1
|
Zhang L, Ye M, Dong Y, Yuan L, Xiang J, Yu X, Liao Q, Ai Q, Qiu S, Zhang D. Strict relationship between phenotypic and plasmid-associated genotypic of multidrug-resistant Escherichia coli isolated from Taihe Black-Boned Silky Fowl farms. Poult Sci 2025; 104:105082. [PMID: 40158280 PMCID: PMC11997332 DOI: 10.1016/j.psj.2025.105082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/18/2025] [Accepted: 03/20/2025] [Indexed: 04/02/2025] Open
Abstract
Taihe Black-Boned Silky Fowl (TBSF) is a unique breed in China, characterized by a high concentration of melanin deposited throughout its body. Compared to broiler chickens, many antibiotics exhibit significantly longer withdrawal periods in TBSF. Given that antibiotic exposure is widely recognized as the primary selective pressure driving the persistence and dissemination of antibiotic resistance genes (ARGs) across diverse environments, it is crucial to investigate the occurrence and prevalence of ARGs within TBSF farming systems. In this study, 34 Escherichia coli strains isolated from 22 TBSF farms were subjected to phenotypic and genotypic analyses. The isolates were tested for susceptibility to 28 antimicrobial drugs representing nine antibiotic classes to determine their antimicrobial resistance phenotypes. Draft genome sequences of these E. coli strains were obtained, and the ARGs carried by mobile genetic elements, particularly plasmids, were analyzed for their association with susceptibility phenotype. The genetic context of key ARGs in these E. coli isolates was further characterized. Network analysis was employed to investigate the correlations between ARGs, phenotypes, and drug residues. The results demonstrated that high rates of antimicrobial resistance were observed, with 100 % and 29.4 % of isolates exhibiting resistance to four or more and eight or more antibiotic classes, respectively. According to whole-genome sequencing, a total of 143 ARGs were identified. The antimicrobial resistance phenotypes were consistently correlated with the presence of corresponding ARGs in the 34 E. coli genomes. 100 % of the β-lactams antibiotics resistant mechanism could be attributed to the presence of the resistance gene blaTEM and/or blaOXA-10. Similarly, resistance to tetracyclines, chloramphenicols, aminoglycosides, and fluoroquinolones was fully explained by the presence of tetR and/or tetA, floR and/or cmlA, ant(3'')-IIa, aph(3'')-Ib, aph(6)-Id, aac(3)-IId, and aadA, and qnrS and/or mutant gyrA/parC/mdtH. The majority of these key ARGs were found to be plasmid-associated. This study verified and highlighted the prevalent horizontal gene transfer of ARGs in TBSF farms. Factors such as hygiene status, biosecurity measures, and other environmental conditions might play a more significant role than antimicrobial usage in facilitating the horizontal gene transfer of ARGs in TBSF farms. Appropriate measures should be taken to control the transmission and dissemination of these mobile genetic elements associated ARGs and prevent their entry into the human clinical environment from TBSF breeding environment.
Collapse
Affiliation(s)
- Li Zhang
- Institute of Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China; Key Laboratory for Quality and Safety Control of Poultry Products, Ministry of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China; Key Laboratory of Agro-product Quality and Safety of Jiangxi Province, Nanchang, Jiangxi 330200, China
| | - Mengjun Ye
- Institute of Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China; Key Laboratory for Quality and Safety Control of Poultry Products, Ministry of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China; Key Laboratory of Agro-product Quality and Safety of Jiangxi Province, Nanchang, Jiangxi 330200, China
| | - Yifan Dong
- Institute of Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China; Key Laboratory for Quality and Safety Control of Poultry Products, Ministry of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China; Key Laboratory of Agro-product Quality and Safety of Jiangxi Province, Nanchang, Jiangxi 330200, China
| | - Lijuan Yuan
- Institute of Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China; Key Laboratory for Quality and Safety Control of Poultry Products, Ministry of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China; Key Laboratory of Agro-product Quality and Safety of Jiangxi Province, Nanchang, Jiangxi 330200, China
| | - Jianjun Xiang
- Institute of Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China; Key Laboratory for Quality and Safety Control of Poultry Products, Ministry of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China; Key Laboratory of Agro-product Quality and Safety of Jiangxi Province, Nanchang, Jiangxi 330200, China
| | - Xiren Yu
- Institute of Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China; Key Laboratory for Quality and Safety Control of Poultry Products, Ministry of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China; Key Laboratory of Agro-product Quality and Safety of Jiangxi Province, Nanchang, Jiangxi 330200, China
| | - Qiegen Liao
- Institute of Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China; Key Laboratory for Quality and Safety Control of Poultry Products, Ministry of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China; Key Laboratory of Agro-product Quality and Safety of Jiangxi Province, Nanchang, Jiangxi 330200, China
| | - Qiushuang Ai
- Institute of Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China; Key Laboratory for Quality and Safety Control of Poultry Products, Ministry of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China; Key Laboratory of Agro-product Quality and Safety of Jiangxi Province, Nanchang, Jiangxi 330200, China
| | - Suyan Qiu
- Institute of Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China; Key Laboratory for Quality and Safety Control of Poultry Products, Ministry of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China; Key Laboratory of Agro-product Quality and Safety of Jiangxi Province, Nanchang, Jiangxi 330200, China
| | - Dawen Zhang
- Institute of Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China; Key Laboratory for Quality and Safety Control of Poultry Products, Ministry of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China; Key Laboratory of Agro-product Quality and Safety of Jiangxi Province, Nanchang, Jiangxi 330200, China.
