1
|
Arienzo A, Gallo V, Tomassetti F, Antonini G. Implication of Sodium Hypochlorite as a Sanitizer in Ready-to-Eat Salad Processing and Advantages of the Use of Alternative Rapid Bacterial Detection Methods. Foods 2023; 12:3021. [PMID: 37628019 PMCID: PMC10453429 DOI: 10.3390/foods12163021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
The use of disinfection agents in the washing processing of ready-to-eat (RTE) vegetables, especially sodium hypochlorite, is a common industrial practice performed to enhance microbiological quality. However, some studies have reported a restart of bacterial growth and a substantial increase in bacterial load during early storage associated with the use of disinfection agents, which might represent a risk for consumers. We evaluated the effect of sodium hypochlorite on bacterial growth trends during the shelf-life in Lactuca sativa, simulating the industrial procedures for RTE vegetable packaging. Immediately after sodium hypochlorite treatment, an effective abatement of the bacterial load was observed, followed by a restart of growth throughout storage. After 5 days, the bacterial load was close to that reached by the control samples, indicating that the net increase in bacterial load was significantly higher in the treated samples. This might be ascribed to the reduction in competitive microflora and/or to the induction of adaptive responses by resting bacteria, which might select disinfectant-resistant bacteria. These findings elicit some concerns about the actual duration of the shelf-life; products might decrease their microbiological quality earlier during storage, pointing out the need to better clarify the impact of sodium hypochlorite as a sanitizer to closer consider its use in RTE vegetable processing. Furthermore, due to the importance of the rapid estimation of bacterial load and the early detection of foodborne pathogens throughout the food chain, the accuracy of the rapid bacteria detection method, the Micro Biological Survey (MBS), and its effectiveness for microbiological analyses of RTE vegetables were evaluated.
Collapse
Grants
- Excellence Department grant National Funding for Centers of Excellence (Science Department 2023-2027, Roma Tre University, MIUR, Articolo 1, Commi 314-337, Legge 232/2016)
- Missione 4 Componente 2, "Dalla ricerca all'impresa, Investimento 1.4 Next Generation EU PNRR Rome Technopole (ECS_00000024), by MUR, PNRR
- Project grant number CUP: F85F21001680009 LazioInnova SpA, IMPLEMENTA4GAMMA
Collapse
Affiliation(s)
- Alyexandra Arienzo
- National Institute of Biostructures and Biosystems (INBB), Viale delle Medaglie d’Oro 305, 00136 Rome, Italy;
| | - Valentina Gallo
- Department of Science, Roma Tre University, Viale Guglielmo Marconi 446, 00146 Rome, Italy; (V.G.); (F.T.)
| | - Federica Tomassetti
- Department of Science, Roma Tre University, Viale Guglielmo Marconi 446, 00146 Rome, Italy; (V.G.); (F.T.)
| | - Giovanni Antonini
- National Institute of Biostructures and Biosystems (INBB), Viale delle Medaglie d’Oro 305, 00136 Rome, Italy;
- Department of Science, Roma Tre University, Viale Guglielmo Marconi 446, 00146 Rome, Italy; (V.G.); (F.T.)
| |
Collapse
|
2
|
Camfield E, Bowman A, Choi J, Gwinn K, Labbe N, Rajan K, Ownley B, Moustaid-Moussa N, D'Souza DH. Switchgrass extractives to mitigate Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium contamination of romaine lettuce at pre- and postharvest. J Food Sci 2022; 87:3620-3631. [PMID: 35836257 DOI: 10.1111/1750-3841.16249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/17/2022] [Accepted: 06/23/2022] [Indexed: 11/27/2022]
Abstract
The antimicrobial potential of switchgrass extractives (SE) was evaluated on cut lettuce leaves and romaine lettuce in planta, using rifampicin-resistant Escherichia coli O157:H7 and Salmonella Typhimurium strain LT2 as model pathogens. Cut lettuce leaves were swabbed with E. coli O157:H7 or S. Typhimurium followed by surface treatment with 0.8% SE, 0.6% sodium hypochlorite, or water for 1 to 45 min. For in planta studies, SE was swabbed on demarcated leaf surfaces either prior to or after inoculation of greenhouse-grown lettuce with E. coli O157:H7 or S. Typhimurium; the leaf samples were collected after 0, 24, and 48 h of treatment. Bacteria from inoculated leaves were enumerated on tryptic soy agar plates (and also on MacConkey's and XLT4 agar plates), and the recovered counts were statistically analyzed. Cut lettuce leaves showed E. coli O157:H7 reduction between 3.25 and 6.17 log CFU/leaf, whereas S. Typhimurium reductions were between 2.94 log CFU/leaf and 5.47 log CFU/leaf depending on the SE treatment durations, from initial levels of ∼7 log CFU/leaf. SE treatment of lettuce in planta, before bacterial inoculation, reduced E. coli O157:H7 and S. Typhimurium populations by 1.88 and 2.49 log CFU after 24 h and 3 h, respectively. However, SE treatment after bacterial inoculation of lettuce plants decreased E. coli O157:H7 populations by 3.04 log CFU (after 0 h) with negligible reduction of S. Typhimurium populations. Our findings demonstrate the potential of SE as a plant-based method for decontaminating E. coli O157:H7 on lettuce during pre- and postharvest stages in hurdle approaches.
