1
|
Ivanova M, Laage Kragh M, Szarvas J, Tosun ES, Holmud NF, Gmeiner A, Amar C, Guldimann C, Huynh TN, Karpíšková R, Rota C, Gomez D, Aboagye E, Etter A, Centorame P, Torresi M, De Angelis ME, Pomilio F, Okholm AH, Xiao Y, Kleta S, Lüth S, Pietzka A, Kovacevic J, Pagotto F, Rychli K, Zdovc I, Papić B, Heir E, Langsrud S, Møretrø T, Brown P, Kathariou S, Stephan R, Tasara T, Dalgaard P, Njage PMK, Fagerlund A, Aarestrup F, Truelstrup Hansen L, Leekitcharoenphon P. Large-scale phenotypic and genomic analysis of Listeria monocytogenes reveals diversity in the sensitivity to quaternary ammonium compounds but not to peracetic acid. Appl Environ Microbiol 2025; 91:e0182924. [PMID: 40035557 PMCID: PMC12016499 DOI: 10.1128/aem.01829-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 02/05/2025] [Indexed: 03/05/2025] Open
Abstract
Listeria monocytogenes presents a significant concern for the food industry due to its ability to persist in the food processing environment. One of the factors contributing to its persistence is decreased sensitivity to disinfectants. Our objective was to assess the diversity of L. monocytogenes sensitivity to food industry disinfectants by testing the response of 1,671 L. monocytogenes isolates to quaternary ammonium compounds (QACs) and 414 isolates to peracetic acid (PAA) using broth microdilution and growth curve analysis assays, respectively, and to categorize the isolates into sensitive and tolerant. A high phenotype-genotype concordance (95%) regarding tolerance to QACs was obtained by screening the genomes for the presence of QAC tolerance-associated genes bcrABC, emrE, emrC, and qacH. Based on this high concordance, we assessed the QAC genes' dissemination among publicly available L. monocytogenes genomes (n = 39,196). Overall, QAC genes were found in 23% and 28% of the L. monocytogenes collection in this study and in the global data set, respectively. bcrABC and qacH were the most prevalent genes, with bcrABC being the most detected QAC gene in the USA, while qacH dominated in Europe. No significant differences (P > 0.05) in the PAA tolerance were detected among isolates belonging to different lineages, serogroups, clonal complexes, or isolation sources, highlighting limited variation in the L. monocytogenes sensitivity to this disinfectant. The present work represents the largest testing of L. monocytogenes sensitivity to important food industry disinfectants at the phenotypic and genomic level, revealing diversity in the tolerance to QACs while all isolates showed similar sensitivity to PAA. IMPORTANCE Contamination of Listeria monocytogenes within food processing environments is of great concern to the food industry due to challenges in eradicating the isolates once they become established and persistent in the environment. Genetic markers associated with increased tolerance to certain disinfectants have been identified, which alongside other biotic and abiotic factors can favor the persistence of L. monocytogenes in the food production environment. By employing a comprehensive large-scale phenotypic testing and genomic analysis, this study significantly enhances the understanding of the L. monocytogenes tolerance to quaternary ammonium compounds (QACs) and the genetic determinants associated with the increased tolerance. We provide a global overview of the QAC genes prevalence among public L. monocytogenes sequences and their distribution among clonal complexes, isolation sources, and geographical locations. Additionally, our comprehensive screening of the peracetic acid (PAA) sensitivity shows that this disinfectant can be used in the food industry as the lack of variation in sensitivity indicates reliable effect and no apparent possibility for the emergence of tolerance.
