1
|
Park KM, Lee SB, Chae H, Hwang I, Kim SR, Lee HD, Choi SY. Comparative evaluation of sanitation strategies against Listeria monocytogenes on food-contact surfaces in enoki mushroom ( Flammulina velutipes) processing facilities. Food Sci Biotechnol 2025; 34:1507-1516. [PMID: 40110399 PMCID: PMC11914709 DOI: 10.1007/s10068-024-01751-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/12/2024] [Accepted: 11/13/2024] [Indexed: 03/22/2025] Open
Abstract
We investigated strategies to reduce Listeria monocytogenes contamination on food contact surfaces during enoki mushroom processing. Chemical disinfectants and thermal treatments were evaluated on conveyor belts, stainless steel, plastic surfaces, and Velcro strips. Without organic matter, chemical disinfectants effectively reduced L. monocytogenes, with stainless steel showing the highest susceptibility. Organic matter decreased disinfectant efficacy, but sodium hypochlorite remained most effective on stainless steel. Peracetic acid was more effective on conveyor belts and plastic surfaces than on stainless steel. Combining peracetic acid with dry heating synergistically reduced L. monocytogenes on Velcro strips. Moist heat at 70 °C alone was insufficient, but when combined with hot air drying, it effectively reduced L. monocytogenes on Velcro strips. Our findings emphasize the importance of surface-specific strategies combining chemical disinfection and thermal treatment for eliminating L. monocytogenes in mushroom processing environments.
Collapse
Affiliation(s)
- Kyung Min Park
- Microbial Safety Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun, Jeollabuk-do 55365 Republic of Korea
| | - Su-Bin Lee
- Microbial Safety Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun, Jeollabuk-do 55365 Republic of Korea
| | - Hyobeen Chae
- Microbial Safety Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun, Jeollabuk-do 55365 Republic of Korea
| | - Injun Hwang
- Microbial Safety Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun, Jeollabuk-do 55365 Republic of Korea
| | - Se-Ri Kim
- Rural Human Resource Development Center, Rural Development Administration, Wanju-gun, Jeollabuk-do 55365 Republic of Korea
| | - Hyun Dong Lee
- Post-Harvest Engineering Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun, Jeollabuk-do 55365 Republic of Korea
| | - Song-Yi Choi
- Microbial Safety Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun, Jeollabuk-do 55365 Republic of Korea
| |
Collapse
|
2
|
Renye JA, Chen CY, Miller A, Lee J, Oest A, Lynn KJ, Felton SM, Guragain M, Tomasula PM, Berger BW, Capobianco J. Integrating Bacteriocins and Biofilm-Degrading Enzymes to Eliminate L. monocytogenes Persistence. Int J Mol Sci 2025; 26:399. [PMID: 39796259 PMCID: PMC11721940 DOI: 10.3390/ijms26010399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025] Open
Abstract
Listeria monocytogenes is a Gram-positive bacterium causing listeriosis, a severe infection responsible for significant morbidity and mortality globally. Its persistence on food processing surfaces via biofilm formation presents a major challenge, as conventional sanitizers and antimicrobials exhibit limited efficacy against biofilm-embedded cells. This study investigates a novel approach combining an engineered polysaccharide-degrading enzyme (CAase) with a bacteriocin (thermophilin 110) produced by Streptococcus thermophilus. Laboratory assays evaluated the effectiveness of this combination in disrupting biofilms and inactivating L. monocytogenes on various surfaces. The results demonstrated that CAase effectively disrupts biofilm structures, while thermophilin 110 significantly reduces bacterial growth and viability. The preliminary trials indicate a dual-action approach offers a potential alternative to conventional treatments, enhancing food safety by effectively controlling Listeria biofilms in food processing environments.
