1
|
Hofstetter J, Holcomb DA, Kahler AM, Rodrigues C, da Silva ALBR, Mattioli MC. Performance of Conditional Random Forest and Regression Models at Predicting Human Fecal Contamination of Produce Irrigation Ponds in the Southeastern United States. ACS ES&T WATER 2024; 4:5844-5855. [PMID: 39734778 PMCID: PMC11672865 DOI: 10.1021/acsestwater.4c00839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2024]
Abstract
Irrigating fresh produce with contaminated water contributes to the burden of foodborne illness. Identifying fecal contamination of irrigation waters and characterizing fecal sources and associated environmental factors can help inform fresh produce safety and health hazard management. Using two previously collected data sets, we developed and evaluated the performance of logistic regression and conditional random forest models for predicting general and human-specific fecal contamination of ponds in southwest Georgia used for fresh produce irrigation. Generic Escherichia coli served as a general fecal indicator, and human-associated Bacteroides (HF183), crAssphage, and F+ coliphage genogroup II were used as indicators of human fecal contamination. Increased rainfall in the previous 7 days and the presence of a building within 152 m (a proxy for proximity to septic systems) were associated with increased odds of human fecal contamination in the training data set. However, the models did not accurately predict the presence of human-associated fecal indicators in a second data set collected from nearby irrigation ponds in different years. Predictive statistical models should be used with caution to assess produce irrigation water quality as models may not reliably predict fecal contamination at other locations and times, even within the same growing region.
Collapse
Affiliation(s)
- Jessica Hofstetter
- Waterborne Disease Prevention Branch, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, United States; Chenega Enterprise Systems & Solutions, LLC, Chesapeake, Virginia 23320, United States; Department of Horticulture, Auburn University, Auburn, Alabama 36849, United States
| | - David A Holcomb
- Waterborne Disease Prevention Branch, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, United States
| | - Amy M Kahler
- Waterborne Disease Prevention Branch, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, United States
| | - Camila Rodrigues
- Department of Horticulture, Auburn University, Auburn, Alabama 36849, United States
| | | | - Mia C Mattioli
- Waterborne Disease Prevention Branch, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, United States
| |
Collapse
|
2
|
Haymaker J, Sharma M, Parveen S, Hashem F, May EB, Handy ET, White C, East C, Bradshaw R, Micallef SA, Callahan MT, Allard S, Anderson B, Craighead S, Gartley S, Vanore A, Kniel KE, Solaiman S, Bui A, Murray R, Craddock HA, Kulkarni P, Foust D, Duncan R, Taabodi M, Sapkota AR. Prevalence of Shiga-toxigenic and atypical enteropathogenic Escherichia coli in untreated surface water and reclaimed water in the Mid-Atlantic U.S. ENVIRONMENTAL RESEARCH 2019; 172:630-636. [PMID: 30878734 DOI: 10.1016/j.envres.2019.02.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 02/08/2019] [Accepted: 02/12/2019] [Indexed: 06/09/2023]
Abstract
The microbial quality of irrigation water has increasingly become a concern as a source of contamination for fruits and vegetables. Non-traditional sources of water are being used by more and more growers in smaller, highly diversified farms in the Mid-Atlantic region of the U.S. Shiga-toxigenic E. coli (STEC) have been responsible for several outbreaks of infections associated with the consumption of leafy greens. Our study evaluated the prevalence of the "big seven" STEC serogroups and the associated enterohemorrhagic E. coli (EHEC) virulence factors (VF) genes in conventional and nontraditional irrigation waters in the Mid-Atlantic region of the U.S. Water samples (n = 510) from 170 sampling events were collected from eight untreated surface water sites, two wastewater reclamation facilities, and one vegetable processing plant, over a 12-month period. Ten liters of water were filtered through Modified Moore swabs (MMS); swabs were then enriched into Universal Pre-enrichment Broth (UPB), followed by enrichment into non-O157 STEC R&F broth and isolation on R & F non-O157 STEC chromogenic plating medium. Isolates (n = 2489) from enriched MMS from water samples were screened for frequently reported STEC serogroups that cause foodborne illness: O26, O45, O103, O111, O121, O145, and O157, along with VF genes stx1, stx2, eae, and ehxA. Through this screening process, STEC isolates were found in 2.35% (12/510) of water samples, while 9.0% (46/510) contained an atypical enteropathogenic E. coli (aEPEC) isolate. The eae gene (n = 88 isolates) was the most frequently detected EHEC VF of the isolates screened. The majority of STEC isolates (stx1 or stx2) genes mainly came from either a pond or reclamation pond water site on two specific dates, potentially indicating that these isolates were not spatially or temporally distributed among the sampling sites. STEC isolates at reclaimed water sites may have been introduced after wastewater treatment. None of the isolates containing eae were determined to be Escherichia albertii. Our work showed that STEC prevalence in Mid-Atlantic untreated surface waters over a 12-month period was lower than the prevalence of atypical EPEC.