Collapse
Affiliation(s)
- Emily Camfield
- Food Science, University of Tennessee, Knoxville, Tennessee, USA
| | - Alex Bowman
- Food Science, University of Tennessee, Knoxville, Tennessee, USA
| | - Joseph Choi
- Food Science, University of Tennessee, Knoxville, Tennessee, USA
| | - Kimberly Gwinn
- Entomology and Plant Pathology, University of Tennessee, Knoxville, Tennessee, USA
| | - Nicole Labbe
- Center for Renewable Carbon, University of Tennessee, Knoxville, Tennessee, USA
| | - Kalavathy Rajan
- Center for Renewable Carbon, University of Tennessee, Knoxville, Tennessee, USA
| | - Bonnie Ownley
- Entomology and Plant Pathology, University of Tennessee, Knoxville, Tennessee, USA
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences and Obesity Research Institute, Texas Tech University, Lubbock, Texas, USA
| | | |
Collapse
|
3
|
Sun Y, Wu Z, Zhang Y, Wang J. Use of aqueous ozone rinsing to improve the disinfection efficacy and shorten the processing time of ultrasound-assisted washing of fresh produce. ULTRASONICS SONOCHEMISTRY 2022; 83:105931. [PMID: 35092941 PMCID: PMC8801763 DOI: 10.1016/j.ultsonch.2022.105931] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/13/2022] [Accepted: 01/20/2022] [Indexed: 05/16/2023]
Abstract
In minimal processing industry, chlorine is widely used in the disinfection process and ultrasound (US) increases the disinfection efficacy of chlorine and reduces the cross-contamination incidence during washing. Tap water (TW), which has no disinfection effect, is generally used to rinse off sanitizer residues on the surface of disinfected fresh-cut vegetables. In this study, aqueous ozone (AO), a low-cost and residue-free sanitizer, was used to replace TW rinsing in combination with US (28 kHz)-chlorine (free chlorine [FC] at 10 ppm, a concentration recommended for industrial use) for the disinfection of fresh-cut lettuce as a model. US-chlorine (40 s) + 2.0 ppm AO (60 s) treatment resulted in browning spots on lettuce surface at the end of storage. In contrast, US-chlorine (40 s) + 1.0 ppm AO (60 s) did not lead to deterioration of the sensory quality (sensory crispness, color, and flavor) and a change in total color difference, and the activities of browning-related enzymes were significantly lower. Moreover, US-chlorine (40 s) + 1.0 ppm of AO (60 s) treatment led to significantly lower counts of Escherichia coli O157:H7, Salmonella Typhimurium, aerobic mesophilic (AMC), and molds and yeasts (M&Y) on days 0-7 than US-chlorine (60 s) + TW (60 s) and single 1.0 ppm AO (120 s) treatments, suggesting that AO provided an additional disinfection effect over TW, while reducing the overall processing time by 20 s. Cell membrane permeability analysis (alkaline phosphatase, protein, nucleotide, and adenosine triphosphate leakage) showed that the combination with 1.0 ppm AO caused more severe cell membrane damage in E. coli O157:H7 and S. Typhimurium, explaining the higher disinfection efficacy. 16S rRNA sequencing revealed that following US-chlorine (40 s) + 1.0 ppm of AO (60 s) treatment, Massilia and Acinetobacter had higher relative abundances (RAs) on day 7 than after US-chlorine (60 s) + TW (60 s) treatment, whereas the RAs of Escherichia-Shigella was significantly lower, indicating that the former treatment has a superior capacity in maintaining a stable microbial composition. This explains from an ecological point of view why US-chlorine (40 s) + 1.0 ppm of AO (60 s) led to the lowest AMC and M&Y counts during storage. The study results provide evidence that AO has potential as an alternative to TW rinsing to increase the disinfection efficacy of US-chlorine.
Collapse
Affiliation(s)
- Yeting Sun
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Zhaoxia Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110000, China
| | - Yangyang Zhang
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China
| | - Jiayi Wang
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China.
| |
Collapse
|
4
|
Wang J, Zhang Y, Yu Y, Wu Z, Wang H. Combination of ozone and ultrasonic-assisted aerosolization sanitizer as a sanitizing process to disinfect fresh-cut lettuce. ULTRASONICS SONOCHEMISTRY 2021; 76:105622. [PMID: 34126525 PMCID: PMC8202344 DOI: 10.1016/j.ultsonch.2021.105622] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/09/2021] [Accepted: 06/04/2021] [Indexed: 05/24/2023]
Abstract
Reduction of sanitizer dosage and development of non-immersion disinfection methods have become major focuses of research. Here, we examined the disinfection efficacy of combining gaseous ozone (4 and 8 ppm) with aerosolized oxidizing sanitizer [sodium hypochlorite (SH, 100 and 200 ppm)] and aerosolized organic acid [acetic acid (AA, 1% and 2%) and lactic acid (LA, 1% and 2%)]. Notably, 1% AA and 4 ppm gaseous ozone were ineffective for disinfecting Salmonella Typhimurium, and treatment with 1% AA + 8 ppm ozone caused browning of lettuce leaves and stimulated increases in aerobic mesophilic count (AMC), aerobic psychrotrophic count (APC), S. Typhimurium, and Escherichia coli O157:H7. Treatment with 2% LA + 8 ppm ozone resulted in the lowest S. Typhimurium, E. coli O157:H7, Listeria monocytogenes, AMC, APC, and molds and yeasts during storage (0-7 days at 4 °C). Quality analysis indicates that LA + 8 ppm ozone and SH + 8 ppm ozone did not negatively affect L*, a*, b*, polyphenolic content, weight loss, and sensory properties; however, the levels of two individual phenolic compounds (3,4-dihydroxybenzoic acid and vanillin), responsible for phenylpropanoid synthesis, were significantly increased after treatment with 2% LA + 8 ppm ozone. These findings provided insights into the use of LA combined with gaseous ozone for application in disinfecting fresh produce.
