1
|
Park DG, Kwon JG, Ha ES, Kang B, Choi I, Kwak JE, Choi J, Lee W, Kim SH, Kim SH, Park J, Lee JH. Novel next generation sequencing panel method for the multiple detection and identification of foodborne pathogens in agricultural wastewater. Front Microbiol 2023; 14:1179934. [PMID: 37520347 PMCID: PMC10374199 DOI: 10.3389/fmicb.2023.1179934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 06/19/2023] [Indexed: 08/01/2023] Open
Abstract
Detecting and identifying the origins of foodborne pathogen outbreaks is a challenging. The Next-Generation Sequencing (NGS) panel method offers a potential solution by enabling efficient screening and identification of various bacteria in one reaction. In this study, new NGS panel primer sets that target 18 specific virulence factor genes from six target pathogens (Bacillus cereus, Yersinia enterocolitica, Staphylococcus aureus, Vibrio cholerae, Vibrio parahaemolyticus, and Vibrio vulnificus) were developed and optimized. The primer sets were validated for specificity and selectivity through singleplex PCR, confirming the expected amplicon size. Crosscheck and multiplex PCR showed no interference in the primer set or pathogenic DNA mixture. The NGS panel analysis of spiked water samples detected all 18 target genes in a single reaction, with pathogen concentrations ranging from 108 to 105 colony-forming units (CFUs) per target pathogen. Notably, the total sequence read counts from the virulence factor genes showed a positive association with the CFUs per target pathogen. However, the method exhibited relatively low sensitivity and occasional false positive results at low pathogen concentrations of 105 CFUs. To validate the detection and identification results, two sets of quantitative real-time PCR (qPCR) analyses were independently performed on the same spiked water samples, yielding almost the same efficiency and specificity compared to the NGS panel analysis. Comparative statistical analysis and Spearman correlation analysis further supported the similarity of the results by showing a negative association between the NGS panel sequence read counts and qPCR cycle threshold (Ct) values. To enhance NGS panel analysis for better detection, optimization of primer sets and real-time NGS sequencing technology are essential. Nonetheless, this study provides valuable insights into applying NGS panel analysis for multiple foodborne pathogen detection, emphasizing its potential in ensuring food safety.
Collapse
Affiliation(s)
- Dong-Geun Park
- Department of Food and Animal Biotechnology, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
| | - Joon-Gi Kwon
- Department of Food and Animal Biotechnology, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
| | - Eun-Su Ha
- Research and Development Center, Sanigen Co., Ltd, Anyang, Republic of Korea
| | - Byungcheol Kang
- Research and Development Center, Sanigen Co., Ltd, Anyang, Republic of Korea
| | - Iseul Choi
- Research and Development Center, Sanigen Co., Ltd, Anyang, Republic of Korea
| | - Jeong-Eun Kwak
- Department of Food and Animal Biotechnology, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
| | - Jinho Choi
- Research and Development Center, Sanigen Co., Ltd, Anyang, Republic of Korea
| | - Woojung Lee
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, Republic of Korea
| | - Seung Hwan Kim
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, Republic of Korea
| | - Soon Han Kim
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, Republic of Korea
| | - Jeongwoong Park
- Research and Development Center, Sanigen Co., Ltd, Anyang, Republic of Korea
| | - Ju-Hoon Lee
- Department of Food and Animal Biotechnology, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Younes N, Yassine HM, Kourentzi K, Tang P, Litvinov D, Willson RC, Abu-Raddad LJ, Nasrallah GK. A review of rapid food safety testing: using lateral flow assay platform to detect foodborne pathogens. Crit Rev Food Sci Nutr 2023; 64:9910-9932. [PMID: 37350754 DOI: 10.1080/10408398.2023.2217921] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
The detrimental impact of foodborne pathogens on human health makes food safety a major concern at all levels of production. Conventional methods to detect foodborne pathogens, such as live culture, high-performance liquid chromatography, and molecular techniques, are relatively tedious, time-consuming, laborious, and expensive, which hinders their use for on-site applications. Recurrent outbreaks of foodborne illness have heightened the demand for rapid and simple technologies for detection of foodborne pathogens. Recently, Lateral flow assays (LFA) have drawn attention because of their ability to detect pathogens rapidly, cheaply, and on-site. Here, we reviewed the latest developments in LFAs to detect various foodborne pathogens in food samples, giving special attention to how reporters and labels have improved LFA performance. We also discussed different approaches to improve LFA sensitivity and specificity. Most importantly, due to the lack of studies on LFAs for the detection of viral foodborne pathogens in food samples, we summarized our recent research on developing LFAs for the detection of viral foodborne pathogens. Finally, we highlighted the main challenges for further development of LFA platforms. In summary, with continuing improvements, LFAs may soon offer excellent performance at point-of-care that is competitive with laboratory techniques while retaining a rapid format.