Collapse
Affiliation(s)
- Joseph Haymaker
- University of Maryland Eastern Shore, Department of Agriculture and Resource Sciences, Princess Anne, MD, United States
| | - Manan Sharma
- United States Department of Agriculture, Agricultural Research Service, Northeast Area, Beltsville Agricultural Research Center, Environmental Microbial and Food Safety Laboratory, Beltsville, MD, United States.
| | - Salina Parveen
- University of Maryland Eastern Shore, Department of Agriculture and Resource Sciences, Princess Anne, MD, United States
| | - Fawzy Hashem
- University of Maryland Eastern Shore, Department of Agriculture and Resource Sciences, Princess Anne, MD, United States
| | - Eric B May
- University of Maryland Eastern Shore, Department of Agriculture and Resource Sciences, Princess Anne, MD, United States
| | - Eric T Handy
- United States Department of Agriculture, Agricultural Research Service, Northeast Area, Beltsville Agricultural Research Center, Environmental Microbial and Food Safety Laboratory, Beltsville, MD, United States
| | - Chanelle White
- University of Maryland Eastern Shore, Department of Agriculture and Resource Sciences, Princess Anne, MD, United States
| | - Cheryl East
- United States Department of Agriculture, Agricultural Research Service, Northeast Area, Beltsville Agricultural Research Center, Environmental Microbial and Food Safety Laboratory, Beltsville, MD, United States
| | - Rhodel Bradshaw
- United States Department of Agriculture, Agricultural Research Service, Northeast Area, Beltsville Agricultural Research Center, Environmental Microbial and Food Safety Laboratory, Beltsville, MD, United States
| | - Shirley A Micallef
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, United States
| | - Mary Theresa Callahan
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, United States
| | - Sarah Allard
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, United States
| | - Brienna Anderson
- University of Delaware, Department of Animal and Food Sciences, Newark, DE 19716, United States
| | - Shani Craighead
- University of Delaware, Department of Animal and Food Sciences, Newark, DE 19716, United States
| | - Samantha Gartley
- University of Delaware, Department of Animal and Food Sciences, Newark, DE 19716, United States
| | - Adam Vanore
- University of Delaware, Department of Animal and Food Sciences, Newark, DE 19716, United States
| | - Kalmia E Kniel
- University of Delaware, Department of Animal and Food Sciences, Newark, DE 19716, United States
| | - Sultana Solaiman
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, United States
| | - Anthony Bui
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, United States
| | - Rianna Murray
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, United States
| | - Hillary A Craddock
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, United States
| | - Prachi Kulkarni
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, United States
| | - Derek Foust
- University of Maryland Eastern Shore, Department of Agriculture and Resource Sciences, Princess Anne, MD, United States
| | - Rico Duncan
- University of Maryland Eastern Shore, Department of Agriculture and Resource Sciences, Princess Anne, MD, United States
| | - Maryam Taabodi
- University of Maryland Eastern Shore, Department of Agriculture and Resource Sciences, Princess Anne, MD, United States
| | - Amy R Sapkota
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, United States
| |
Collapse
|
3
|
Gutierrez-Rodriguez E, Adhikari A. Preharvest Farming Practices Impacting Fresh Produce Safety. Microbiol Spectr 2018; 6:10.1128/microbiolspec.pfs-0022-2018. [PMID: 29676249 PMCID: PMC11633564 DOI: 10.1128/microbiolspec.pfs-0022-2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Indexed: 01/08/2023] Open
Abstract
Advancements in agriculture and food processing techniques have been instrumental in the development of modern human societies. Vast improvements in agronomic practices, handling, and processing have allowed us to produce and preserve mass quantities of food. Yet despite all these innovations and potentially as a consequence of these mass production practices, more and more outbreaks of human pathogens linked to raw and processed foods are identified every year. It is evident that our increased capacity for microbial detection has contributed to the greater number of outbreaks detected. However, our understanding of how these events originate and what agronomic, packaging, and environmental factors influence the survival, persistence, and proliferation of human pathogens remains of scientific debate. This review seeks to identify those past and current challenges to the safety of fresh produce and focuses on production practices and how those impact produce safety. It reflects on 20 years of research, industry guidelines, and federal standards and how they have evolved to our current understanding of fresh produce safety. This document is not intended to summarize and describe all fruit and vegetable farming practices across the United States and the rest of the world. We understand the significant differences in production practices that exist across regions. This review highlights those general farming practices that significantly impact past and current food safety issues. It focuses on current and future research needs and on preharvest food safety control measures in fresh-produce safety that could provide insight into the mechanisms of pathogen contamination, survival, and inactivation under field and packinghouse conditions.