Collapse
Affiliation(s)
- Jiayi Wang
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China.
| | - Yangyang Zhang
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China
| | - Yougui Yu
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China
| | - Zhaoxia Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | | |
Collapse
|
5
|
Ogawa U, Koyama K, Koseki S. Rapid detection and enumeration of aerobic mesophiles in raw foods using dielectrophoresis. J Microbiol Methods 2021; 186:106251. [PMID: 34038753 DOI: 10.1016/j.mimet.2021.106251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 05/21/2021] [Indexed: 11/24/2022]
Abstract
The concept of dielectrophoresis (DEP), which involves the movement of neutral particles by induced polarization in nonuniform electric fields, has been exploited in various biological applications. However, only a few studies have investigated the use of DEP for detecting and enumerating microorganisms in foodstuffs. Therefore, we aimed to evaluate the accuracy and efficiency of a DEP-based method for enumerating viable bacteria in three raw foods: freshly cut lettuce, chicken breast, and minced pork. The DEP separation of bacterial cells was conducted at 20 V of output voltage and 6000 to 9000 kHZ of frequency with sample conductivity of 30-70 μS/cm. The accuracy and validity of the DEP method for enumerating viable bacteria were compared with those of the conventional culture method; no significant variation was observed. We found a high correlation between the data obtained using DEP and the conventional aerobic plate count culture method, with a high coefficient of determination (R2 > 0.90) regardless of the food product; the difference in cell count data between both methods was within 1.0 log CFU/mL. Moreover, we evaluated the efficiency of the DEP method for enumerating bacterial cells in chicken breasts subjected to either freezing or heat treatment. After thermal treatment at 55 °C and 60 °C, the viable cell counts determined via the DEP method were found to be lower than those obtained using the conventional culture method, which implies that the DEP method may not be suitable for the direct detection of injured cells. In addition to its high accuracy and efficiency, the DEP method enables the determination of viable cell counts within 30 min, compared to 48 h required for the conventional culture method. In conclusion, the DEP method may be a potential alternative tool for rapid determination of viable bacteria in a variety of foodstuffs.
Collapse
Affiliation(s)
- Umi Ogawa
- Graduate School of Agricultural Science, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo 060-8589, Japan
| | - Kento Koyama
- Graduate School of Agricultural Science, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo 060-8589, Japan
| | - Shigenobu Koseki
- Graduate School of Agricultural Science, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo 060-8589, Japan.
| |
Collapse
|
6
|
Botondi R, Barone M, Grasso C. A Review into the Effectiveness of Ozone Technology for Improving the Safety and Preserving the Quality of Fresh-Cut Fruits and Vegetables. Foods 2021; 10:748. [PMID: 33915979 PMCID: PMC8065486 DOI: 10.3390/foods10040748] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 11/17/2022] Open
Abstract
In recent years, consumers have become increasingly aware of the nutritional benefits brought by the regular consumption of fresh fruits and vegetables, which reduces the risk of health problems and disease. High-quality raw materials are essential since minimally processed produce is highly perishable and susceptible to quality deterioration. The cutting, peeling, cleaning and packaging processes as well as the biochemical, sensorial and microbial changes that occur on plant tissue surfaces may accelerate produce deterioration. In this regard, biological contamination can be primary, which occurs when the infectious organisms directly contaminate raw materials, and/or by cross-contamination, which occurs during food preparation processes such as washing. Among the many technologies available to extend the shelf life of fresh-cut products, ozone technology has proven to be a highly effective sterilization technique. In this paper, we examine the main studies that have focused on the effects of gaseous ozone and ozonated water treatments on microbial growth and quality retention of fresh-cut fruit and vegetables. The purpose of this scientific literature review is to broaden our knowledge of eco-friendly technologies, such as ozone technology, which extends the shelf life and maintains the quality of fresh produce without emitting hazardous chemicals that negatively affect plant material and the environment.
Collapse
Affiliation(s)
- Rinaldo Botondi
- Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, 01100 Viterbo, Italy; (M.B.); (C.G.)
| | | | | |
Collapse
|
7
|
Sarron E, Gadonna-Widehem P, Aussenac T. Ozone Treatments for Preserving Fresh Vegetables Quality: A Critical Review. Foods 2021; 10:605. [PMID: 33809297 PMCID: PMC8000956 DOI: 10.3390/foods10030605] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 01/23/2023] Open
Abstract
Ozone is recognized as an antimicrobial agent for vegetables storage, washing, and processing. This strong disinfectant is now being used in the food industry. In this review, the chemical and physical properties of ozone, its generation, and factors affecting ozone processing efficiency were explained as well as recent regulatory developments in the food industry. By then selecting three vegetables, we show that ozone avoids and controls biological growth on vegetables, keeping their attractive appearance and sensorial qualities, assuring nutritional characteristics' retention and maintaining and increasing the shelf-life. In liquid solution, ozone can be used to disinfect processing water and vegetables, and in gaseous form, ozone helps to sanitize and preserve vegetables during storage. The multifunctionality of ozone makes it a promising food processing agent. However, if ozone is improperly used, it causes some deleterious effects on products, such as losses in their sensory quality. For an effective and a safe use of ozone, specific treatment conditions should be determined for all kinds of vegetables. In a last step, we propose highlighting the different essential characteristics of ozone treatment in order to internationally harmonize the data relating to the treatments carried-out.