Collapse
Affiliation(s)
- Nadin Younes
- Biomedical Research Center, Qatar University, Doha, Qatar
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Hadi M Yassine
- Biomedical Research Center, Qatar University, Doha, Qatar
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Katerina Kourentzi
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas, USA
| | - Patrick Tang
- Department of Pathology, Sidra Medicine, Doha, Qatar
| | - Dmitri Litvinov
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas, USA
- Center for Integrated Bio & Nano Systems, University of Houston, Houston, Texas, USA
| | - Richard C Willson
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas, USA
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Laith J Abu-Raddad
- Infectious Disease Epidemiology Group, Weill Cornell Medicine-Qatar, Cornell University, Doha, Qatar
- World Health Organization Collaborating Centre for Disease Epidemiology Analytics on HIV/AIDS, Sexually Transmitted Infections, and Viral Hepatitis, Weill Cornell Medicine-Qatar, Cornell University, Doha, Qatar
- Department of Healthcare Policy and Research, Weill Cornell Medicine, Cornell University, New York, New York, USA
| | - Gheyath K Nasrallah
- Biomedical Research Center, Qatar University, Doha, Qatar
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
3
|
Antibody- and nucleic acid-based lateral flow immunoassay for Listeria monocytogenes detection. Anal Bioanal Chem 2021; 413:4161-4180. [PMID: 34041576 DOI: 10.1007/s00216-021-03402-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/30/2021] [Accepted: 05/10/2021] [Indexed: 01/02/2023]
Abstract
Listeria monocytogenes is an invasive opportunistic foodborne pathogen and its routine surveillance is critical for protecting the food supply and public health. The traditional detection methods are time-consuming and require trained personnel. Lateral flow immunoassay (LFIA), on the other hand, is an easy-to-perform, rapid point-of-care test and has been widely used as an inexpensive surveillance tool. In recent times, nucleic acid-based lateral flow immunoassays (NALFIA) are also developed to improve sensitivity and specificity. A significant improvement in lateral flow-based assays has been reported in recent years, especially the ligands (antibodies, nucleic acids, aptamers, bacteriophage), labeling molecules, and overall assay configurations to improve detection sensitivity, specificity, and automated interpretation of results. In most commercial applications, LFIA has been used with enriched food/environmental samples to ensure detection of live cells thus prolonging the assay time to 24-48 h; however, with the recent improvement in LFIA sensitivity, results can be obtained in less than 8 h with shortened and improved enrichment practices. Incorporation of surface-enhanced Raman spectroscopy and/or immunomagnetic separation could significantly improve LFIA sensitivity for near-real-time point-of-care detection of L. monocytogenes for food safety and public health applications.
Collapse
|
4
|
Wang Z, Cai R, Gao Z, Yuan Y, Yue T. Immunomagnetic separation: An effective pretreatment technology for isolation and enrichment in food microorganisms detection. Compr Rev Food Sci Food Saf 2020; 19:3802-3824. [PMID: 33337037 DOI: 10.1111/1541-4337.12656] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/17/2020] [Accepted: 09/24/2020] [Indexed: 12/24/2022]
Abstract
The high efficiency and accurate detection of foodborne pathogens and spoilage microorganisms in food are a task of great social, economic, and public health importance. However, the contamination levels of target bacteria in food samples are very low. Owing to the background interference of food ingredients and negative impact of nontarget flora, the establishment of efficient pretreatment techniques is very crucial for the detection of food microorganisms. With the significant advantages of high specificity and great separation efficiency, immunomagnetic separation (IMS) assay based on immunomagnetic particles (IMPs) has been considered as a powerful system for the separation and enrichment of target bacteria. This paper mainly focuses on the development of IMS as well as their application in food microorganisms detection. First, the basic principle of IMS in the concentration of food bacteria is presented. Second, the effect of different factors, including the sizes of magnetic particles (MPs), immobilization of antibody and operation parameters (the molar ratio of antibody to MPs, the amount of IMPs, incubation time, and bacteria concentration) on the immunocapture efficiency of IMPs are discussed. The performance of IMPs in different food samples is also evaluated. Finally, the combination of IMS and various kinds of detection methods (immunology-based methods, nucleic acid-based methods, fluorescence methods, and biosensors) to detect pathogenic and spoilage organisms is summarized. The challenges and future trends of IMS are also proposed. As an effective pretreatment technique, IMS can improve the detection sensitivity and shorten their testing time, thus exhibiting broad prospect in the field of food bacteria detection.