| |
Collapse
|
2
|
Gensler CA, Hempstead SC, Keelara S, Fedorka-Cray PJ, Urie NJ, Wiedenheft AM, Stuart K, Marshall KL, Jacob ME. Antimicrobial Resistance Characteristics of Fecal Escherichia coli and Enterococcus Species in U.S. Goats: 2019 National Animal Health Monitoring System Enteric Study. Foodborne Pathog Dis 2025; 22:97-108. [PMID: 38502797 DOI: 10.1089/fpd.2023.0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024] Open
Abstract
Escherichia coli and Enterococcus species are normal bacteria of the gastrointestinal tract and serve as indicator organisms for the epidemiology and emergence of antimicrobial resistance in their hosts and the environment. Some E. coli serovars, including E. coli O157:H7, are important human pathogens, although reservoir species such as goats remain asymptomatic. We describe the prevalence and antimicrobial resistance of generic E. coli, E. coli O157:H7, and Enterococcus species collected from a national surveillance study of goat feces as part of the National Animal Health Monitoring System (NAHMS) Goat 2019 study. Fecal samples were collected from 4918 goats on 332 operations across the United States. Expectedly, a high prevalence of E. coli (98.7%, 4850/4915) and Enterococcus species (94.8%, 4662/4918) was found. E. coli O157:H7 prevalence was low (0.2%; 10/4918). E. coli isolates, up to three per operation, were evaluated for antimicrobial susceptibility and 84.7% (571/674) were pansusceptible. Multidrug resistance (MDR; ≥3 classes) was uncommon among E. coli, occurring in 8.2% of isolates (55/674). Resistance toward seven antimicrobial classes was observed in a single isolate. Resistance to tetracycline alone (13.6%, 92/674) or to tetracycline, streptomycin, and sulfisoxazole (7.0% 47/674) was the most common pattern. All E. coli O157:H7 isolates were pansusceptible. Enterococcus isolates, up to four per operation, were prioritized by public health importance, including Enterococcus faecium and Enterococcus faecalis and evaluated. Resistance to lincomycin (93.8%, 1232/1313) was most common, with MDR detected in 29.5% (388/1313) of isolates. The combination of ciprofloxacin, lincomycin, and quinupristin resistance (27.1%, 105/388) was the most common pattern detected. Distribution and characteristics of antimicrobial resistance in E. coli and Enterococcus in the U.S. goat population from this study can inform stewardship considerations and public health efforts surrounding goats and their products.
