreatic Acinar Cells Leads to Chronic Pancreatitis. Cell Mol Gastroenterol Hepatol 2020; 11:725-738. [PMID: 33080365 PMCID: PMC7841443 DOI: 10.1016/j.jcmgh.2020.10.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/14/2020] [Accepted: 10/05/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS Maintaining endoplasmic reticulum (ER) proteostasis is essential for pancreatic acinar cell function. Under conditions of severe ER stress, activation of pathogenic unfolded protein response pathways plays a central role in the development and progression of pancreatitis. Less is known, however, of the consequence of perturbing ER-associated post-translational protein modifications on pancreatic outcomes. Here, we examined the role of the ER acetyl-CoA transporter AT-1 on pancreatic homeostasis. METHODS We used an AT-1S113R/+ hypomorphic mouse model, and generated an inducible, acinar-specific, AT-1 knockout mouse model, and performed histologic and biochemical analyses to probe the effect of AT-1 loss on acinar cell physiology. RESULTS We found that AT-1 expression is down-regulated significantly during both acute and chronic pancreatitis. Furthermore, acinar-specific deletion of AT-1 in acinar cells induces chronic ER stress marked by activation of both the spliced x-box binding protein 1 and protein kinase R-like ER kinase pathways, leading to spontaneous mild/moderate chronic pancreatitis evidenced by accumulation of intracellular trypsin, immune cell infiltration, and fibrosis. Induction of acute-on-chronic pancreatitis in the AT-1 model led to acinar cell loss and glad atrophy. CONCLUSIONS These results indicate a key role for AT-1 in pancreatic acinar cell homeostasis, the unfolded protein response, and that perturbations in AT-1 function leads to pancreatic disease.
Collapse
Affiliation(s)
| | | | | | - Yajing Peng
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Aurelia Lugea
- Pancreatic Research Group, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Stephen J Pandol
- Pancreatic Research Group, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Luigi Puglielli
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin; Geriatric Research Education Clinical Center, Veterans Affairs Medical Center, Madison, Wisconsin
| | | |
Collapse
|
18
|
Yang X, Li R, Xu L, Qian F, Sun L. Serum amyloid A3 is required for caerulein-induced acute pancreatitis through induction of RIP3-dependent necroptosis. Immunol Cell Biol 2020; 99:34-48. [PMID: 32725692 DOI: 10.1111/imcb.12382] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 03/28/2020] [Accepted: 07/23/2020] [Indexed: 02/06/2023]
Abstract
Serum amyloid A (SAA) is an early and sensitive biomarker of inflammatory diseases, but its role in acute pancreatitis (AP) is still unclear. Here, we used a caerulein-induced mouse model to investigate the role of SAA in AP and other related inflammatory responses. In our study, we found that the expression of a specific SAA isoform, SAA3, was significantly elevated in a caerulein-induced AP animal model. In addition, SAA3-knockout (Saa3-/- ) mice showed lower serum levels of amylase and lipase, tissue damage and proinflammatory cytokine production in the pancreas compared with those of wild-type mice in response to caerulein administration. AP-associated acute lung injury was also significantly attenuated in Saa3-/- mice. In our in vitro experiments, treatment with cholecystokinin and recombinant SAA3 significantly induced necroptosis and cytokine production. Moreover, we found that the regulatory effect of SAA3 on acinar cell necroptosis was through a receptor-interacting protein 3 (RIP3)-dependent manner. Collectively, our findings indicate that SAA3 is required for AP by inducing an RIP3-dependent necroptosis pathway in acinar cells and is a potential drug target for AP.