Collapse
Affiliation(s)
- Zhouli Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China.,Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China.,National Engineering Research Center of Agriculture Integration Test (Yangling), Yangling, Shaanxi, China
| | - Rui Cai
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China.,Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China.,National Engineering Research Center of Agriculture Integration Test (Yangling), Yangling, Shaanxi, China
| | - Zhenpeng Gao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China.,Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China.,National Engineering Research Center of Agriculture Integration Test (Yangling), Yangling, Shaanxi, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China.,Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China.,National Engineering Research Center of Agriculture Integration Test (Yangling), Yangling, Shaanxi, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China.,Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China.,National Engineering Research Center of Agriculture Integration Test (Yangling), Yangling, Shaanxi, China
| |
Collapse
|
5
|
Zhang B, Yu L, Liu Z, Lu H, Fu X, Du D. Rapid determination of aflatoxin B1 by an automated immunomagnetic bead purification sample pretreatment method combined with high-performance liquid chromatography. J Sep Sci 2020; 43:3509-3519. [PMID: 32620032 DOI: 10.1002/jssc.202000293] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We aimed to establish an automated versatile sample preconcentration method based on the modified immunomagnetic beads, which was utilized to enrich for aflatoxin B1 from the matrices. The critical main parameters affecting the extraction efficiency, such as usage amount of immunomagnetic beads, reaction time, elution time, and blending way were investigated. Under the optimized conditions, the content of aflatoxin B1 was analyzed by high-performance liquid chromatography, the mobile phase consists of water-acetonitrile-methanol (42:18:10, v/v/v), and fluorescence detection was performed with excitation and emission wavelengths at 360 and 440 nm, respectively. Moreover, the performance of preconcentration method was compared with the conventional method based on the immunoaffinity column. The accuracy of two clean-up methods was within the error range. In addition, the stability and recyclability of the immunomagnetic beads was studied by recycling them five times. The results for the respective analysis in various samples demonstrated that the developed extraction platform provides a promising approach that is simple, rapid, sensitive, and easy to use.
Collapse
Affiliation(s)
- Bo Zhang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, P. R. China.,Kangyuan Techbio Biological Technology Co., Ltd, Suqian, P. R. China
| | - Leitao Yu
- The Second Affiliated Hospital of Nanchang University, Nanchang, P. R. China
| | - Zhenjiang Liu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Hongyang Lu
- Kangyuan Techbio Biological Technology Co., Ltd, Suqian, P. R. China
| | - Xiaoling Fu
- The Second Affiliated Hospital of Nanchang University, Nanchang, P. R. China
| | - Daolin Du
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, P. R. China
| |
Collapse
|
6
|
Luo K, Kim HY, Oh MH, Kim YR. Paper-based lateral flow strip assay for the detection of foodborne pathogens: principles, applications, technological challenges and opportunities. Crit Rev Food Sci Nutr 2018; 60:157-170. [PMID: 30311773 DOI: 10.1080/10408398.2018.1516623] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
As a representative colorimetic biosnesor, paper-based LFSA have emerged as a promising and robust tool that can easily and instansly detect the presence of target biological components in food sample. Recently, LFSAs have gained a considerable attention as an alternative method for rapid diagnosis of foodborne pathogens to the conventional culture-based assays such as plate counting and PCR. One major drawback of the current LFSAs for the detection of pathogenic bacteria is the low sensitivity, limiting its practical applications in POCT. Not like many other protein-based biomarkers that are present in nM or pM range, the number of pathogenic bacteria that cause disease can be as low as few CFU/ml. Here, we review current advances in LFSAs for the detection of pathogenic bacteria in terms of chromatic agents and analyte types. Furthermore, recent approaches for signal enhancement and modifications of the LFSA architecture for multiplex detection of pathogenic bacteria are included in this review, together with the advantages and limitations of each techniques. Finally, the technological challenges and future prospect of LFSA-based POCT for the detection of pathogenic bacteria are discussed.