Collapse
Affiliation(s)
- Eduardo Gutierrez-Rodriguez
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695
| | - Achyut Adhikari
- School of Nutrition and Food Sciences, Louisiana State University, Baton Rouge, LA 70803
| |
Collapse
|
4
|
Markland SM, Ingram D, Kniel KE, Sharma M. Water for Agriculture: the Convergence of Sustainability and Safety. Microbiol Spectr 2017; 5:10.1128/microbiolspec.pfs-0014-2016. [PMID: 28527182 PMCID: PMC11687506 DOI: 10.1128/microbiolspec.pfs-0014-2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Indexed: 11/20/2022] Open
Abstract
Agricultural water is a precious and limited resource. Increasingly more water types and sources are being explored for use in irrigation within the United States and across the globe. As outlined in this chapter, the Produce Safety Rule (PSR) in the Food Safety and Modernization Act (FSMA) provide irrigation water standards for application of water to fruits and vegetables consumed raw. These rules for production and use of water will continue to develop and be required as the world experiences aspects of a changing climate including flooding as well as drought conditions. Research continues to assess the use of agricultural water types. The increased use of reclaimed water in the United States as well as for selected irrigation water needs for specific crops may provide increased water availability. The use of surface water can be used in irrigation as well, but several studies have shown the presence of some enteric bacterial pathogens (enterohemorrhagic E. coli, Salmonella spp. and Listeria monocytogenes) in these waters that may contaminate fruits and vegetables. There have been outbreaks of foodborne illness in the U.S., South America, Europe, and Australia related to the use of contaminated water in fruit and vegetable irrigation or washing. Unreliable water supplies, more stringent microbial water standards, mitigation technologies and expanded uses of reclaimed waters have all increased interest in agricultural water.
Collapse
Affiliation(s)
- Sarah M Markland
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716
| | - David Ingram
- Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, MD 20740
| | - Kalmia E Kniel
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716
| | - Manan Sharma
- Environmental Microbial Food Safety Laboratory, USDA-Agricultural Research Service, Beltsville, MD 20705
| |
Collapse
|
5
|
Abia ALK, Schaefer L, Ubomba-Jaswa E, Le Roux W. Abundance of Pathogenic Escherichia coli Virulence-Associated Genes in Well and Borehole Water Used for Domestic Purposes in a Peri-Urban Community of South Africa. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14030320. [PMID: 28335539 PMCID: PMC5369156 DOI: 10.3390/ijerph14030320] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/07/2017] [Accepted: 03/16/2017] [Indexed: 01/20/2023]
Abstract
In the absence of pipe-borne water, many people in Africa, especially in rural communities, depend on alternative water sources such as wells, boreholes and rivers for household and personal hygiene. Poor maintenance and nearby pit latrines, however, lead to microbial pollution of these sources. We evaluated the abundance of Escherichia coli and the prevalence of pathogenic E. coli virulence genes in water from wells, boreholes and a river in a South African peri-urban community. Monthly samples were collected between August 2015 and November 2016. In all, 144 water samples were analysed for E. coli using the Colilert 18 system. Virulence genes (eagg, eaeA, stx1, stx2, flichH7, ST, ipaH, ibeA) were investigated using real-time polymerase chain reaction. Mean E. coli counts ranged between 0 and 443.1 Most Probable Number (MPN)/100 mL of water sample. Overall, 99.3% of samples were positive for at least one virulence gene studied, with flicH7 being the most detected gene (81/140; 57.6%) and the stx2 gene the least detected gene (8/140; 5.7%). Both intestinal and extraintestinal pathogenic E. coli genes were detected. The detection of virulence genes in these water sources suggests the presence of potentially pathogenic E. coli strains and is a public health concern.
Collapse
Affiliation(s)
- Akebe Luther King Abia
- Departments of Biotechnology, Vaal University of Technology, Private Bag X021, Andries Potgieter Blvd, Vanderbijlpark 1911, South Africa.
| | - Lisa Schaefer
- Natural Resources and the Environment, CSIR, P.O. Box 395, Pretoria 0001, South Africa.
| | - Eunice Ubomba-Jaswa
- Natural Resources and the Environment, CSIR, P.O. Box 395, Pretoria 0001, South Africa.
| | - Wouter Le Roux
- Natural Resources and the Environment, CSIR, P.O. Box 395, Pretoria 0001, South Africa.