Collapse
Affiliation(s)
- Xinyi Yang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Runsheng Li
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, PR China
| | - Lu Xu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Feng Qian
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, PR China.,Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Anhui Province, Bengbu, 233003, PR China
| | - Lei Sun
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| |
Collapse
|
19
|
Srinivasan MP, Bhopale KK, Caracheo AA, Amer SM, Khan S, Kaphalia L, Loganathan G, Balamurugan AN, Kaphalia BS. Activation of AMP-activated protein kinase attenuates ethanol-induced ER/oxidative stress and lipid phenotype in human pancreatic acinar cells. Biochem Pharmacol 2020; 180:114174. [PMID: 32717227 DOI: 10.1016/j.bcp.2020.114174] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 12/18/2022]
Abstract
Primary toxicity targets of alcohol and its metabolites in the pancreas are cellular energetics and endoplasmic reticulum (ER). Therefore, the role of AMP-Activated Protein Kinase (AMPKα) in amelioration of ethanol (EtOH)-induced pancreatic acinar cell injury including ER/oxidative stress, inflammatory responses, the formation of fatty acid ethyl esters (FAEEs) and mitochondrial bioenergetics were determined in human pancreatic acinar cells (hPACs) and AR42J cells incubated with/without AMPKα activator [5-aminoimidazole-4-carboxamide ribonucleotide (AICAR)]. EtOH treated hPACs showed concentration and time-dependent increases for FAEEs and inactivation of AMPKα, along with the upregulation of ACC1 and FAS (key lipogenic proteins) and downregulation of CPT1A (involved β-oxidation of fatty acids). These cells also showed significant ER stress as evidenced by the increased expression for GRP78, IRE1α, and PERK/CHOP arm of unfolded protein response promoting apoptosis and activating p-JNK1/2 and p-ERK1/2 with increased secretion of cytokines. AR42J cells treated with EtOH showed increased oxidative stress, impaired mitochondrial biogenesis, and decreased ATP production rate. However, AMPKα activation by AICAR attenuated EtOH-induced ER/oxidative stress, lipogenesis, and inflammatory responses as well as the formation of FAEEs and restored mitochondrial function in hPACs as well as AR42J cells. Therefore, it is likely that EtOH-induced inactivation of AMPKα plays a crucial role in acinar cell injury leading to pancreatitis. Findings from this study also suggest that EtOH-induced inactivation of AMPKα is closely related to ER/oxidative stress and synthesis of FAEEs, as activation of AMPKα by AICAR attenuates formation of FAEEs, ER/oxidative stress and lipogenesis, and improves inflammatory responses and mitochondrial bioenergetics.
Collapse
Affiliation(s)
- Mukund P Srinivasan
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Kamlesh K Bhopale
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Anna A Caracheo
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Samir M Amer
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77550, USA; Department of Forensic Medicine and Clinical Toxicology, Tanta University, Tanta, Egypt
| | - Shamis Khan
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Lata Kaphalia
- Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | | | - Appakalai N Balamurugan
- Department of Surgery, University of Louisville, Louisville, KY 40202, USA; Islet Biology Laboratory, Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Department of Surgery, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Bhupendra S Kaphalia
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77550, USA.
| |
Collapse
|
20
|
Hansen SEJ, Madsen CM, Varbo A, Nordestgaard BG. Body Mass Index, Triglycerides, and Risk of Acute Pancreatitis: A Population-Based Study of 118 000 Individuals. J Clin Endocrinol Metab 2020; 105:5582239. [PMID: 31588492 DOI: 10.1210/clinem/dgz059] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/28/2019] [Accepted: 09/21/2019] [Indexed: 01/22/2023]
Abstract
OBJECTIVE The incidence of acute pancreatitis is rising worldwide and currently no curative treatment exists. Clarification of preventable risk factors is important for the reduction of morbidity and mortality from acute pancreatitis. In this study, we tested the hypothesis that the risk of acute pancreatitis associated with body mass index (BMI) is partly mediated through elevated triglycerides. DESIGN We included 118 085 individuals from 2 prospective cohort studies, the Copenhagen City Heart Study and the Copenhagen General Population Study, with BMI measured at baseline. Diagnosis of acute pancreatitis was assessed from the national Danish registries, as hospitalization or death due to acute pancreatitis. RESULTS Higher BMI was associated with higher risk of acute pancreatitis with a multivariable-adjusted hazard ratio of 1.4 (95% CI, 1.1-1.8) for BMI of 25-29.9, 2.1 (1.6-2.9) for BMI of 30-34.9, and 2.8 (1.8-4.3) for BMI > 35, compared with individuals with BMI of 18.5-24.9. Triglycerides mediated 29% (95% CI, 12%-46%; P = 0.001) of the association between BMI and risk of acute pancreatitis in the age- and sex-adjusted model and 22% (6%-39%; P = 0.008) in the multivariable-adjusted model. CONCLUSION Higher BMI is associated with higher risk of acute pancreatitis in individuals from the general population, partly mediated through higher triglycerides. This indicates a potential for preventing acute pancreatitis by reducing BMI and triglycerides in individuals with high values.