Collapse
Affiliation(s)
- Catherine A Gensler
- Department of Agricultural and Human Sciences, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Stephanie C Hempstead
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Shivaramu Keelara
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Paula J Fedorka-Cray
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Natalie J Urie
- National Animal Health Monitoring System, Veterinary Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, Colorado, USA
| | - Alyson M Wiedenheft
- National Animal Health Monitoring System, Veterinary Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, Colorado, USA
- Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Keira Stuart
- National Veterinary Services Laboratories, Veterinary Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Ames, Iowa, USA
| | - Katherine L Marshall
- National Animal Health Monitoring System, Veterinary Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, Colorado, USA
| | - Megan E Jacob
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
3
|
Multidrug-Resistant Enteropathogenic Escherichia coli Isolated from Diarrhoeic Calves, Milk, and Workers in Dairy Farms: A Potential Public Health Risk. Antibiotics (Basel) 2022; 11:antibiotics11080999. [PMID: 35892389 PMCID: PMC9332572 DOI: 10.3390/antibiotics11080999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 02/01/2023] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) is a leading cause of diarrhoeagenic diseases in humans and cattle worldwide. The emergence of multidrug-resistant (MDR) EPEC from cattle sources is a public health concern. A total of 240 samples (75 diarrhoeic calves, 150 milk samples, and 15 workers) were examined for prevalence of EPEC in three dairy farms in Egypt. Antimicrobial resistance (AMR) traits were determined by antibiogram and polymerase chain reaction (PCR) detection of β-lactamase-encoding genes, plasmid-mediated quinolone resistance genes, and carbapenemase-encoding genes. The genetic relatedness of the isolates was assessed using repetitive extragenic palindromic sequence-based PCR (REP-PCR). EPEC isolates were detected in 22.7% (17/75) of diarrhoeic calves, 5.3% (8/150) of milk samples, and 20% (3/15) of worker samples. The detected serovars were O26 (5%), O111 (3.3%), O124 (1.6%), O126 (0.8%), and O55 (0.8%). AMR-EPEC (harbouring any AMR gene) was detected in 9.2% of samples. Among isolates, blaTEM was the most detected gene (39.3%), followed by blaSHV (32.1%) and blaCTX-M-1 (25%). The qnrA, qnrB, and qnrS genes were detected in 21.4%, 10.7%, and 7.1% of isolates, respectively. The blaVIM gene was detected in 14.3% of isolates. All EPEC (100%) isolates were MDR. High resistance rates were reported for ampicillin (100%), tetracycline (89.3%), cefazolin (71%), and ciprofloxacin (64.3%). Three O26 isolates and two O111 isolates showed the highest multiple-antibiotic resistance (MAR) indices (0.85–0.92); these isolates harboured blaSHV-12 and blaCTX-M-15 genes, respectively. REP-PCR genotyping showed high genetic diversity of EPEC, although isolates belonging to the same serotype or farm were clustered together. Two worker isolates (O111 and O26) showed high genetic similarity (80–95%) with diarrhoeic calf isolates of matched serotypes/farms. This may highlight potential inter-species transmission within the farm. This study highlights the potential high risk of cattle (especially diarrhoeic calves) as disseminators of MDR-EPEC and/or their AMR genes in the study area. Prohibition of non-prescribed use of antibiotics in dairy farms in Egypt is strongly warranted.
Collapse
|
4
|
Liu C, Liu Y, Feng C, Wang P, Yu L, Liu D, Sun S, Wang F. Distribution characteristics and potential risks of heavy metals and antimicrobial resistant Escherichia coli in dairy farm wastewater in Tai'an, China. CHEMOSPHERE 2021; 262:127768. [PMID: 32777611 DOI: 10.1016/j.chemosphere.2020.127768] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/17/2020] [Accepted: 07/18/2020] [Indexed: 05/11/2023]
Abstract
Heavy metals and antimicrobial resistant bacteria in livestock and poultry environments can cause declines in production and significant economic losses, leading to potential environmental and public health issues. In this study, the heavy metal pollution status of livestock breeding water bodies in the Dawen river basin of Shandong Province in China was evaluated, and a total of 10 heavy metals were measured. In addition, antimicrobial susceptibility tests were conducted for Escherichia coli strains isolated from the water samples. The results showed that among all the metals, copper, zinc, and iron were detected at each sampling point, followed by nickel (detection rate of 95.74%), arsenic (detection rate of 89.36%), selenium (detection rate of 68.09%), lead (detection rate of 27.66%), and mercury (detection rate of 12.77%). Cadmium and hexavalent chromium were not detected. The contents of nine heavy metals were below the existing water standard values in China, whereas the iron pollution index in the water body in the study area was large and may pose a potential risk. A total of 17 E. coli isolates showed different resistance to β-lactams, aminoglycosides, tetracyclines, quinolone antibiotics and chloramphenicol, but were mainly resistant to β-lactams and tetracyclines. The detection rate of the tetA resistance gene was relatively high, indicating the overuse of cephalosporins and tetracyclines. The results of the present study might provide evidence of metal pollution and theoretical basis on the treatment of colibacillosis in the livestock industries.