| |
Collapse
|
6
|
Jongman M, Korsten L. Genetic Diversity and Antibiotic Resistance of Escherichia coli Isolates from Different Leafy Green Production Systems. J Food Prot 2016; 79:1846-1853. [PMID: 28221925 DOI: 10.4315/0362-028x.jfp-16-117] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Foodborne disease outbreaks linked to contaminated irrigation water and fresh produce are a public health concern. The presence of Escherichia coli isolates from irrigation water and leafy green vegetables in different food production systems (large commercial farms, small-scale farms, and homestead gardens) was investigated. The prevalence of antibiotic resistance and virulence in these isolates was further assessed, and links between water source and irrigated crops were identified using antimicrobial and genotypic analyses. Presumptive E. coli isolates were identified by matrix-assisted laser desorption ionization time-of-flight mass spectroscopy, and identities were confirmed by PCR using the uidA gene. Antimicrobial susceptibility was evaluated with the Kirby Bauer disk diffusion test; the presence of virulence genes was determined with enterobacterial repetitive intergenic consensus PCR assays. Of the 130 E. coli isolates from water (n =60) and leafy green vegetables (n =70), 19 (14.6%) were resistant to one antibiotic (tetracycline) and 92 (70.7%) were resistant to various antibiotics (including ampicillin, cefoxitin, and nalidixic acid). All E. coli isolates were susceptible to ceftriaxone and gentamicin. The virulence gene stx2 was detected in E. coli isolates from irrigation water (8 [13.3%] of 60 isolates) and cabbages (3 [7.5%] of 40), but the virulence genes eae and stx1 were not detected in any tested isolates from irrigation water and fresh produce samples. The prevalence of multidrug-resistant E. coli was lower in isolates from GLOBALG.A.P.-certified farms than in isolates from noncertified commercial and small-scale farms and homestead gardens. A link between the E. coli isolates from irrigation water sources and leafy green vegetables was established with phenotypic (antimicrobial) and genotypic (DNA fingerprinting) analyses. However, a link between virulence genes and the prevalence of antimicrobial resistance could not be established.
Collapse
Affiliation(s)
- Mosimanegape Jongman
- Department of Plant Science, Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0082, South Africa
| | - Lise Korsten
- Department of Plant Science, Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0082, South Africa
| |
Collapse
|
7
|
Draper AD, Doores S, Gourama H, LaBorde LF. Microbial Survey of Pennsylvania Surface Water Used for Irrigating Produce Crops. J Food Prot 2016; 79:902-12. [PMID: 27296593 DOI: 10.4315/0362-028x.jfp-15-479] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Recent produce-associated foodborne illness outbreaks have been attributed to contaminated irrigation water. This study examined microbial levels in Pennsylvania surface waters used for irrigation, relationships between microbial indicator organisms and water physicochemical characteristics, and the potential use of indicators for predicting the presence of human pathogens. A total of 153 samples taken from surface water sources used for irrigation in southeastern Pennsylvania were collected from 39 farms over a 2-year period. Samples were analyzed for six microbial indicator organisms (aerobic plate count, Enterobacteriaceae, coliform, fecal coliforms, Escherichia coli, and enterococci), two human pathogens (Salmonella and E. coli O157), and seven physical and environmental characteristics (pH, conductivity, turbidity, air and water temperature, and sampling day and 3-day-accumulated precipitation levels). Indicator populations were highly variable and not predicted by water and environmental characteristics. Only five samples were confirmed positive for Salmonella, and no E. coli O157 was detected in any samples. Predictive relationships between microbial indicators and the occurrence of pathogens could therefore not be determined.
Collapse
Affiliation(s)
- Audrey D Draper
- Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Stephanie Doores
- Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Hassan Gourama
- Division of Science, The Pennsylvania State University-Berks Campus, Reading, Pennsylvania 19610, USA
| | - Luke F LaBorde
- Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| |
Collapse
|
8
|
Irrigation Water Quality for Leafy Crops: A Perspective of Risks and Potential Solutions. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:7457-77. [PMID: 26151764 PMCID: PMC4515668 DOI: 10.3390/ijerph120707457] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 06/25/2015] [Accepted: 06/29/2015] [Indexed: 11/20/2022]
Abstract
There is increasing evidence of the contribution of irrigation water in the contamination of produce leading to subsequent outbreaks of foodborne illness. This is a particular risk in the production of leafy vegetables that will be eaten raw without cooking. Retailers selling leafy vegetables are increasingly targeting zero-risk production systems and the associated requirements for irrigation water quality have become more stringent in regulations and quality assurance schemes (QAS) followed by growers. Growers can identify water sources that are contaminated with potential pathogens through a monitoring regime and only use water free of pathogens, but the low prevalence of pathogens makes the use of faecal indicators, particularly E. coli, a more practical approach. Where growers have to utilise water sources of moderate quality, they can reduce the risk of contamination of the edible portion of the crop (i.e., the leaves) by treating irrigation water before use through physical or chemical disinfection systems, or avoid contact between the leaves and irrigation water through the use of drip or furrow irrigation, or the use of hydroponic growing systems. This study gives an overview of the main problems in the production of leafy vegetables associated with irrigation water, including microbial risk and difficulties in water monitoring, compliance with evolving regulations and quality standards, and summarises the current alternatives available for growers to reduce microbial risks.