Collapse
Affiliation(s)
| | | | - Thierry Aussenac
- Institut Polytechnique UniLaSalle, Université d’Artois, ULR 7519, 19 Rue Pierre Waguet, BP 30313, 60026 Beauvais, France; (E.S.); (P.G.-W.)
| |
Collapse
|
8
|
Nie M, Wu C, Xiao Y, Song J, Zhang Z, Li D, Liu C. Efficacy of aqueous ozone combined with sodium metasilicate on microbial load reduction of fresh-cut cabbage. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2020. [DOI: 10.1080/10942912.2020.1842446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Meimei Nie
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Caie Wu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Yadong Xiao
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Jiangfeng Song
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Zhongyuan Zhang
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Dajing Li
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Chunquan Liu
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| |
Collapse
|
9
|
Panigrahi C, Mishra HN, De S. Effect of ozonation parameters on nutritional and microbiological quality of sugarcane juice. J FOOD PROCESS ENG 2020. [DOI: 10.1111/jfpe.13542] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
| | - Hari Niwas Mishra
- Department of Agricultural and Food Engineering IIT Kharagpur Kharagpur India
| | - Sirshendu De
- Department of Chemical Engineering IIT Kharagpur Kharagpur India
| |
Collapse
|
10
|
Sanitization Potential of Ozone and Its Role in Postharvest Quality Management of Fruits and Vegetables. FOOD ENGINEERING REVIEWS 2019. [DOI: 10.1007/s12393-019-09204-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
11
|
Wang J, Wang S, Sun Y, Li C, Li Y, Zhang Q, Wu Z. Reduction of Escherichia coli O157:H7 and naturally present microbes on fresh-cut lettuce using lactic acid and aqueous ozone. RSC Adv 2019; 9:22636-22643. [PMID: 35519499 PMCID: PMC9067095 DOI: 10.1039/c9ra03544c] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 07/18/2019] [Indexed: 11/21/2022] Open
Abstract
Lactic acid (LA) is an effective sanitizer for disinfection of fresh produce. Tap water is generally used to wash disinfected fresh produce because sanitizer residues negatively affect the quality and organoleptic properties of the produce. However, tap water is ineffective for secondary disinfection compared with sanitizers. Thus, we propose a disinfection method using LA plus aqueous ozone (AO), an oxidizing sanitizer that does not lead to secondary residue. We compared the proposed method of 1% LA (90 s) plus 1 mg L-1 AO (30 s) or 2 mg L-1 AO (30 s) with the traditional method of 100 ppm chlorine (120 s) or 1% LA (120 s) plus tap water (30 s) and 2 mg L-1 AO (150 s). Microbial analysis showed that LA plus AO led to the greatest reductions in microbes (Escherichia coli O157:H7, aerobic mesophilic counts, aerobic psychrophilic counts, moulds, and yeasts) during storage (0-5 days at 5 °C). Quality analysis (colour, sensory qualities, electrolyte leakage, polyphenolic content, and weight loss) showed that LA + AO did not cause additional quality loss compared with tap water treatment. These results indicate that the hurdle technology proposed (LA plus AO) has a good potential for use in fresh produce disinfection.
Collapse
Affiliation(s)
- Jiayi Wang
- College of Food Science, Shenyang Agricultural University 120 Dongling Rd. Shenyang 110866 China +86-130-6668-6988
| | - Shan Wang
- College of Food Science, Shenyang Agricultural University 120 Dongling Rd. Shenyang 110866 China +86-130-6668-6988
| | - Yeting Sun
- College of Food Science, Shenyang Agricultural University 120 Dongling Rd. Shenyang 110866 China +86-130-6668-6988
- Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences Beijing 100097 China
| | - Chen Li
- College of Food Science, Shenyang Agricultural University 120 Dongling Rd. Shenyang 110866 China +86-130-6668-6988
| | - Yanru Li
- College of Food Science, Shenyang Agricultural University 120 Dongling Rd. Shenyang 110866 China +86-130-6668-6988
| | - Qi Zhang
- College of Food Science, Shenyang Agricultural University 120 Dongling Rd. Shenyang 110866 China +86-130-6668-6988
| | - Zhaoxia Wu
- College of Food Science, Shenyang Agricultural University 120 Dongling Rd. Shenyang 110866 China +86-130-6668-6988
| |
Collapse
|
12
|
De Corato U. Improving the shelf-life and quality of fresh and minimally-processed fruits and vegetables for a modern food industry: A comprehensive critical review from the traditional technologies into the most promising advancements. Crit Rev Food Sci Nutr 2019; 60:940-975. [DOI: 10.1080/10408398.2018.1553025] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ugo De Corato
- ENEA – Italian National Agency for New Technologies, Energy and Sustainable Economic Development – Department of Biotechnology, Agroindustry and Health Protection, Trisaia Research Centre, Matera, Italy
| |
Collapse
|
13
|
Ummat V, Singh AK, Sidhu GK. Effect of aqueous ozone on quality and shelf life of shredded green bell pepper (
Capsicum annuum
). J FOOD PROCESS PRES 2018. [DOI: 10.1111/jfpp.13718] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Viruja Ummat
- Department of Processing and Food Engineering Punjab Agricultural University Ludhiana India
| | - A. K. Singh
- Department of Processing and Food Engineering Punjab Agricultural University Ludhiana India
| | - G. K. Sidhu
- Department of Processing and Food Engineering Punjab Agricultural University Ludhiana India
| |
Collapse
|
14
|
The impacts of water compositions on sensory properties of foods and beverages cannot be underestimated. Food Res Int 2018; 108:101-110. [DOI: 10.1016/j.foodres.2018.03.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 03/06/2018] [Accepted: 03/09/2018] [Indexed: 11/19/2022]
|
15
|
Yoon JH, Lee SY. Review: Comparison of the effectiveness of decontaminating strategies for fresh fruits and vegetables and related limitations. Crit Rev Food Sci Nutr 2017; 58:3189-3208. [DOI: 10.1080/10408398.2017.1354813] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Jae-Hyun Yoon
- Department of Food and Nutrition, Chung-Ang University, 4726, Seodong-daero, Anseong-si, Gyeonggi-do, South Korea
| | - Sun-Young Lee
- Department of Food and Nutrition, Chung-Ang University, 4726, Seodong-daero, Anseong-si, Gyeonggi-do, South Korea
| |
Collapse
|
16
|