Collapse
Affiliation(s)
- Mirena Ivanova
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Martin Laage Kragh
- Research Group for Food Microbiology and Hygiene, National Food Institute, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Judit Szarvas
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Elif Seyda Tosun
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Natacha Friis Holmud
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Alexander Gmeiner
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Corinne Amar
- Public Health England, National Infection Service, London, United Kingdom
| | - Claudia Guldimann
- Chair for Food Safety and Analytics, Ludwig-Maximilians-University Munich, Munich, Germany
| | - TuAnh N. Huynh
- University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Renáta Karpíšková
- Department of Public Health, Masaryk University, Medical Faculty, Brno, Czech Republic
| | | | | | | | | | - Patrizia Centorame
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G Caporale “Giuseppe Caporale”, Teramo, Italy
| | - Marina Torresi
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G Caporale “Giuseppe Caporale”, Teramo, Italy
| | - Maria Elisabetta De Angelis
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G Caporale “Giuseppe Caporale”, Teramo, Italy
| | - Francesco Pomilio
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G Caporale “Giuseppe Caporale”, Teramo, Italy
| | | | - Yinghua Xiao
- Arla Innovation Center, Arla Foods amba, Aarhus N, Denmark
| | - Sylvia Kleta
- German Federal Institute for Risk Assessment (BfR), National Reference Laboratory for Listeria monocytogenes (NRL-Lm), Berlin, Germany
| | - Stefanie Lüth
- German Federal Institute for Risk Assessment (BfR), National Reference Laboratory for Listeria monocytogenes (NRL-Lm), Berlin, Germany
| | - Ariane Pietzka
- Austrian Agency for Health and Food Safety (AGES), Institute of Medical Microbiology and Hygiene, National Reference Laboratory for Listeria monocytogenes, Graz, Austria
| | - Jovana Kovacevic
- Food Innovation Center, Oregon State University, Portland, Oregon, USA
| | - Franco Pagotto
- Listeriosis Reference Service, Food Directorate, Bureau of Microbial Hazards, Ottawa, Ontario, Canada
| | - Kathrin Rychli
- Unit for Food Microbiology, Institute for Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Irena Zdovc
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Bojan Papić
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Even Heir
- Nofima, The Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Solveig Langsrud
- Nofima, The Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Trond Møretrø
- Nofima, The Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Phillip Brown
- North Carolina State University, Raleigh, North Carolina, USA
| | | | - Roger Stephan
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Taurai Tasara
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Paw Dalgaard
- Research Group for Food Microbiology and Hygiene, National Food Institute, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Patrick Murigu Kamau Njage
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kgs Lyngby, Denmark
| | | | - Frank Aarestrup
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Lisbeth Truelstrup Hansen
- Research Group for Food Microbiology and Hygiene, National Food Institute, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Pimlapas Leekitcharoenphon
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kgs Lyngby, Denmark
| |
Collapse
|
2
|
Gmeiner A, Ivanova M, Njage PMK, Hansen LT, Chindelevitch L, Leekitcharoenphon P. Quantitative prediction of disinfectant tolerance in Listeria monocytogenes using whole genome sequencing and machine learning. Sci Rep 2025; 15:10382. [PMID: 40140458 PMCID: PMC11947258 DOI: 10.1038/s41598-025-94321-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 03/12/2025] [Indexed: 03/28/2025] Open
Abstract
Listeria monocytogenes is a potentially severe disease-causing bacteria mainly transmitted through food. This pathogen is of great concern for public health and the food industry in particular. Many countries have implemented thorough regulations, and some have even set 'zero-tolerance' thresholds for particular food products to minimise the risk of L. monocytogenes outbreaks. This emphasises that proper sanitation of food processing plants is of utmost importance. Consequently, in recent years, there has been an increased interest in L. monocytogenes tolerance to disinfectants used in the food industry. Even though many studies are focusing on laboratory quantification of L. monocytogenes tolerance, the possibility of predictive models remains poorly studied. Within this study, we explore the prediction of tolerance and minimum inhibitory concentrations (MIC) using whole genome sequencing (WGS) and machine learning (ML). We used WGS data and MIC values to quaternary ammonium compound (QAC) disinfectants from 1649 L. monocytogenes isolates to train different ML predictors. Our study shows promising results for predicting tolerance to QAC disinfectants using WGS and machine learning. We were able to train high-performing ML classifiers to predict tolerance with balanced accuracy scores up to 0.97 ± 0.02. For the prediction of MIC values, we were able to train ML regressors with mean squared error as low as 0.07 ± 0.02. We also identified several new genes related to cell wall anchor domains, plasmids, and phages, putatively associated with disinfectant tolerance in L. monocytogenes. The findings of this study are a first step towards prediction of L. monocytogenes tolerance to QAC disinfectants used in the food industry. In the future, predictive models might be used to monitor disinfectant tolerance in food production and might support the conceptualisation of more nuanced sanitation programs.
Collapse
Affiliation(s)
- Alexander Gmeiner
- National Food Institute, Research Group for Genomic Epidemiology, Technical University of Denmark, Kgs. Lyngby, Denmark.