Collapse
|
9
|
Gelting RJ, Baloch MA, Zarate-Bermudez M, Hajmeer MN, Yee JC, Brown T, Yee BJ. A systems analysis of irrigation water quality in an environmental assessment of an E. coli O157:H7 outbreak in the United States linked to iceberg lettuce. AGRICULTURAL WATER MANAGEMENT 2015; 150:11-118. [PMID: 35923433 PMCID: PMC9345567 DOI: 10.1016/j.agwat.2014.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A foodborne Escherichia coli O157:H7 outbreak in December 2006 included 77 illnesses reported in Iowa and Minnesota. Epidemiologic investigations by health departments in those states and the U.S. Centers for Disease Control and Prevention (CDC) identified shredded iceberg lettuce (Lactuca sativa L.) as the vehicle of transmission. The U.S. Food and Drug Administration (FDA) and Minnesota and California public health agencies traced the lettuce to several growing regions in California based on information from a lettuce processor in Minnesota. Samples from an environmental investigation initiated by the California Food Emergency Response Team (CalFERT) revealed a genetic match between the outbreak strain and environmental samples from a single farm, leading to an in-depth systems-based analysis of the irrigation water system on that farm. This paper presents findings from that systems-based analysis, which assessed conditions on the farm potentially contributing to contamination of the lettuce. The farm had three sources of irrigation water: groundwater from onsite wells, surface water delivered by a water management agency and effluent from wastewater lagoons on nearby dairy farms. Wastewater effluent was blended with the other sources and used only to irrigate animal feed crops. However, water management on the farm, including control of wastewater blending, appeared to create potential for cross-contamination. Pressure gradients and lack of backflow measures in the irrigation system might have created conditions for cross-contamination of water used to irrigate lettuce. The irrigation network on the farm had evolved over time to meet various needs, without an overall analysis of how that evolution potentially created vulnerabilities to contamination of irrigation water. The type of systems analysis described here is one method for helping to ensure that such vulnerabilities are identified and addressed. A preventive, risk-based management approach, such as the Water Safety Plan process for drinking water, may also be useful in managing irrigation water quality.
Collapse
Affiliation(s)
- Richard J. Gelting
- Centers for Disease Control and Prevention, Center for Global Health, Health Systems Reconstruction Team, 4770 Buford Highway, MS F-57, Atlanta, GA 30341, USA
| | - Mansoor A. Baloch
- Centers for Disease Control and Prevention, National Center for Environmental Health, Environmental Health Services Branch, 4770 Buford Highway, MS F-58, Atlanta, GA 30341, USA
| | - Max Zarate-Bermudez
- Centers for Disease Control and Prevention, National Center for Environmental Health, Environmental Health Services Branch, 4770 Buford Highway, MS F-58, Atlanta, GA 30341, USA
| | - Maha N. Hajmeer
- California Department of Public Health, Food and Drug Branch, 1500 Capitol Ave, MS 7602, Sacramento, CA 95899-7435, USA
| | - J. Christopher Yee
- Food and Drug Administration, Pacific Region, 1301 Clay St., Suite 1180N, Oakland, CA, 94612, USA
| | - Teresa Brown
- Department of Earth and Planetary Sciences, 1412 Circle Drive, University of Tennessee, Knoxville, TN 37996, USA
| | - Benson J. Yee
- California Department of Public Health, Food and Drug Branch, 1500 Capitol Ave, MS 7602, Sacramento, CA 95899-7435, USA
| |
Collapse
|
10
|
Bech TB, Sbodio A, Jacobsen CS, Suslow T. Adhesion of and to soil in runoff as influenced by polyacrylamide. JOURNAL OF ENVIRONMENTAL QUALITY 2014; 43:2002-2008. [PMID: 25602217 DOI: 10.2134/jeq2014.02.0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Polyacrylamide (PAM) is used in agriculture to reduce soil erosion and has been reported to reduce turbidity, nutrients, and pollutants in surface runoff water. The objective of this work was to determine the effect of PAM on the concentration of enteric bacteria in surface runoff by comparing four enteric bacteria representing phenotypically different motility and hydrophobicity from three soils. Results demonstrated that bacterial surface runoff was differentially influenced by the PAM treatment. Polyacrylamide treatment increased surface runoff for adhered and planktonic cells from a clay soil; significantly decreased surface runoff of adhered bacteria, while no difference was observed for planktonic bacteria from the sandy loam; and significantly decreased the surface runoff of planktonic cells, while no difference was observed for adhered bacteria from the clay loam. Comparing strains from a final water sample collected after 48 h showed a greater loss of while serovar Poona was almost not detected. Thus, (i) the PAM efficiency in reducing the concentration of enteric bacteria in surface runoff was influenced by soil type and (ii) variation in the loss of enteric bacteria highlights the importance of strain-specific properties that may not be captured with general fecal indicator bacteria.