Hassenberg K, Geyer M, Mauerer M, Praeger U, Herppich WB. Influence of temperature and organic matter load on chlorine dioxide efficacy on Escherichia coli inactivation. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.01.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Khan I, Tango CN, Miskeen S, Lee BH, Oh DH. Hurdle technology: A novel approach for enhanced food quality and safety – A review. Food Control 2017. [DOI: 10.1016/j.foodcont.2016.11.010] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
|
19
|
Tzortzakis N, Chrysargyris A. Postharvest ozone application for the preservation of fruits and vegetables. FOOD REVIEWS INTERNATIONAL 2016. [DOI: 10.1080/87559129.2016.1175015] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
20
|
Tornuk F, Ozturk I, Sagdic O, Yilmaz A, Erkmen O. Application of Predictive Inactivation Models to Evaluate Survival ofStaphylococcus aureusin Fresh-Cut Apples Treated with Different Plant Hydrosols. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2013. [DOI: 10.1080/10942912.2011.650340] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
21
|
Horvitz S, Cantalejo MJ. Application of Ozone for the Postharvest Treatment of Fruits and Vegetables. Crit Rev Food Sci Nutr 2013; 54:312-39. [DOI: 10.1080/10408398.2011.584353] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
22
|
Smetanska I, Hunaefi D, Barbosa-Cánovas GV. Nonthermal Technologies to Extend the Shelf Life of Fresh-Cut Fruits and Vegetables. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/978-1-4614-7906-2_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
|
23
|
Pangloli P, Hung YC. Reducing microbiological safety risk on blueberries through innovative washing technologies. Food Control 2013. [DOI: 10.1016/j.foodcont.2013.01.052] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
24
|
Aguayo E, Escalona V, Silveira AC, Artés F. Quality of tomato slices disinfected with ozonated water. FOOD SCI TECHNOL INT 2013; 20:227-35. [PMID: 23774605 DOI: 10.1177/1082013213482846] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fresh-cut industry needs novel disinfectant to replace the use of chlorine. Ozone is one of the most powerful oxidizing agents and is applied in gaseous or aqueous form for sanitation purposes. However, the strong oxidative effect could affect the nutritional and sensorial quality, in particular, when time of washing is extended. For that reason, the overall impact of ozonated water (0.4 mg/L) dipping applied during 1, 3 and 5 min compared to control washed in water during 5 min was studied in tomato slices stored during 14 days at 5 . According to the results, ozonated water treatment of 3 min achieved the best firmness retention, microbial quality (mesophilic, psychrotrophic and yeas load) and reduced the consumption of fructose and glucose. The use of ozonated water did not affect the total acidity, pH, total solid soluble, organic acid as ascorbic, fumaric or succinic acid and the sensorial parameters, which were only affected by storage time. However, the poor appearance, aroma and overall quality obtained in all treatments prevented shelf life of 14 days and the quality at acceptable levels was established in 10 days at 5 . It is recommended to wash tomato slices with 0.4 mg/L ozonated water for 3 min only. Extending treatment duration did not improve the microbiological quality, possibly due to the extra time permitting the ozone to react with other components of the fruit tissue, undermining the antimicrobial benefits.
Collapse
Affiliation(s)
- Encarna Aguayo
- 1Postharvest and Refrigeration Group, Universidad Politécnica de Cartagena (UPCT), Spain
| | | | | | | |
Collapse
|
25
|
Amorim EOC, Tribst AAL, Augusto PED, Cristianini M. Inactivation of E. coli and B. subtilis spores in ozonized cassava starch. FOOD SCIENCE AND TECHNOLOGY 2013. [DOI: 10.1590/s0101-20612013005000043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
Miller FA, Silva CLM, Brandão TRS. A Review on Ozone-Based Treatments for Fruit and Vegetables Preservation. FOOD ENGINEERING REVIEWS 2013. [DOI: 10.1007/s12393-013-9064-5] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Bermúdez-Aguirre D, Barbosa-Cánovas GV. Disinfection of selected vegetables under nonthermal treatments: Chlorine, acid citric, ultraviolet light and ozone. Food Control 2013. [DOI: 10.1016/j.foodcont.2012.05.073] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
28
|
Calder BL, Skonberg DI, Davis-Dentici K, Hughes BH, Bolton JC. The effectiveness of ozone and acidulant treatments in extending the refrigerated shelf life of fresh-cut potatoes. J Food Sci 2012; 76:S492-8. [PMID: 22417607 DOI: 10.1111/j.1750-3841.2011.02371.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The objective of the study was to determine the effectiveness of acidulant dip treatments (with or without aqueous ozone) to reduce enzymatic browning and to extend the shelf life of fresh-cut potato slices during refrigerated storage (4 °C) for 28 d. Potato slices subjected to aqueous ozone (2 ppm) had significantly (P≤ 0.05) higher L-values and lower a-values, but ozone did not appear to have any effect on aerobic plate counts (APCs) or polyphenol oxidase (PPO) activity. NatureSeal (NS) and sodium acid sulfate (SAS) were the most effective acidulant treatments in reducing browning (significantly [P≤ 0.05] higher L-values, lower a-values, and browning index values) regardless of ozone treatment. NS and SAS also had lower PPO activity compared to other treatments on days 0 and 28, and significantly (P≤ 0.05) lower APCs (≤2.00 log CFU/g) over refrigerated storage. Therefore, the SAS treatment was comparable to NS, a commercially available product, and showed promise as an effective antibrowning dip to reduce browning and spoilage in fresh-cut potato products. Practical Application: A 1% SAS dip treatment which included 1% citric and 1% ascorbic acid was found to be an effective antibrowning dip for fresh-cut potatoes along with NatureSeal®'s PS-10, compared to other treatments. They were both effective in maintaining low microbial counts over refrigerated storage. Additionally, aqueous ozone washes (2 ppm) showed significant benefits to reduce browning; however, ozone did not affect microbial counts or PPO enzyme activity. Therefore, the SAS treatment could have potential use in the fruit and vegetable industry to reduce browning and spoilage in fresh-cut potato products.