Collapse
Affiliation(s)
- Cong Liu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, 271018, PR China
| | - Yu Liu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, 271018, PR China
| | - Chenglian Feng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China.
| | - Peng Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, 271018, PR China
| | - Lanping Yu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, 271018, PR China
| | - Daqing Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China
| | - Shuhong Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, 271018, PR China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, 271018, PR China
| | - Fangkun Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, 271018, PR China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, 271018, PR China.
| |
Collapse
|
5
|
Hadi J, Wu S, Brightwell G. Antimicrobial Blue Light versus Pathogenic Bacteria: Mechanism, Application in the Food Industry, Hurdle Technologies and Potential Resistance. Foods 2020; 9:E1895. [PMID: 33353056 PMCID: PMC7767196 DOI: 10.3390/foods9121895] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/12/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
Blue light primarily exhibits antimicrobial activity through the activation of endogenous photosensitizers, which leads to the formation of reactive oxygen species that attack components of bacterial cells. Current data show that blue light is innocuous on the skin, but may inflict photo-damage to the eyes. Laboratory measurements indicate that antimicrobial blue light has minimal effects on the sensorial and nutritional properties of foods, although future research using human panels is required to ascertain these findings. Food properties also affect the efficacy of antimicrobial blue light, with attenuation or enhancement of the bactericidal activity observed in the presence of absorptive materials (for example, proteins on meats) or photosensitizers (for example, riboflavin in milk), respectively. Blue light can also be coupled with other treatments, such as polyphenols, essential oils and organic acids. While complete resistance to blue light has not been reported, isolated evidence suggests that bacterial tolerance to blue light may occur over time, especially through gene mutations, although at a slower rate than antibiotic resistance. Future studies can aim at characterizing the amount and type of intracellular photosensitizers across bacterial species and at assessing the oxygen-independent mechanism of blue light-for example, the inactivation of spoilage bacteria in vacuum-packed meats.
Collapse
Affiliation(s)
- Joshua Hadi
- AgResearch Ltd., Hopkirk Research Institute, Cnr University and Library Road, Massey University, Palmerston North 4442, New Zealand; (J.H.); (S.W.)
| | - Shuyan Wu
- AgResearch Ltd., Hopkirk Research Institute, Cnr University and Library Road, Massey University, Palmerston North 4442, New Zealand; (J.H.); (S.W.)
| | - Gale Brightwell
- AgResearch Ltd., Hopkirk Research Institute, Cnr University and Library Road, Massey University, Palmerston North 4442, New Zealand; (J.H.); (S.W.)
- New Zealand Food Safety Science and Research Centre, Tennent Drive, Massey University, Palmerston North 4474, New Zealand
| |
Collapse
|
6
|
Monte DFM, Nethery MA, Barrangou R, Landgraf M, Fedorka-Cray PJ. Whole-genome sequencing analysis and CRISPR genotyping of rare antibiotic-resistant Salmonella enterica serovars isolated from food and related sources. Food Microbiol 2020; 93:103601. [PMID: 32912589 DOI: 10.1016/j.fm.2020.103601] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 11/25/2022]
Abstract
For decades, Salmonella Typhimurium and Salmonella Enteritidis have prevailed in several countries as agents of salmonellosis outbreaks. In Brazil, the largest exporter of poultry meat, relatively little attention has been paid to infrequent serovars. Here, we report the emergence and characterization of rare serovars isolated from food and related sources collected between 2014 and 2016 in Brazil. Twenty-two Salmonella enterica isolates were analyzed through the use of whole-genome sequencing (WGS) and clustered regularly interspaced short palindromic repeats (CRISPR) genotyping. These isolates were classified into 10 infrequent serovars, including S. Abony, S. Isangi, S. Rochdale, S. Saphra, S. Orion, S. Ouakam, S. Grumpensis, S. Carrau, S. Abaetetuba, and S. Idikan. The presence of six antimicrobial resistance (AMR) genes, qnrB19, blaCMY-2, tetA, aac(6')-Iaa, sul2 and fosA7, which encode resistance to quinolones, third-generation cephalosporin, tetracycline, aminoglycoside, sulfonamide and fosfomycin, respectively, were confirmed by WGS. All S. Isangi harbored qnrB19 with conserved genomic context across strains, while S. Abony harbored blaCMY-2. Twelve (54.5%) strains displayed chromosomal mutations in parC (Thr57→Ser). Most serovars were classified as independent lineages, except S. Abony and S. Abaetetuba, which phylogenetically nested with Salmonella strains from different countries. CRISPR analysis revealed that the spacer content was strongly correlated with serovar and multi-locus sequence type for all strains, independently confirming the observed phylogenetic patterns, and highlighting the value of CRISPR-based genotyping for Salmonella. These findings add valuable information to the epidemiology of S. enterica in Brazil, where the emergency of antibiotic-resistant Salmonella continues to evolve.