Collapse
|
11
|
Pachepsky Y, Shelton D, Dorner S, Whelan G. Can E. coli or thermotolerant coliform concentrations predict pathogen presence or prevalence in irrigation waters? Crit Rev Microbiol 2014; 42:384-93. [PMID: 25198779 DOI: 10.3109/1040841x.2014.954524] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
An increase in food-borne illnesses in the United States has been associated with fresh produce consumption. Irrigation water presents recognized risks for microbial contamination of produce. Water quality criteria rely on indicator bacteria. The objective of this review was to collate and summarize experimental data on the relationships between pathogens and thermotolerant coliform (THT) and/or generic E. coli, specifically focusing on surface fresh waters used in or potentially suitable for irrigation agriculture. We analyzed peer-reviewed publications in which concentrations of E. coli or THT coliforms in surface fresh waters were measured along with concentrations of one or more of waterborne and food-borne pathogenic organisms. The proposed relationships were significant in 35% of all instances and not significant in 65% of instances. Coliform indicators alone cannot provide conclusive, non-site-specific and non-pathogen-specific information about the presence and/or concentrations of most important pathogens in surface waters suitable for irrigation. Standards of microbial water quality for irrigation can rely not only on concentrations of indicators and/or pathogens, but must include references to crop management. Critical information on microbial composition of actual irrigation waters to support criteria of microbiological quality of irrigation waters appears to be lacking and needs to be collected.
Collapse
Affiliation(s)
- Yakov Pachepsky
- a USDA-ARS, Environmental Mirobial and Food Safety Laboratory , Beltsville , MD , USA
| | - Daniel Shelton
- a USDA-ARS, Environmental Mirobial and Food Safety Laboratory , Beltsville , MD , USA
| | - Sarah Dorner
- b Department of Civil , Geological and Mining Engineering, École Polytechnique de Montréal , Montreal , Quebec , Canada , and
| | - Gene Whelan
- c US Environmental Protection Agency, National Exposure Research Laboratory , Athens , GA , USA
| |
Collapse
|
12
|
Won G, Schlegel PJ, Schrock JM, LeJeune JT. Absence of direct association between coliforms and Escherichia coli in irrigation water and on produce. J Food Prot 2013; 76:959-66. [PMID: 23726190 DOI: 10.4315/0362-028x.jfp-12-512] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Irrigation water is considered a potential source of preharvest pathogen contamination of vegetables. Hence, several organizations have recommended microbiological standards for water used to irrigate edible plants. The purpose of this study was to determine the strength of association between microbial quality indicators (coliforms and Escherichia coli) in irrigation water and on irrigated vegetables. Data analyzed included original results from a cross-sectional study conducted in the Midwestern United States during summer 2009 and information presented in two previously published studies performed in France and Portugal to investigate microbial quality of irrigation water and watered produce. In the cross-sectional study, repetitive PCR (rep-PCR) was used to characterize genetic relatedness of E. coli isolates from water and vegetables. No significant correlations were found between fecal indicators on leafy greens (lettuce and parsley, n = 91) or fruit (tomatoes and green peppers, n = 22) and those found in irrigation water used in the cross-sectional study (P > 0.40) or in the previously published data sets (data set 1: lettuce and waste irrigation water, n = 15, P > 0.40; data set 2: lettuce and irrigation water, n = 32, P = 0.06). Rep-PCR banding patterns of E. coli strains were all distinguishable among the pairs of E. coli isolates recovered from produce and irrigation water on the same farm. From the available data, the concentration of indicator organisms based on a single measure of irrigation water quality was not associated with the presence of these indicators on produce. In the absence of additional information, the use of a single microbial water quality parameter as an indicator of produce safety is of limited value for predicting the safety of the produce.
Collapse
Affiliation(s)
- Gayeon Won
- Food Animal Health Research Program, Ohio State University, Wooster, Ohio 44691, USA
| | | | | | | |
Collapse
|
13
|
Evaluating the pathogenic potential of environmental Escherichia coli by using the Caenorhabditis elegans infection model. Appl Environ Microbiol 2013; 79:2435-45. [PMID: 23377948 DOI: 10.1128/aem.03501-12] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The detection and abundance of Escherichia coli in water is used to monitor and mandate the quality of drinking and recreational water. Distinguishing commensal waterborne E. coli isolates from those that cause diarrhea or extraintestinal disease in humans is important for quantifying human health risk. A DNA microarray was used to evaluate the distribution of virulence genes in 148 E. coli environmental isolates from a watershed in eastern Ontario, Canada, and in eight clinical isolates. Their pathogenic potential was evaluated with Caenorhabditis elegans, and the concordance between the bioassay result and the pathotype deduced by genotyping was explored. Isolates identified as potentially pathogenic on the basis of their complement of virulence genes were significantly more likely to be pathogenic to C. elegans than those determined to be potentially nonpathogenic. A number of isolates that were identified as nonpathogenic on the basis of genotyping were pathogenic in the infection assay, suggesting that genotyping did not capture all potentially pathogenic types. The detection of the adhesin-encoding genes sfaD, focA, and focG, which encode adhesins; of iroN2, which encodes a siderophore receptor; of pic, which encodes an autotransporter protein; and of b1432, which encodes a putative transposase, was significantly associated with pathogenicity in the infection assay. Overall, E. coli isolates predicted to be pathogenic on the basis of genotyping were indeed so in the C. elegans infection assay. Furthermore, the detection of C. elegans-infective environmental isolates predicted to be nonpathogenic on the basis of genotyping suggests that there are hitherto-unrecognized virulence factors or combinations thereof that are important in the establishment of infection.