Collapse
Affiliation(s)
- Beth L Calder
- Dept. of Food Science & Human Nutrition, Univ. of Maine, 5735 Hitchner Hall, Orono, ME 04469-5735, USA.
| | | | | | | | | |
Collapse
|
29
|
Horvitz S, Cantalejo MJ. Effects of ozone and chlorine postharvest treatments on quality of fresh-cut red bell peppers. Int J Food Sci Technol 2012. [DOI: 10.1111/j.1365-2621.2012.03053.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
30
|
Das BK, Kim JG, Choi JW. Efficacy of different washing solutions and contact times on the microbial quality and safety of fresh-cut paprika. FOOD SCI TECHNOL INT 2011; 17:471-9. [PMID: 21954309 DOI: 10.1177/1082013211398842] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The role of different washing solutions and contact times was investigated to determine their use as potential sanitizers for maintaining the microbial quality and food safety of fresh-cut paprika. Samples were cut into small pieces, washed for both 90 and 180 s by different washing solutions: tap water, chlorinated water (100 mg/L and pH 6.5-7), electrolyzed water (pH 7.2) and ozonized water (4 mg/L). Then, samples were packaged in 50 µm polypropylene bags and stored at 5 °C for 12 days, followed by an evaluation of the antimicrobial efficacy of the treatments. Various quality and safety parameters, such as gas composition, color, off-odor, electrical conductivity and microbial numbers, were evaluated during storage. Results revealed insignificant differences in gas composition, and no off-odor was observed in any of the samples during the storage period. However, longer contact time resulted in slightly lower hue angle value than a short one for all washing solutions. Moreover, samples washed with ozone washings showed lower electrolyte leakage than other washing solutions. Samples washed for longer contact time except those washed in ozonized water showed increased microbial numbers during storage. Hence, it has been concluded that longer contact time with ozone has positive effects, whereas the other washing solutions adversely affect the microbial quality and safety aspects of fresh-cut paprika.
Collapse
Affiliation(s)
- B Kumar Das
- National Institute of Horticultural and Herbal Science, RDA, Suwon 440706, Republic of Korea.
| | | | | |
Collapse
|
31
|
Huang Y, Chen H. Effect of organic acids, hydrogen peroxide and mild heat on inactivation of Escherichia coli O157:H7 on baby spinach. Food Control 2011. [DOI: 10.1016/j.foodcont.2011.01.012] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
32
|
Efficacy of various plant hydrosols as natural food sanitizers in reducing Escherichia coli O157:H7 and Salmonella Typhimurium on fresh cut carrots and apples. Int J Food Microbiol 2011; 148:30-5. [DOI: 10.1016/j.ijfoodmicro.2011.04.022] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2010] [Revised: 04/16/2011] [Accepted: 04/20/2011] [Indexed: 11/23/2022]
|
33
|
INATSU Y, KITAGAWA T, NAKAMURA N, KAWASAKI S, NEI D, BARI MLATIFUL, KAWAMOTO S. Effectiveness of Stable Ozone Microbubble Water on Reducing Bacteria on the Surface of Selected Leafy Vegetables. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2011. [DOI: 10.3136/fstr.17.479] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
34
|
Lu Y, Wu C. Reduction of Salmonella enterica contamination on grape tomatoes by washing with thyme oil, thymol, and carvacrol as compared with chlorine treatment. J Food Prot 2010; 73:2270-5. [PMID: 21219747 DOI: 10.4315/0362-028x-73.12.2270] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In recent years, multistate outbreaks of Salmonella enterica serovars were traced to tomatoes and resulted in serious economic loss for the tomato industry and decreased consumer confidence in the safety of tomato produce. Purified compounds derived from essential oils such as thymol and carvacrol had wide inhibitory effects against foodborne pathogens including Salmonella. The objective of this study was to determine the antimicrobial activities of thymol, carvacrol, and thyme oil against Salmonella on grape tomatoes. Surface-inoculated grape tomatoes were washed with 4% ethanol, 200 ppm of chlorine, or one of six washing solutions (thymol [0.2 and 0.4 mg/ml], thyme oil [1 and 2 mg/ml], and carvacrol [0.2 and 0.4 mg/ml]) for 5 or 10 min. There was no significant difference in the reduction of S. enterica serovars when different washing times were used (P > 0.05). Thymol (especially at the concentration of 0.4 mg/ml) was the most effective (P < 0.05) among the three natural antimicrobial agents, which achieved >4.1-log reductions of S. enterica serovars Typhimurium, Kentucky, Senftenberg, and Enteritidis on grape tomatoes after a 5-min washing and >4.3-log reductions after a 10-min washing. A >4.6-log reduction in the S. enterica populations in comparison to control was observed with the use of thymol solutions. The uses of these antimicrobial agents achieved significant log reductions of Salmonella on inoculated grape tomatoes and decreased dramatically the risk of potential transmission of pathogens from tomatoes to washing solutions. None of these antimicrobial agents decreased the total phenolic and ascorbic acid content, nor did any of them change the color and pH values or affect the taste, aroma, or visual quality of grape tomatoes. Therefore, 0.4 mg/ml thymol has great potential to be an alternative to chlorine-based washing solution for fresh produce.