Collapse
Affiliation(s)
- Signe E J Hansen
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Borgmester Ib Juuls vej, Herlev, Denmark
- The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Borgmester Ib Juuls vej, Herlev, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Christian M Madsen
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Borgmester Ib Juuls vej, Herlev, Denmark
- The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Borgmester Ib Juuls vej, Herlev, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Anette Varbo
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Borgmester Ib Juuls vej, Herlev, Denmark
- The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Borgmester Ib Juuls vej, Herlev, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Borgmester Ib Juuls vej, Herlev, Denmark
- The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Borgmester Ib Juuls vej, Herlev, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
- The Copenhagen City Heart Study, Frederiksberg Hospital, Copenhagen University Hospital, Nordre Fasanvej, Frederiksberg, Denmark
| |
Collapse
|
21
|
Neutrophil Gelatinase-Associated Lipocalin Protects Acinar Cells From Cerulein-Induced Damage During Acute Pancreatitis. Pancreas 2020; 49:1297-1306. [PMID: 33122517 PMCID: PMC8056863 DOI: 10.1097/mpa.0000000000001690] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Elevated neutrophil gelatinase-associated lipocalin (NGAL) is a promising marker for severe acute pancreatitis (SAP) and multiple organ failure, suggesting systemic and local contributions during pancreatitis. We investigated the role of NGAL locally on acinar cell biology. METHODS Western blot, reverse transcriptase-polymerase chain reaction, and immunohistochemistry analysis were performed to analyze the levels of NGAL receptors, apoptotic and regeneration markers, and 4-hydroxynonenal (4HNE) levels, 3-[4,5-Dimethylthiazole-2-yl]-2, 5-diphenyltetrazolium bromide assay, and annexin V/propidium iodide staining were used to evaluate cell viability, and effect on endothelial cells was accessed by endothelial permeability assay. RESULTS Cerulein treatment at 20 μM for 12 hours significantly reduced acinar cell viability by 40%, which was rescued by NGAL at 800 and 1600 ng/mL concentrations, observed during mild and SAP, respectively. Mechanistically, NGAL significantly reduced the levels of reactive oxygen species and 4HNE adduct formation in a 24p3R-dependent manner and upregulated the expression of acinar cell regeneration markers, like CDK-2, CDK-4, and C-myc. However, SAP levels of NGAL significantly increased endothelial permeability and downregulated the levels of ZO-1, and cerulein treatment in NGAL knockout mice showed increased levels of 4HNE adducts. CONCLUSIONS Neutrophil gelatinase-associated lipocalin rescues intracellular reactive oxygen species during pancreatitis and promotes survival and regeneration of acinar cells.