Collapse
Affiliation(s)
- Ke Luo
- Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104 Korea
| | - Hae-Yeong Kim
- Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104 Korea
| | - Mi-Hwa Oh
- National Institute of Animal Science, Rural Development Administration, Wanju 55365 Korea
| | - Young-Rok Kim
- Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104 Korea
| |
Collapse
|
7
|
|
8
|
Duan ML, Huang YM, Wu SS, Li GQ, Wang SY, Chen MH, Wang C, Liu DF, Liu CW, Lai WH. Rapid and sensitive detection of Salmonella enteritidis by a pre-concentrated immunochromatographic assay in a large-volume sample system. RSC Adv 2017. [DOI: 10.1039/c7ra11006e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A pre-concentrated immunochromatographic assay for Salmonella enteritidis (S. enteritidis) detection was developed based on the unique optical and magnetic properties of magnetic nanoparticles (MNPs).
Collapse
Affiliation(s)
- Miao-Lin Duan
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- China
| | - Yan-Mei Huang
- Jiangxi YeLi Medical Device Co., Ltd
- Nanchang 330008
- China
| | - Song-Song Wu
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- China
| | - Guo-Qiang Li
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- China
| | - Shu-Ying Wang
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- China
| | - Ming-Hui Chen
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- China
| | - Chun Wang
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- China
| | - Dao-Feng Liu
- Institute for Nutrition and Food Safety
- Jiangxi Province Centre for Disease Control and Prevention
- Nanchang 330029
- China
| | - Cheng-Wei Liu
- Institute for Nutrition and Food Safety
- Jiangxi Province Centre for Disease Control and Prevention
- Nanchang 330029
- China
| | - Wei-Hua Lai
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- China
| |
Collapse
|
9
|
Wang W, Liu L, Song S, Xu L, Zhu J, Kuang H. Gold nanoparticle-based paper sensor for multiple detection of 12 Listeria spp. by P60-mediated monoclonal antibody. FOOD AGR IMMUNOL 2016. [DOI: 10.1080/09540105.2016.1263986] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Wenbin Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, JiangSu, People’s Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, JiangSu, People’s Republic of China
| | - Liqiang Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, JiangSu, People’s Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, JiangSu, People’s Republic of China
| | - Shanshan Song
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, JiangSu, People’s Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, JiangSu, People’s Republic of China
| | - Liguang Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, JiangSu, People’s Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, JiangSu, People’s Republic of China
| | - Jianping Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, JiangSu, People’s Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, JiangSu, People’s Republic of China
| | - Hua Kuang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, JiangSu, People’s Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, JiangSu, People’s Republic of China
| |
Collapse
|
10
|
Zheng W, Teng J, Cheng L, Ye Y, Pan D, Wu J, Xue F, Liu G, Chen W. Hetero-enzyme-based two-round signal amplification strategy for trace detection of aflatoxin B1 using an electrochemical aptasensor. Biosens Bioelectron 2016; 80:574-581. [PMID: 26896792 DOI: 10.1016/j.bios.2016.01.091] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/29/2016] [Accepted: 01/31/2016] [Indexed: 01/04/2023]
Abstract
An electrochemical aptasensor for trace detection of aflatoxin B1 (AFB1) was developed by using an aptamer as the recognition unit while adopting the telomerase and EXO III based two-round signal amplification strategy as the signal enhancement units. The telomerase amplification was used to elongate the ssDNA probes on the surface of gold nanoparticles, by which the signal response range of the signal-off model electrochemical aptasensor could be correspondingly enlarged. Then, the EXO III amplification was used to hydrolyze the 3'-end of the dsDNA after the recognition of target AFB1, which caused the release of bounded AFB1 into the sensing system, where it participated in the next recognition-sensing cycle. With this two-round signal amplified electrochemical aptasensor, target AFB1 was successfully measured at trace concentrations with excellent detection limit of 0.6*10(-4)ppt and satisfied specificity due to the excellent affinity of the aptamer against AFB1. Based on this designed two-round signal amplification strategy, both the sensing range and detection limit were greatly improved. This proposed ultrasensitive electrochemical aptasensor method was also validated by comparison with the classic instrumental methods. Importantly, this hetero-enzyme based two-round signal amplified electrochemical aptasensor offers a great promising protocol for ultrasensitive detection of AFB1 and other mycotoxins by replacing the core recognition sequence of the aptamer.