Collapse
Affiliation(s)
- Yingjian Lu
- Department of Animal and Food Sciences, 044 Townsend Hall, University of Delaware, Newark, Delaware 19716, USA
| | | |
Collapse
|
35
|
Jeong S, Marks BP, Ryser ET, Moosekian SR. Inactivation of Escherichia coli O157:H7 on lettuce, using low-energy X-ray irradiation. J Food Prot 2010; 73:547-51. [PMID: 20202343 DOI: 10.4315/0362-028x-73.3.547] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Low-energy X-ray irradiation was assessed as a means of eliminating Escherichia coli O157:H7 on lettuce. Round-cut iceberg lettuce samples (2.54-cm diameter) were dip or spot inoculated with a three-strain cocktail of E. coli O157:H7, stored for 24 h at 4 degrees C, and then irradiated at four dose levels up to 0.25 kGy using a prototype low-energy (70 kV) X-ray irradiator. E. coli O157:H7 survivors were quantified by plating on sorbitol MacConkey agar containing cefixime and tellurite. Dip inoculation yielded a D(10)-value of 0.040 +/- 0.001 kGy, which is 3.4 times lower than a previously reported value of 0.136 kGy using gamma radiation. The D(10)-value for E. coli O157:H7 on spot-inoculated samples was 0.078 +/- 0.008 kGy, which is about twice that of dip-inoculated samples. When 10 stacked leaves were irradiated from both sides, a dose of 0.2 kGy was achieved at the center of the stack with a surface dose of 1 kGy, corresponding to a approximately 5-log reduction of E. coli O157:H7 at the center of the stack. Based on these findings, low-energy X-ray irradiation appears to be a promising microbial inactivation strategy for leafy greens and potentially for other types of fresh produce.
Collapse
Affiliation(s)
- Sanghyup Jeong
- Biosystems and Agricultural Engineering, Michigan State University, East Lansing, Michigan 48824, USA.
| | | | | | | |
Collapse
|
36
|
Vandekinderen I, Van Camp J, De Meulenaer B, Veramme K, Bernaert N, Denon Q, Ragaert P, Devlieghere F. Moderate and high doses of sodium hypochlorite, neutral electrolyzed oxidizing water, peroxyacetic acid, and gaseous chlorine dioxide did not affect the nutritional and sensory qualities of fresh-cut Iceberg lettuce (Lactuca sativa Var. capitata L.) after washing. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:4195-203. [PMID: 19371140 DOI: 10.1021/jf803742v] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Besides the traditionally used sodium hypochlorite (20 and 200 mg L(-1)), alternative sanitizers such as peroxyacetic acid (80 and 250 mg L(-1)) and neutral electrolyzed oxidizing water (4.5 and 30 mg L(-1) free chlorine) as well as chlorine dioxide gas (1.54 mg L(-1)) were evaluated for their efficiency in reducing the microbial load of fresh-cut iceberg lettuce. An additional rinsing step with tap water and cooling of the sanitizing solutions, which are obvious for the fresh-cut industry, were not performed within the current study. The high doses of sodium hypochlorite and peroxyacetic acid tested within this study do not conform to the normally used concentrations within the fresh-cut industry. Neutral electrolyzed oxidizing water (30 mg L(-1)), peroxyacetic acid (250 mg L(-1)), and gaseous chlorine dioxide significantly reduced the total aerobic plate count of cut lettuce in comparison with water wash treatments alone. None of the treatments significantly affected the sensory quality of the lettuce, although small color changes were observed after colorimetric measurements. From a nutritional point of view water rinsing significantly decreased the vitamin C (maximum 35%) and phenol (maximum 17%) contents, but did not affect the carotenoid and α-tocopherol contents. Additional effects caused by adding a sanitizer to the wash water were not observed for vitamin C and phenols. Conversely, washing with 250 mg L(-1) peroxyacetic acid reduced the β-carotene content by about 30%, whereas using 200 mg L(-1) sodium hypochlorite reduced both the lactucaxanthin and the lutein contents by about 60%. Use of gaseous chlorine dioxide also had an impact on the lutein content (-18%). Furthermore, the α-tocopherol content was reduced by 19.7 and 15.4% when the two concentrations of neutral electrolyzed oxidizing water were used, respectively. These data represent the situation on day 0. In a next phase, shelf-life studies considering microbial and sensory quality and nutrient content should be conducted.
Collapse
Affiliation(s)
- Isabelle Vandekinderen
- Department of Food Safety and Food Quality, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Potential alternative disinfection methods for organic fresh-cut industry for minimizing water consumption and environmental impact. Lebensm Wiss Technol 2009. [DOI: 10.1016/j.lwt.2008.08.001] [Citation(s) in RCA: 364] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
38
|
|
39
|
Recent advances in the microbial safety of fresh fruits and vegetables. ADVANCES IN FOOD AND NUTRITION RESEARCH 2009; 57:155-208. [PMID: 19595387 DOI: 10.1016/s1043-4526(09)57004-0] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Foodborne illness outbreaks linked to fresh produce are becoming more frequent and widespread. High impact outbreaks, such as that associated with spinach contaminated with Escherichia coli O157:H7, resulted in almost 200 cases of foodborne illness across North America and >$300 m market losses. Over the last decade there has been intensive research into gaining an understanding on the interactions of human pathogens with plants and how microbiological safety of fresh produce can be improved. The following review will provide an update on the food safety issues linked to fresh produce. An overview of recent foodborne illness outbreaks linked to fresh produce. The types of human pathogens encountered will be described and how they can be transferred from their normal animal or human host to fresh produce. The interaction of human pathogens with growing plants will be discussed, in addition to novel intervention methods to enhance the microbiological safety of fresh produce.