Collapse
|
22
|
Commensal Escherichia coli Aggravates Acute Necrotizing Pancreatitis through Targeting of Intestinal Epithelial Cells. Appl Environ Microbiol 2019; 85:AEM.00059-19. [PMID: 30979838 DOI: 10.1128/aem.00059-19] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/04/2019] [Indexed: 12/14/2022] Open
Abstract
An increase of Escherichia-Shigella was previously reported in acute necrotizing pancreatitis (ANP). We investigated whether Escherichia coli MG1655, an Escherichia commensal organism, increased intestinal injury and aggravated ANP in rats. ANP was induced by retrograde injection of 3.5% sodium taurocholate into the biliopancreatic duct. Using gut microbiota-depleted rats, we demonstrated that gut microbiota was involved in the pancreatic injury and intestinal barrier dysfunction in ANP. Using 16S rRNA gene sequencing and quantitative PCR, we found intestinal dysbiosis and a significant increase of E. coli MG1655 in ANP. Afterward, administration of E. coli MG1655 by gavage to gut microbiota-depleted rats with ANP was performed. We observed that after ANP induction, E. coli MG1655-monocolonized rats presented more severe injury in the pancreas and intestinal barrier function than gut microbiota-depleted rats. Furthermore, Toll-like receptor 4 (TLR4)/MyD88/p38 mitogen-activated protein (MAPK) and endoplasmic reticulum stress (ERS) activation in intestinal epithelial cells were also increased more significantly in the MG1655-monocolonized ANP rats. In vitro, the rat ileal epithelial cell line IEC-18 displayed aggravated tumor necrosis factor alpha-induced inflammation and loss of tight-junction proteins in coculture with E. coli MG1655, as well as TLR4, MyD88, and Bip upregulation. In conclusion, our study shows that commensal E. coli MG1655 increases TLR4/MyD88/p38 MAPK and ERS signaling-induced intestinal epithelial injury and aggravates ANP in rats. Our study also describes the harmful potential of commensal E. coli in ANP.IMPORTANCE This study describes the harmful potential of commensal E. coli in ANP, which has not been demonstrated in previous studies. Our work provides new insights into gut bacterium-ANP cross talk, suggesting that nonpathogenic commensals could also exhibit adverse effects in the context of diseases.
Collapse
|
23
|
Courreges AP, Najenson AC, Vatta MS, Bianciotti LG. Atrial natriuretic peptide attenuates endoplasmic reticulum stress in experimental acute pancreatitis. Biochim Biophys Acta Mol Basis Dis 2018; 1865:485-493. [PMID: 30529145 DOI: 10.1016/j.bbadis.2018.12.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 11/19/2018] [Accepted: 12/05/2018] [Indexed: 12/30/2022]
Abstract
Increasing evidence shows that the endoplasmic reticulum (ER) stress is an early event that injures pancreatic acinar cells and contributes to the pathogenesis of acute pancreatitis. In the present work we sought to establish whether atrial natriuretic peptide (ANP) alleviated ER stress in rats with cerulein-induced pancreatitis. The major components of the unfolded protein response (UPR) and their downstream effectors were assessed by immunoblotting or fluorimetry and the ultrastructure of ER evaluated by electron transmission microscopy. Cross-talk with autophagy was evaluated by beclin-1 expression. ANP reduced binding immunoglobulin protein (Bip) expression (UPR major controller) which under non-stress conditions keeps inactive the stress sensor proteins: protein kinase-like ER kinase (PERK), inositol-requiring enzyme-1 (IRE1) and activating transcription factor 6 (ATF6). Although ANP did not change PERK expression it decreased p-eIF2α and enhanced downstream effector CHOP, suggesting that ANP stimulates ER-dependent apoptosis. In accordance, ANP also decreased Bcl2 expression and enhanced proapoptotic proteins Bax and Bak. The atrial peptide enhanced ATF6 expression and although it did not affect IRE1/sXBP1 signaling, it increased caspase-2 activity, also involved in ER-dependent apoptosis. Furthermore, ANP decreased beclin-1 expression. The ultrastructure of the RE revealed decreased swelling and conserved ribosomes in the presence of ANP. Present findings support that ANP alleviates ER stress in acute pancreatitis by modulating the three branches of the UPR and stimulates ER-dependent apoptosis. Gaining insights into the modulation of ER stress may help to develop specific therapeutic strategies for acute pancreatitis and/or medical interventions at risk of its developing like endoscopic retrograde cholangiopancreatography.
Collapse
Affiliation(s)
- Ana Paula Courreges
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Ana Clara Najenson
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Marcelo S Vatta
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Fisiología, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Buenos Aires, Argentina
| | - Liliana G Bianciotti
- CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Fisiopatología, Buenos Aires, Argentina.
| |
Collapse
|