Collapse
Affiliation(s)
- Wanli Zheng
- School of Biotechnology and Food Engineering, Anhui Provincial Key Lab of Functional Materials and Devices, Hefei University of Technology, Hefei 23009, China
| | - Jun Teng
- School of Biotechnology and Food Engineering, Anhui Provincial Key Lab of Functional Materials and Devices, Hefei University of Technology, Hefei 23009, China
| | - Lin Cheng
- School of Biotechnology and Food Engineering, Anhui Provincial Key Lab of Functional Materials and Devices, Hefei University of Technology, Hefei 23009, China
| | - Yingwang Ye
- School of Biotechnology and Food Engineering, Anhui Provincial Key Lab of Functional Materials and Devices, Hefei University of Technology, Hefei 23009, China
| | - Daodong Pan
- School of Biotechnology and Food Engineering, Anhui Provincial Key Lab of Functional Materials and Devices, Hefei University of Technology, Hefei 23009, China
| | - Jingjing Wu
- School of Biotechnology and Food Engineering, Anhui Provincial Key Lab of Functional Materials and Devices, Hefei University of Technology, Hefei 23009, China
| | - Feng Xue
- Jiangsu Entry-Exit Inspection and Quarantine Bureau, Nanjing 200002, China.
| | - Guodong Liu
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58102, USA
| | - Wei Chen
- School of Biotechnology and Food Engineering, Anhui Provincial Key Lab of Functional Materials and Devices, Hefei University of Technology, Hefei 23009, China.
| |
Collapse
|
11
|
Villamizar-Rodríguez G, Fernández J, Marín L, Muñiz J, González I, Lombó F. Multiplex detection of nine food-borne pathogens by mPCR and capillary electrophoresis after using a universal pre-enrichment medium. Front Microbiol 2015; 6:1194. [PMID: 26579100 PMCID: PMC4630290 DOI: 10.3389/fmicb.2015.01194] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 10/13/2015] [Indexed: 12/31/2022] Open
Abstract
Routine microbiological quality analyses in food samples require, in some cases, an initial incubation in pre-enrichment medium. This is necessary in order to ensure that small amounts of pathogenic strains are going to be detected. In this work, a universal pre-enrichment medium has been developed for the simultaneous growth of Bacillus cereus, Campylobacter jejuni, Clostridium perfringens, Cronobacter sakazakii, Escherichia coli, Enterobacteriaceae family (38 species, 27 genera), Listeria monocytogenes, Staphylococcus aureus, Salmonella spp. (two species, 13 strains). Growth confirmation for all these species was achieved in all cases, with excellent enrichments. This was confirmed by plating on the corresponding selective agar media for each bacterium. This GVUM universal pre-enrichment medium could be useful in food microbiological analyses, where different pathogenic bacteria must be detected after a pre-enrichment step. Following, a mPCR reaction for detection of all these pathogens was developed, after designing a set of nine oligonucleotide pairs from specific genetic targets on gDNA from each of these bacteria, covering all available strains already sequenced in GenBank for each pathogen type. The detection limits have been 1 Genome Equivalent (GE), with the exception of the Fam. Enterobacteriaceae (5 GEs). We obtained amplification for all targets (from 70 to 251 bp, depending on the bacteria type), showing the capability of this method to detect the most important industrial and sanitary food-borne pathogens from a universal pre-enrichment medium. This method includes an initial pre-enrichment step (18 h), followed by a mPCR (2 h) and a capillary electrophoresis (30 min); avoiding the tedious and long lasting growing on solid media required in traditional analysis (1–4 days, depending on the specific pathogen and verification procedure). An external testing of this method was conducted in order to compare classical and mPCR methods. This evaluation was carried out on five types of food matrices (meat, dairy products, prepared foods, canned fish, and pastry products), which were artificially contaminated with each one of the microorganisms, demonstrating the equivalence between both methods (coincidence percentages between both methods ranged from 78 to 92%).