Collapse
Affiliation(s)
- John A. Renye
- Dairy and Functional Foods Research Unit, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA 19038, USA; (J.A.R.J.); (A.M.); (A.O.); (P.M.T.)
| | - Chin-Yi Chen
- Characterization and Interventions for Foodborne Pathogens, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA 19038, USA; (C.-Y.C.); (J.L.); (M.G.)
| | - Amanda Miller
- Dairy and Functional Foods Research Unit, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA 19038, USA; (J.A.R.J.); (A.M.); (A.O.); (P.M.T.)
| | - Joe Lee
- Characterization and Interventions for Foodborne Pathogens, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA 19038, USA; (C.-Y.C.); (J.L.); (M.G.)
| | - Adam Oest
- Dairy and Functional Foods Research Unit, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA 19038, USA; (J.A.R.J.); (A.M.); (A.O.); (P.M.T.)
| | - Kevin J. Lynn
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA 22903, USA;
| | - Samantha M. Felton
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22903, USA;
| | - Manita Guragain
- Characterization and Interventions for Foodborne Pathogens, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA 19038, USA; (C.-Y.C.); (J.L.); (M.G.)
| | - Peggy M. Tomasula
- Dairy and Functional Foods Research Unit, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA 19038, USA; (J.A.R.J.); (A.M.); (A.O.); (P.M.T.)
| | - Bryan W. Berger
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA 22903, USA;
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22903, USA;
| | - Joseph Capobianco
- Characterization and Interventions for Foodborne Pathogens, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA 19038, USA; (C.-Y.C.); (J.L.); (M.G.)
| |
Collapse
|
3
|
Marmion M, Macori G, Whyte P, Scannell AGM. Stress response modulation: the key to survival of pathogenic and spoilage bacteria during poultry processing. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35451951 DOI: 10.1099/mic.0.001184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The control of bacterial contaminants on meat is a key area of interest in the food industry. Bacteria are exposed to a variety of stresses during broiler processing which challenge bacterial structures and metabolic pathways causing death or sublethal injury. To counter these stresses, bacteria possess robust response systems that can induce shifts in the transcriptome and proteome to enable survival. Effective adaptive responses, such as biofilm formation, shock protein production and metabolic flexibility, require rapid induction and implementation at a cellular and community level to facilitate bacterial survival in adverse conditions. This review aims to provide an overview of the scientific literature pertaining to the regulation of complex adaptive processes used by bacteria to survive the processing environment, with particular focus on species that impact the quality and safety of poultry products like Campylobacter spp., Salmonella enterica and Pseudomonas spp.
Collapse
Affiliation(s)
- Maitiú Marmion
- UCD School of Agriculture and Food Science, Belfield, Dublin 4, D04V4W8, Ireland.,UCD Centre for Food Safety, University College Dublin, Belfield, Dublin 4, D04V4W8, Ireland
| | - Guerrino Macori
- UCD School of Agriculture and Food Science, Belfield, Dublin 4, D04V4W8, Ireland.,UCD Centre for Food Safety, University College Dublin, Belfield, Dublin 4, D04V4W8, Ireland
| | - Paul Whyte
- UCD School of Veterinary Medicine, Belfield, Dublin 4, D04V4W8, Ireland
| | - Amalia G M Scannell
- UCD School of Agriculture and Food Science, Belfield, Dublin 4, D04V4W8, Ireland.,UCD Centre for Food Safety, University College Dublin, Belfield, Dublin 4, D04V4W8, Ireland.,UCD Institute of Food and Health, Belfield, Dublin 4, D04V4W8, Ireland
| |
Collapse
|
4
|
|
5
|
Berrang M, Meinersmann R, Cox N, Adams E. Water rinse and flowing steam to kill Campylobacter on broiler transport coop flooring. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
6
|
Meinersmann RJ, Berrang ME, Rigsby LL. Recoverability of