Collapse
|
40
|
Zwielehner J, Handschur M, Michaelsen A, Irez S, Demel M, Denner EBM, Haslberger AG. DGGE and real-time PCR analysis of lactic acid bacteria in bacterial communities of the phyllosphere of lettuce. Mol Nutr Food Res 2008; 52:614-23. [PMID: 18398868 DOI: 10.1002/mnfr.200700158] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Food associated indigenous microbial communities exert antagonistic effects on pathogens and may routinely deliver health relevant microorganisms to the GI tract. By using molecular, culture independent methods including PCR-DGGE of 16S rDNA-coding regions and real-time PCR (RT-PCR) as well as BIOLOG metabolic fingerprinting, microbial communities on lettuce were analyzed in samples from fields, from supermarkets and soil. Amplified 16S rRNA gene sequences (57.7%) could be assigned to species previously reported as typical for the phyllosphere including Pantoea agglomerans, Pseudomonas flavescens, Moraxella spp., and Mycobacterium spp. 71.8% of the sequences obtained represented so far undescribed taxa. Principal component analysis of BIOLOG metabolic profiles indicated a seasonal variation in the lettuce phyllosphere microbial community structure. Various lactic acid bacteria were detected including several Lactobacillus and Leuconostoc species in particular on lettuce from organic farming. By RT-PCR lactobacilli were found with a range of abundances from 1x10(4 )to 1x10(5 )copies/g lettuce. Considering the importance of salad in many diets lettuce may contribute to a constant supply with LAB.
Collapse
Affiliation(s)
- Jutta Zwielehner
- Department of Nutritional Sciences, University of Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
41
|
Hadjok C, Mittal GS, Warriner K. Inactivation of human pathogens and spoilage bacteria on the surface and internalized within fresh produce by using a combination of ultraviolet light and hydrogen peroxide. J Appl Microbiol 2008; 104:1014-24. [PMID: 18248373 DOI: 10.1111/j.1365-2672.2007.03624.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS To evaluate the efficacy of ultraviolet (UV) light (254 nm) combined with hydrogen peroxide (H(2)O(2)) to inactivate bacteria on and within fresh produce. METHODS AND RESULTS The produce was steep inoculated in bacterial cell suspension followed by vacuum infiltration. The inoculated samples were sprayed with H(2)O(2) under constant UV illumination. The log count reduction (LCR) of Salmonella on and within lettuce was dependent on the H(2)O(2) concentration, temperature and treatment time with UV intensity being less significant. By using the optimized parameters (1.5% H(2)O(2) at 50 degrees C, UV dose of 37.8 mJ cm(-2)), the surface Salmonella were reduced by 4.12 +/- 0.45 and internal counts by 2.84 +/- 0.34 log CFU, which was significantly higher compared with H(2)O(2) or UV alone. Higher LCR of Escherichia coli O157:H7, Pectobacterium carotovora, Pseudomonas fluorescens and Salmonella were achieved on leafy vegetables compared with produce, such as cauliflower. In all cases, the surface LCR were significantly higher compared with the samples treated with 200 ppm hypochlorite. UV-H(2)O(2)-treated lettuce did not develop brown discolouration during storage but growth of residual survivors occurred with samples held at 25 degrees C. CONCLUSIONS UV-H(2)O(2) reduce the bacterial populations on and within fresh produce without affecting the shelf-life stability. SIGNIFICANCE OF THE STUDY UV-H(2)O(2) represent an alternative to hypochlorite washes to decontaminate fresh produce.
Collapse
Affiliation(s)
- C Hadjok
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | | | | |
Collapse
|
42
|
Nunes TP, Martins CG, Behrens JH, Souza KLO, Genovese MI, Destro MT, Landgraf M. Radioresistance of Salmonella species and Listeria monocytogenes on minimally processed arugula (Eruca sativa Mill.): effect of irradiation on flavonoid content and acceptability of irradiated produce. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:1264-1268. [PMID: 18237127 DOI: 10.1021/jf072873j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
This work studied the radiation resistance of Listeria monocytogenes and Salmonella species and the effect of irradiation on leaf flavonoid content and sensory acceptability of minimally processed arugula. Immersion in ozone-treated water reduced the analyzed microorganisms by 1 log. L. monocytogenes and Salmonella were not isolated from samples. Samples of this vegetable were inoculated with a cocktail of Salmonella spp. and L. monocytogenes and exposed to gamma irradiation. D10 values for Salmonella ranged from 0.16 to 0.19 kGy and for L. monocytogenes from 0.37 to 0.48 kGy. Kaempferol glycoside levels were 4 and ca. 3 times higher in samples exposed to 1 and 2 kGy, respectively, than in control samples. An increase in quercetin glycoside was also observed mainly in samples exposed to 1 kGy. In sensory evaluation, arugula had good acceptability, even after exposure to 2 and 4 kGy. These results indicate that irradiation has potential as a practical processing step to improve the safety of arugula.
Collapse
Affiliation(s)
- Tatiana P Nunes
- Departamento de Alimentos e Nutrição Experimental, FCF, Universidade de São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
43
|
HAMANAKA D, IZUMI H. Combined Effect of Mustard and Hop Extract Agents with Emulsifier on Microbial Quality and Physiology of Fresh-cut Vegetables. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2008. [DOI: 10.3136/fstr.14.565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
44
|
Bialka K, Demirci A. Decontamination of Escherichia coli O157:H7 and Salmonella enterica on Blueberries Using Ozone and Pulsed UV-Light. J Food Sci 2007; 72:M391-6. [DOI: 10.1111/j.1750-3841.2007.00517.x] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|