Collapse
Affiliation(s)
- Germán Villamizar-Rodríguez
- Research Unit "Biotechnology and Experimental Therapy Based in Nutraceuticals-BITTEN," Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo Oviedo, Spain
| | - Javier Fernández
- Research Unit "Biotechnology and Experimental Therapy Based in Nutraceuticals-BITTEN," Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo Oviedo, Spain
| | - Laura Marín
- Research Unit "Biotechnology and Experimental Therapy Based in Nutraceuticals-BITTEN," Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo Oviedo, Spain
| | - Juan Muñiz
- Área de Microbiología, ALCE Calidad S.L. Llanera Llanera, Spain
| | - Isabel González
- Departamento I+D+i, Industrias Lácteas Asturianas, S.A. (Reny Picot) Navia, Spain
| | - Felipe Lombó
- Research Unit "Biotechnology and Experimental Therapy Based in Nutraceuticals-BITTEN," Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo Oviedo, Spain
| |
Collapse
|
12
|
Välimaa AL, Tilsala-Timisjärvi A, Virtanen E. Rapid detection and identification methods for Listeria monocytogenes in the food chain – A review. Food Control 2015. [DOI: 10.1016/j.foodcont.2015.02.037] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Huang X, Xu Z, Mao Y, Ji Y, Xu H, Xiong Y, Li Y. Gold nanoparticle-based dynamic light scattering immunoassay for ultrasensitive detection of Listeria monocytogenes in lettuces. Biosens Bioelectron 2015; 66:184-90. [PMID: 25460900 DOI: 10.1016/j.bios.2014.11.016] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 11/03/2014] [Accepted: 11/09/2014] [Indexed: 01/24/2023]
Abstract
Gold nanoparticle (GNP)-based dynamic light scattering (DLS) assay has been widely used for sensitive detection of small analytes based on analyte binding-induced GNP aggregation. However, the use of this new method to detect large biological objectives, such as pathogenic bacteria, has not been reported. This study is the first to describe a homogeneous GNP-based DLS immunoassay for ultrasensitive detection of Listeria monocytogenes. Compared with small analytes, L. monocytogenes has a larger surface and a higher number of antigen epitopes, which serve as carriers that bind to GNP probes to form "GNP-coated bacteria" complexes. To achieve better analytical performance, various parameters including GNP diameter and concentration, amount of labeled antibodies, and immunoreaction time were systematically investigated and optimized. Under the developed optimum conditions, limit of detection (LOD) for L. monocytogenes reached as low as 3.5×10(1)CFUmL(-1) in 0.01M phosphate-buffered saline. Coupled with a large-volume immunomagnetic separation method, LOD for spiked lettuce samples reached 2.2×10(1)CFUg(-1), which was one order of magnitude lower than the maximum limit imposed in Canada (100CFUg(-1)). The proposed method also exhibited excellent discrimination against 17 common pathogenic bacteria in lettuces. The developed GNP-based DLS immunoassay is highly promising as an approach for detecting large biological objectives.
Collapse
Affiliation(s)
- Xiaolin Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, PR China
| | - Zhaodi Xu
- Centre of Analysis and Test, Nanchang University, Nanchang 330047, PR China
| | - Yan Mao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Yanwei Ji
- Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, PR China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China.
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, PR China.
| | - Yanbin Li
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR 72701, United States
| |
Collapse
|
14
|
Abstract
The pathologic evaluation of spinal cord infections requires comprehensive clinical, radiological, and laboratory correlation, because the histologic findings in acute, chronic, or granulomatous infections rarely provide clues for the specific cause. This brief review focuses on the pathologic mechanisms as well as practical issues in the diagnosis and reporting of infections of the spinal cord. Examples are provided of the common infectious agents and methods for their diagnosis. By necessity, discussion is restricted to the infections of the medulla spinalis proper and its meninges, and not bone or soft tissue infections.
Collapse
Affiliation(s)
- Tarik Tihan
- Neuropathology Division, Department of Pathology, University of California San Francisco, Room M551, 505 Parnassus Avenue, San Francisco, CA 94143-0102, USA; Koc University School of Medicine, Istanbul, Turkey.
| |
Collapse
|
15
|
Shan S, Lai W, Xiong Y, Wei H, Xu H. Novel strategies to enhance lateral flow immunoassay sensitivity for detecting foodborne pathogens. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:745-53. [PMID: 25539027 DOI: 10.1021/jf5046415] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Food contaminated by foodborne pathogens causes diseases, affects individuals, and even kills those affected individuals. As such, rapid and sensitive detection methods should be developed to screen pathogens in food. One current detection method is lateral flow immunoassay, an efficient technique because of several advantages, including rapidity, simplicity, stability, portability, and sensitivity. This review presents the format and principle of lateral flow immunoassay strip and the development of conventional lateral flow immunoassay for detecting foodborne pathogens. Furthermore, novel strategies that can be applied to enhance the sensitivity of lateral flow immunoassay to detect foodborne pathogens are presented; these strategies include innovating new label application, designing new formats of lateral flow immunoassay, combining with other methods, and developing signal amplification systems. With these advancements, detection sensitivity and detection time can be greatly improved.