| | - Mirena Ivanova
- National Food Institute, Research Group for Genomic Epidemiology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Patrick Murigu Kamau Njage
- National Food Institute, Research Group for Genomic Epidemiology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Lisbeth Truelstrup Hansen
- National Food Institute, Research Group for Food Microbiology and Hygiene, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Leonid Chindelevitch
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, UK
| | - Pimlapas Leekitcharoenphon
- National Food Institute, Research Group for Genomic Epidemiology, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
3
|
Parra-Flores J, Daza-Prieto B, Chavarria P, Troncoso M, Stöger A, Figueroa G, Mancilla-Rojano J, Cruz-Córdova A, Martinovic A, Ruppitsch W. From Traditional Typing to Genomic Precision: Whole-Genome Sequencing of Listeria monocytogenes Isolated from Refrigerated Foods in Chile. Foods 2025; 14:290. [PMID: 39856956 PMCID: PMC11765429 DOI: 10.3390/foods14020290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/11/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Ready-to-eat (RTE) foods are the most common sources of Listeria monocytogenes transmission. Whole-genome sequencing (WGS) enhances the investigation of foodborne outbreaks by enabling the tracking of pathogen sources and the prediction of genetic traits related to virulence, stress, and antimicrobial resistance, which benefit food safety management. The aim of this study was to evaluate the efficacy of WGS in the typing of 16 L. monocytogenes strains isolated from refrigerated foods in Chile, highlighting its advantages in pathogen identification and the improvement of epidemiological surveillance and food safety. Using cgMLST, a cluster was identified comprising 2 strains with zero allele differences among the 16 strains evaluated. Ninety-four percent of the isolates (15/16) were serotype 1/2b, and 88% of them (14/16) were ST5. All strains shared identical virulence genes related to adhesion (ami, iap, lapB), stress resistance (clpCEP), invasion (aut, iapcwhA, inlAB, lpeA), toxin production (hly), and intracellular regulation (prfA), with only 13 strains exhibiting the bcrBC and qacJ gene, which confer resistance to quaternary ammonium. The pCFSAN010068_01 plasmids were prevalent, and insertion sequences (ISLs) and composite transposons (cns) were detected in 87.5% of the strains. The presence of various antibiotic resistance genes, along with resistance to thermal shocks and disinfectants, may provide L. monocytogenes ST5 strains with enhanced environmental resistance to the hygiene treatments used in the studied food production plant.
Collapse
Affiliation(s)
- Julio Parra-Flores
- Department of Nutrition and Public Health, Universidad del Bío-Bío, Chillán 3780000, Chile;
| | - Beatriz Daza-Prieto
- Institute of Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety, 1090 Vienna, Austria; (B.D.-P.); (A.S.)
| | - Pamela Chavarria
- Department of Nutrition and Public Health, Universidad del Bío-Bío, Chillán 3780000, Chile;
| | - Miriam Troncoso
- Fundación Instituto Profesional Duoc UC, Santiago 8240000, Chile;
| | - Anna Stöger
- Institute of Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety, 1090 Vienna, Austria; (B.D.-P.); (A.S.)
| | - Guillermo Figueroa
- Microbiology and Probiotics Laboratory, Institute of Nutrition and Food Technology, Universidad de Chile, Santiago 7830490, Chile;
| | - Jetsi Mancilla-Rojano
- Immunochemistry Research Laboratory, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (J.M.-R.); (A.C.-C.)
| | - Ariadnna Cruz-Córdova
- Immunochemistry Research Laboratory, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (J.M.-R.); (A.C.-C.)
| | - Aleksandra Martinovic
- Faculty of Food Technology, Food Safety and Ecology, University of Donja Gorica, 81000 Podgorica, Montenegro;
| | - Werner Ruppitsch
- Institute of Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety, 1090 Vienna, Austria; (B.D.-P.); (A.S.)