Collapse
|
14
|
Duris JW, Reif AG, Krouse DA, Isaacs NM. Factors related to occurrence and distribution of selected bacterial and protozoan pathogens in Pennsylvania streams. WATER RESEARCH 2013; 47:300-314. [PMID: 23149151 DOI: 10.1016/j.watres.2012.10.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 10/01/2012] [Accepted: 10/04/2012] [Indexed: 06/01/2023]
Abstract
The occurrence and distribution of fecal indicator bacteria (FIB) and bacterial and protozoan pathogens are controlled by diverse factors. To investigate these factors in Pennsylvania streams, 217 samples were collected quarterly from a 27-station water-quality monitoring network from July 2007 through August 2009. Samples were analyzed for concentrations of Escherichia coli (EC) and enterococci (ENT) indicator bacteria, concentrations of Cryptosporidium oocysts and Giardia cysts, and the presence of four genes related to pathogenic types of EC (eaeA, stx2, stx1, rfb(O157)) plus three microbial source tracking (MST) gene markers that are also associated with pathogenic ENT and EC (esp, LTIIa, STII). Water samples were concurrently analyzed for basic water chemistry, physical measures of water quality, nutrients, metals, and a suite of 79 organic compounds that included hormones, pharmaceuticals, and antibiotics. For each sample location, stream discharge was measured by using standardized methods at the time of sample collection, and ancillary sample site information, such as land use and geological characteristics, was compiled. Samples exceeding recreational water quality criteria were more likely to contain all measured pathogen genes but not Cryptosporidium or Giardia (oo)cysts. FIB and Giardia density and frequency of eaeA gene occurrence were significantly related to season. When discharge at a sampling location was high (>75th percentile of daily mean discharge), there were greater densities of FIB and Giardia, and the stx2, rfb(O157), STII, and esp genes were found more frequently than at other discharge conditions. Giardia occurrence was likely related to nonpoint sources, which are highly influential during seasonal overland transport resulting from snowmelt and elevated precipitation in late winter and spring in Pennsylvania. When MST markers of human, swine, or bovine origin were present, samples more frequently carried the eaeA, stx2, stx1, and rfb(O157) genes, but no genes were related exclusively to an individual MST marker. The human source pharmaceuticals (HSPs) acetaminophen and caffeine were correlated with Giardia, and the presence of HSPs proved to be more useful than MST markers in distinguishing the occurrence of Giardia. The HSPs caffeine and carbamazepine were correlated with the sum total of pathogen genes detected in a sample, demonstrating the value of using HSPs as an indicator of fecally derived pathogens. Sites influenced by urban land use with less forest were more likely to have greater FIB and Giardia densities and sum of the array of pathogen genes. Sites dominated by shallow carbonate bedrock in the upstream catchment were likely to have greater FIB densities and higher sum totals of pathogen genes but no correlation with Giardia detection. Our study provides a range of specific environmental, chemical, geologic, and land-use variables related to occurrence and distribution of FIB and selected bacterial and protozoan pathogens in Pennsylvania streams. The information presented could be useful for resource managers in understanding bacterial and protozoan pathogen occurrence and their relation to fecal indicator bacteria in similar settings.
Collapse
Affiliation(s)
- Joseph W Duris
- US Geological Survey Michigan Water Science Center, Lansing, MI 48911, USA.