Listeria monocytogenes
after coculture with
Tetrahymena pyriformis
. J Food Saf 2020. [DOI: 10.1111/jfs.12778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Richard J. Meinersmann
- USDA Agricultural Research ServiceBacterial Epidemiology and Antimicrobial Resistance Research Unit Athens Georgia
| | - Mark E. Berrang
- USDA Agricultural Research ServiceBacterial Epidemiology and Antimicrobial Resistance Research Unit Athens Georgia
| | - Luanne L. Rigsby
- USDA Agricultural Research ServiceBacterial Epidemiology and Antimicrobial Resistance Research Unit Athens Georgia
| |
Collapse
|
7
|
Berrang M, Harrison M, Meinersmann R, Gamble G. Self-contained chlorine dioxide generation and delivery pods for decontamination of floor drainsce:. J APPL POULTRY RES 2017. [DOI: 10.3382/japr/pfx009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
8
|
Mertz AW, O'Bryan CA, Crandall PG, Ricke SC, Morawicki R. The Elimination of Listeria Monocytogenes Attached to Stainless Steel or Aluminum Using Multiple Hurdles. J Food Sci 2015; 80:M1557-62. [PMID: 26033521 DOI: 10.1111/1750-3841.12926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 05/06/2015] [Indexed: 12/01/2022]
Abstract
UNLABELLED Ready-to-eat luncheon meats sliced in retail delis have been found to pose the greatest risk of foodborne illness from Listeria monocytogenes among all ready-to-eat foods. Slicers used in delis have many removable parts that are connected with seals and gaskets, with spaces, cracks and crevices that are difficult to clean adequately and may provide a niche for L. monocytogenes survival. Standard cleaning and sanitizing practices used by deli employees may not eliminate Listeria in these niches. Moist heat is known to be more effective against L. monocytogenes than dry heat at the same temperature and time. The study reported here investigated the effects of moist heat combined with quaternary ammonium compounds (5 or 10 ppm), chlorine (10 or 25 ppm) or peracetic acid (10 or 25 ppm) on inactivating L. monocytogenes attached to stainless steel or aluminum coupons cut from commercial deli meat slicer components. All sanitizers when used alone resulted in a 2- to 3-log reduction of L. monocytogenes on stainless steel or aluminum surfaces, while moist heat alone resulted in a 3- to 4-log reduction. When combined with heat the quaternary ammonium was used at 5 ppm, peracetic acid at 10 ppm and chlorine at 10 ppm. When the 2 lethal treatments were combined there was a 5- to7-log reduction as compared to initial inoculation. PRACTICAL APPLICATION The results of this study will provide a better understanding and potential methods for the sanitization of industrial deli meat slicers. In turn, the knowledge gained from this study can reduce the risk of contamination and outbreaks of L. monocytogenes and other food-borne pathogens for consumers.
Collapse
Affiliation(s)
- Alexandria W Mertz
- Authors Mertz, O'Bryan, Crandall, Ricke, and Morawicki are with Dept. of Food Science, Univ. of Arkansas, Fayetteville, AR, 72704, U.S.A
| | - Corliss A O'Bryan
- Authors Mertz, O'Bryan, Crandall, Ricke, and Morawicki are with Dept. of Food Science, Univ. of Arkansas, Fayetteville, AR, 72704, U.S.A.,Authors O'Bryan, Crandall, and Ricke are with Center for Food Safety, Univ. of Arkansas, Fayetteville, AR, 72704, U.S.A
| | - Philip G Crandall
- Authors Mertz, O'Bryan, Crandall, Ricke, and Morawicki are with Dept. of Food Science, Univ. of Arkansas, Fayetteville, AR, 72704, U.S.A.,Authors O'Bryan, Crandall, and Ricke are with Center for Food Safety, Univ. of Arkansas, Fayetteville, AR, 72704, U.S.A
| | - Steven C Ricke
- Authors Mertz, O'Bryan, Crandall, Ricke, and Morawicki are with Dept. of Food Science, Univ. of Arkansas, Fayetteville, AR, 72704, U.S.A.,Authors O'Bryan, Crandall, and Ricke are with Center for Food Safety, Univ. of Arkansas, Fayetteville, AR, 72704, U.S.A
| | - Rubén Morawicki
- Authors Mertz, O'Bryan, Crandall, Ricke, and Morawicki are with Dept. of Food Science, Univ. of Arkansas, Fayetteville, AR, 72704, U.S.A
| |
Collapse
|