Collapse
Affiliation(s)
- Shan Shan
- State Key Laboratory of Food Science and Technology, Nanchang University , Nanchang 330047, China
| | | | | | | | | |
Collapse
|
16
|
Day JB, Basavanna U. Real-time PCR detection of Listeria monocytogenes in infant formula and lettuce following macrophage-based isolation and enrichment. J Appl Microbiol 2015; 118:233-44. [PMID: 25346434 DOI: 10.1111/jam.12674] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 10/15/2014] [Accepted: 10/17/2014] [Indexed: 11/28/2022]
Abstract
AIMS To develop a rapid detection procedure for Listeria monocytogenes in infant formula and lettuce using a macrophage-based enrichment protocol and real-time PCR. METHODS AND RESULTS A macrophage cell culture system was employed for the isolation and enrichment of L. monocytogenes from infant formula and lettuce for subsequent identification using real-time PCR. Macrophage monolayers were exposed to infant formula and lettuce contaminated with a serial dilution series of L. monocytogenes. As few as approx. 10 CFU ml(-1) or g(-1) of L. monocytogenes were detected in infant formula and lettuce after 16 h postinfection by real-time PCR. Internal positive PCR controls were utilized to eliminate the possibility of false-negative results. Co-inoculation with Listeria innocua did not reduce the L. monocytogenes detection sensitivity. Intracellular L. monocytogenes could also be isolated on Listeria selective media from infected macrophage lysates for subsequent confirmation. CONCLUSIONS The detection method is highly sensitive and specific for L. monocytogenes in infant formula and lettuce and establishes a rapid identification time of 20 and 48 h for presumptive and confirmatory identification, respectively. SIGNIFICANCE AND IMPACT OF THE STUDY The method is a promising alternative to many currently used q-PCR detection methods which employ traditional selective media for enrichment of contaminated food samples. Macrophage enrichment of L. monocytogenes eliminates PCR inhibitory food elements and contaminating food microflora which produce cleaner samples that increase the rapidity and sensitivity of detection.
Collapse
Affiliation(s)
- J B Day
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Colleg Park, MD, USA
| | | |
Collapse
|
17
|
Shi L, Wu F, Wen Y, Zhao F, Xiang J, Ma L. A novel method to detect Listeria monocytogenes via superparamagnetic lateral flow immunoassay. Anal Bioanal Chem 2014; 407:529-35. [PMID: 25486917 DOI: 10.1007/s00216-014-8276-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 09/14/2014] [Accepted: 10/15/2014] [Indexed: 11/29/2022]
Abstract
A novel strip test system combining immunomagnetic separation with lateral flow immunoassay (LFIA) was established for the accurate detection of Listeria monocytogenes. In this system, a pair of matched monoclonal antibodies was used to construct a sandwich immunoassay, in which superparamagnetic particles were coupled with one of the antibodies as a labeled antibody to capture the target bacteria, while the other antibody was immobilized on the detection zone. After a 20-min reaction, the strips were analyzed by a novel instrument which could detect the magnetic signal of the immunocomplex in a magnetic field. Sensitivity evaluation showed that the limit of detection (LOD) of the superparamagnetic LFIA system for L. monocytogenes was 10(4) CFU/mL, which was at least one log lower than conventional LFIA. No cross-reaction was observed when Salmonella, Escherichia coli O157:H7, or three types of harmless Listeria strains were tested. Further evaluation with actual food samples indicated that the superparamagnetic LFIA system showed 100 % concordance with real-time PCR. Therefore, this novel superparamagnetic LFIA system could be used as a rapid, sensitive, and specific method for the detection of L. monocytogenes.
Collapse
Affiliation(s)
- Lei Shi
- Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou, Guangdong, 510632, China
| | | | | | | | | | | |
Collapse
|
18
|
Zeng J, Wei H, Zhang L, Liu X, Zhang H, Cheng J, Ma D, Zhang X, Fu P, Liu L. Rapid detection of Vibrio parahaemolyticus in raw oysters using immunomagnetic separation combined with loop-mediated isothermal amplification. Int J Food Microbiol 2014; 174:123-8. [DOI: 10.1016/j.ijfoodmicro.2014.01.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 11/16/2013] [Accepted: 01/04/2014] [Indexed: 10/25/2022]
|
19
|