| | | | | | | |
Collapse
|
15
|
Gu G, Luo Z, Cevallos-Cevallos JM, Adams P, Vellidis G, Wright A, van Bruggen AHC. Factors affecting the occurrence of Escherichia coli O157 contamination in irrigation ponds on produce farms in the Suwannee River Watershed. Can J Microbiol 2012; 59:175-82. [PMID: 23540335 DOI: 10.1139/cjm-2012-0599] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Outbreaks of enteritis caused by Escherichia coli O157 associated with fresh produce have resulted in questions about the safety of irrigation water; however, associated risks have not been systematically evaluated. In this study, the occurrence and distribution of the human pathogen E. coli O157 from vegetable irrigation ponds within the Suwannee River Watershed in Georgia were investigated, and the relationship to environmental factors was analyzed. Surface and subsurface water samples were collected monthly from 10 vegetable irrigation ponds from March 2011 to February 2012. Escherichia coli O157 was isolated from enriched filtrates on CHROMagar and sorbitol MacConkey agar media and confirmed by an agglutination test. Presence of virulence genes stx1, stx2 , and eae was tested by polymerase chain reaction. In addition, 27 environmental variables of the sampled ponds were measured. Denaturing gradient gel electrophoresis was conducted for the analysis of bacterial communities in the water samples. Biserial correlation coefficients were calculated to evaluate the log10 colony-forming unit per millilitre correlations between the environmental factors and the occurrence of E. coli O157. Stepwise and canonical discriminant analyses were used to determine the factors that were associated with the presence and absence of E. coli O157 in water samples. All 10 ponds were positive for E. coli O157 some of the time, mainly in summer and fall of 2011. The temporal distribution of this bacterium differed among the 10 ponds. Temperature, rainfall, populations of fecal coliform, and culturable bacteria were positively correlated with the occurrence of E. coli O157 (P < 0.05), while the total nitrogen concentration, oxidation-reduction potential, and dissolved oxygen concentration were negatively correlated with the occurrence of this pathogen (P < 0.05). Temperature and rainfall were the most important factors contributing to the discrimination between samples with and without E. coli O157, followed by bacterial diversity and culturable bacteria population density. Bacterial numbers and diversity, including fecal coliforms and E. coli O157, increased after rainfall (and possibly runoff from pond margins) in periods with relatively high temperatures, suggesting that prevention of runoff may be important to minimize the risk of enteric pathogens in irrigation ponds.
Collapse
Affiliation(s)
- Ganyu Gu
- Emerging Pathogens Institute and Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Lopez-Velasco G, Sbodio A, Tomás-Callejas A, Wei P, Tan KH, Suslow TV. Assessment of root uptake and systemic vine-transport of Salmonella enterica sv. Typhimurium by melon (Cucumis melo) during field production. Int J Food Microbiol 2012; 158:65-72. [PMID: 22824339 DOI: 10.1016/j.ijfoodmicro.2012.07.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 07/02/2012] [Accepted: 07/05/2012] [Indexed: 10/28/2022]
Abstract
Among melons, cantaloupes are most frequently implicated in outbreaks and surveillance-based recalls due to Salmonella enterica. There is limited but compelling evidence that associates irrigation water quality as a significant risk of preharvest contamination of melons. However, the potential for root uptake from water and soil and subsequent systemic transport of Salmonella into melon fruit is uncharacterized. The aim of this work was to determine whether root uptake of S. enterica results in systemic transport to fruit at high doses of applied inoculum through sub-surface drip and furrow irrigation during field production of melons. Cantaloupe and honeydew were grown under field conditions, in a silt clay loam soil using standard agronomic practices for California. An attenuated S. enterica sv. Typhimurium strain was applied during furrow irrigation and, in separate plots, buried drip-emitter lines delivered the inoculum directly into the established root zone. Contamination of the water resulted in soil contamination within furrows however Salmonella was not detected on top of the beds or around melon roots of furrow-irrigated rows demonstrating absence of detectable lateral transfer across the soil profile. In contrast, positive detection of the applied isolate occurred in soil and the rhizosphere in drip injected plots; survival of Salmonella was at least 41 days. Despite high populations of the applied bacteria in the rhizosphere, after surface disinfection, internalized Salmonella was not detected in mature melon fruit (n=485). Contamination of the applied Salmonella was detected on the rind surface of melons if fruit developed in contact with soil on the sides of the inoculated furrows. Following an unusual and heavy rain event during fruit maturation, melons collected from the central area of the beds, were shown to harbor the furrow-applied Salmonella. Delivery of Salmonella directly into the peduncle, after minor puncture wounding, resulted in detection of applied Salmonella in the sub-rind tissue below the fruit abscission zone. Results indicate that Salmonella internalization from soil and vascular systemic transport to fruit is unlikely to occur from irrigation water in CA production regions, even if substantially above normal presumptive levels of contamination. Although contaminated irrigation water and subsequently soil in contact with fruit remains a concern for contamination of the external rind, results suggest an acceptable microbial indicator threshold and critical limit for the presence of Salmonella in applied water may be possible by defining appropriate microbiological standards for melon irrigation in California and regions with similar climate, soil texture, and crop management practices.
Collapse
Affiliation(s)
- Gabriela Lopez-Velasco
- Department of Plant Sciences, University of California, One Shields Avenue, Davis, CA 95616, USA
| | | | | | | | | | | |
Collapse
|
17
|
Ingram D, Callahan M, Ferguson S, Hoover D, Shelton D, Millner P, Camp M, Patel J, Kniel K, Sharma M. Use of zero-valent iron biosand filters to reduce Escherichia coli O157:H12 in irrigation water applied to spinach plants in a field setting. J Appl Microbiol 2012; 112:551-60. [DOI: 10.1111/j.1365-2672.2011.05217.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|