Collapse
Affiliation(s)
- Daniel F M Monte
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, Food Research Center, University of São Paulo, Brazil; Department of Population Health and Pathobiology, North Carolina State University, College of Veterinary Medicine, Raleigh, NC, USA.
| | - Matthew A Nethery
- Genomic Sciences Graduate Program, North Carolina State University, Raleigh, NC, USA; Department of Food, Bioprocessing & Nutrition Sciences, North Carolina State University, Raleigh, NC, USA
| | - Rodolphe Barrangou
- Genomic Sciences Graduate Program, North Carolina State University, Raleigh, NC, USA; Department of Food, Bioprocessing & Nutrition Sciences, North Carolina State University, Raleigh, NC, USA
| | - Mariza Landgraf
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, Food Research Center, University of São Paulo, Brazil
| | - Paula J Fedorka-Cray
- Department of Population Health and Pathobiology, North Carolina State University, College of Veterinary Medicine, Raleigh, NC, USA.
| |
Collapse
|
7
|
Sodagari HR, Wang P, Robertson I, Habib I, Sahibzada S. Non-Typhoidal Salmonella at the Human-Food-of-Animal-Origin Interface in Australia. Animals (Basel) 2020; 10:E1192. [PMID: 32674371 PMCID: PMC7401514 DOI: 10.3390/ani10071192] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 07/08/2020] [Indexed: 12/20/2022] Open
Abstract
Non-typhoidal Salmonella is a major zoonotic pathogen that plays a significant role in foodborne human salmonellosis worldwide through the consumption of contaminated foods, particularly those of animal origin. Despite a considerable reduction in human salmonellosis outbreaks in developed countries, Australia is experiencing a continuous rise of such outbreaks in humans. This review of the literature highlights the reported non-typhoidal Salmonella outbreaks in humans as well as the occurrence of the pathogen in foods from animal sources throughout Australia. Non-typhoidal Salmonella infections from food animals are more often associated with at-risk people, such as immunocompromised and aged people or children. Although several animal-sourced foods were recognised as the catalysts for salmonellosis outbreaks in Australia, egg and egg-based products remained the most implicated foods in the reported outbreaks. This review further highlights the antimicrobial resistance trends of non-typhoidal Salmonella isolates at the human-food interface, with a focus on clinically important antimicrobials in humans, by collating evidence from previous investigations in Australia. The rise in antimicrobial-resistant Salmonella, especially to antimicrobials commonly prescribed to treat human salmonellosis, has become a significant global public health concern. However, the overall prevalence of antimicrobial resistance in Australia is considerably lower than in other parts of the world, particularly in terms of critically important antimicrobials for the treatment of human salmonellosis. The present review adds to our understanding of the global epidemiology of non-typhoidal Salmonella with emphasis on the past few decades in Australia.
Collapse
Affiliation(s)
- Hamid Reza Sodagari
- School of Veterinary Medicine, College of Science, Health, Education and Engineering, Murdoch University, Perth 6150, Australia; (H.R.S.); (P.W.); (I.R.)
| | - Penghao Wang
- School of Veterinary Medicine, College of Science, Health, Education and Engineering, Murdoch University, Perth 6150, Australia; (H.R.S.); (P.W.); (I.R.)
| | - Ian Robertson
- School of Veterinary Medicine, College of Science, Health, Education and Engineering, Murdoch University, Perth 6150, Australia; (H.R.S.); (P.W.); (I.R.)
| | - Ihab Habib
- School of Veterinary Medicine, College of Science, Health, Education and Engineering, Murdoch University, Perth 6150, Australia; (H.R.S.); (P.W.); (I.R.)
- Veterinary Medicine Department, College of Food and Agriculture, United Arab Emirates University (UAEU), Al Ain P.O. Box 1555, UAE
| | - Shafi Sahibzada
- School of Veterinary Medicine, College of Science, Health, Education and Engineering, Murdoch University, Perth 6150, Australia; (H.R.S.); (P.W.); (I.R.)
| |
Collapse
|