Xiong Q, Cui X, Saini JK, Liu D, Shan S, Jin Y, Lai W. Development of an immunomagnetic separation method for efficient enrichment of Escherichia coli O157:H7. Food Control 2014. [DOI: 10.1016/j.foodcont.2013.08.033] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Dzantiev BB, Byzova NA, Urusov AE, Zherdev AV. Immunochromatographic methods in food analysis. Trends Analyt Chem 2014. [DOI: 10.1016/j.trac.2013.11.007] [Citation(s) in RCA: 184] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
21
|
Shim WB, Song JE, Mun H, Chung DH, Kim MG. Rapid colorimetric detection of Salmonella typhimuriumusing a selective filtration technique combined with antibody–magnetic nanoparticle nanocomposites. Anal Bioanal Chem 2013; 406:859-66. [DOI: 10.1007/s00216-013-7497-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 10/31/2013] [Accepted: 11/07/2013] [Indexed: 10/25/2022]
|
22
|
Lee HM, Song SO, Cha SH, Wee SB, Bischoff K, Park SW, Son SW, Kang HG, Cho MH. Development of a monoclonal antibody against deoxynivalenol for magnetic nanoparticle-based extraction and an enzyme-linked immunosorbent assay. J Vet Sci 2013; 14:143-50. [PMID: 23388439 PMCID: PMC3694185 DOI: 10.4142/jvs.2013.14.2.143] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 06/04/2012] [Indexed: 01/09/2023] Open
Abstract
Monoclonal antibody (mAb, NVRQS-DON) against deoxynivalenol (DON) was prepared. DON-Ag coated enzyme linked immunosorbent assay (ELISA) and DON-Ab coated ELISA were prepared by coating the DON-BSA and DON mAb. Quantitative DON calculation ranged from 50 to 4,000 ng/mL for DON-Ab coated ELISA and from 25 to 500 ng/mL for DON-Ag coated ELISA. 50% of inhibitory concentration values of DON, HT-2, 15-acetyl-DON, and nivalenol were 23.44, 22,545, 5,518 and 5,976 ng/mL based on the DON-Ab coated ELISA. Cross-reactivity levels of the mAb to HT-2, 15-acetyl-DON, and nivalenol were 0.1, 0.42, and 0.40%. The intra- and interassay precision coefficient variation (CV) were both <10%. In the mAb-coated ELISA, mean DON recovery rates in animal feed (0 to 1,000 mg/kg) ranged from 68.34 to 95.49% (CV; 4.10 to 13.38%). DON in a buffer solution (250, 500 and 1,000 ng/mL) was isolated using 300 mg of NVRQS-DON and 3 mg of magnetic nanoparticles (MNPs). The mean recovery rates of DON using this mAb-MNP system were 75.2, 96.9, and 88.1% in a buffer solution spiked with DON (250, 500, and 1,000 ng/mL). Conclusively we developed competitive ELISAs for detecting DON in animal feed and created a new tool for DON extraction using mAb-coupled MNPs.
Collapse
Affiliation(s)
- Hyuk-Mi Lee
- Animal and Plant Quarantine Agency, Anyang 430-757, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Singh J, Roychoudhury A, Srivastava M, Solanki PR, Lee DW, Lee SH, Malhotra BD. A highly efficient rare earth metal oxide nanorods based platform for aflatoxin detection. J Mater Chem B 2013; 1:4493-4503. [DOI: 10.1039/c3tb20690d] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
In situ immuno-magnetic concentration-based biosensor systems for the rapid detection of Listeria monocytogenes. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2012. [DOI: 10.1016/j.msec.2011.10.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
Koo O, Aroonnual A, Bhunia A. Human heat-shock protein 60 receptor-coated paramagnetic beads show improved capture of Listeria monocytogenes in the presence of other Listeria in food. J Appl Microbiol 2011; 111:93-104. [DOI: 10.1111/j.1365-2672.2011.05040.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
26
|
Wang Z, Miu T, Xu H, Duan N, Ding X, Li S. Sensitive immunoassay of Listeria monocytogenes with highly fluorescent bioconjugated silica nanoparticles probe. J Microbiol Methods 2010; 83:179-84. [DOI: 10.1016/j.mimet.2010.08.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2010] [Revised: 08/13/2010] [Accepted: 08/17/2010] [Indexed: 11/24/2022]
|
27
|
Sensitive Aflatoxin B1 Determination Using a Magnetic Particles-Based Enzyme-Linked Immunosorbent Assay. SENSORS 2008; 8:7571-7580. [PMID: 27873946 PMCID: PMC3790977 DOI: 10.3390/s8127571] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 10/28/2008] [Accepted: 11/20/2008] [Indexed: 11/17/2022]
Abstract
A magnetic particle-based enzyme-liked immunosorbent assay (mp-ELISA) has been developed as new an alternative immunoassay for Aflatoxin B1 determination. The method is based on conventional competitive ELISA whereby the anti-Aflatoxin B1 antibody is immobilized on the magnetic particles' surface. The influence of the antibody type as well as antibody immobilization on the magnetic beads surface was investigated in detail. Also, optimum values for the general parameters of the method (e.g. tracer concentration, type of antibody, and incubation time) were established. Finally, a sensitive immunoassay method (mp-ELISA) was performed for Aflatoxin B1 determination at ppt level (LOD = 1 ppt Aflatoxin B1).
Collapse
|