- Faculty of Food Technology, Food Safety and Ecology, University of Donja Gorica, 81000 Podgorica, Montenegro;
| |
Collapse
|
4
|
Avila-Novoa MG, Solis-Velazquez OA, Guerrero-Medina PJ, Martínez-Chávez L, Martínez-Gonzáles NE, Gutiérrez-Lomelí M. Listeria monocytogenes in Fruits and Vegetables: Antimicrobial Resistance, Biofilm, and Genomic Insights. Antibiotics (Basel) 2024; 13:1039. [PMID: 39596734 PMCID: PMC11591142 DOI: 10.3390/antibiotics13111039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/26/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND/OBJECTIVES Listeria monocytogenes is a foodborne pathogen that can infect both humans and animals and cause noninvasive gastrointestinal listeriosis or invasive listeriosis. The objectives of this study were to determine the genetic diversity of L. monocytogenes; the genes associated with its resistance to antibiotics, benzalkonium chloride (BC), and cadmium chloride (CdCl2); and its biofilm formation. METHODS A total of 132 fresh fruits (44 samples) and vegetables (88 samples) were selected for this study. The genetic diversity of the isolates and the genes associated with their antibiotic resistance were determined using PCR amplification; meanwhile, their levels of susceptibility to antibiotics were determined using the agar diffusion method. Their levels of resistance to BC and CdCl2 were determined using the minimum inhibitory concentration method, and their capacity for biofilm formation was evaluated using the crystal violet staining method. RESULTS A total of 17 L. monocytogenes strains were collected: 12.8% (17/132) from fresh fruits and vegetables in this study. The isolates of L. monocytogenes belonged to phylogenetic groups I.1 (29.4% (5/17); serotype 1/2a) and II.2 (70.5% (12/17); serotype 1/2b); strains containing Listeria pathogenicity islands (LIPIs) were also identified at prevalence rates of 100% for LIPI-1 and LIPI-2 (17/17), 29.4% for LIPI-3 (5/17), and 11.7% for LIPI-4 (2/17). The antibiotic susceptibility tests showed that the L. monocytogenes isolates exhibited six different multiresistant patterns, with multiple antibiotic resistance (MAR) index of ≥0.46 (70.5%; 12/17); additionally, the genes Ide, tetM, and msrA, associated with efflux pump Lde, tetracycline, and ciprofloxacin resistance, were detected at 52.9% (9/17), 29.4% (5/17), and 17.6% (3/17), respectively. The phenotypic tests showed that 58.8% (10/17) of cadmium-resistant L. monocytogenes isolates had a co-resistance of 23.5% (4/17) to BC. Finally, all strains of L. monocytogenes exhibited moderate biofilm production. CONCLUSIONS The results of this study contribute to our understanding of the persistence and genetic diversity of L. monocytogenes strains isolated from fresh fruits and vegetables; in addition, their resistance to CdCl2, which is correlated with co-resistance to BC disinfectant, is helpful for the food industry.
Collapse
Affiliation(s)
- María Guadalupe Avila-Novoa
- Centro de Investigación en Biotecnología Microbiana y Alimentaria, Departamento de Ciencias Básicas, División de Desarrollo Biotecnológico, Centro Universitario de la Ciénega, Universidad de Guadalajara, Av. Universidad 1115, Col. Lindavista, Ocotlán 47820, Jalisco, Mexico; (M.G.A.-N.); (O.A.S.-V.); (P.J.G.-M.)
| | - Oscar Alberto Solis-Velazquez
- Centro de Investigación en Biotecnología Microbiana y Alimentaria, Departamento de Ciencias Básicas, División de Desarrollo Biotecnológico, Centro Universitario de la Ciénega, Universidad de Guadalajara, Av. Universidad 1115, Col. Lindavista, Ocotlán 47820, Jalisco, Mexico; (M.G.A.-N.); (O.A.S.-V.); (P.J.G.-M.)
| | - Pedro Javier Guerrero-Medina
- Centro de Investigación en Biotecnología Microbiana y Alimentaria, Departamento de Ciencias Básicas, División de Desarrollo Biotecnológico, Centro Universitario de la Ciénega, Universidad de Guadalajara, Av. Universidad 1115, Col. Lindavista, Ocotlán 47820, Jalisco, Mexico; (M.G.A.-N.); (O.A.S.-V.); (P.J.G.-M.)
| | - Liliana Martínez-Chávez
- Departamentos de Farmacobiología y Matemáticas, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd. Gral. Marcelino García Barragán 1451, Col. Olímpica, Guadalajara 44430, Jalisco, Mexico; (L.M.-C.); (N.E.M.-G.)
| | - Nanci Edid Martínez-Gonzáles
- Departamentos de Farmacobiología y Matemáticas, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd. Gral. Marcelino García Barragán 1451, Col. Olímpica, Guadalajara 44430, Jalisco, Mexico; (L.M.-C.); (N.E.M.-G.)
| | - Melesio Gutiérrez-Lomelí
- Centro de Investigación en Biotecnología Microbiana y Alimentaria, Departamento de Ciencias Básicas, División de Desarrollo Biotecnológico, Centro Universitario de la Ciénega, Universidad de Guadalajara, Av. Universidad 1115, Col. Lindavista, Ocotlán 47820, Jalisco, Mexico; (M.G.A.-N.); (O.A.S.-V.); (P.J.G.-M.)
| |
Collapse
|
5
|
Lambrechts K, Rip D. Listeria monocytogenes in the seafood industry: Exploring contamination sources, outbreaks, antibiotic susceptibility and genetic diversity. Microbiologyopen 2024; 13:e70003. [PMID: 39420711 PMCID: PMC11486915 DOI: 10.1002/mbo3.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/01/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024] Open
Abstract
Fish and seafood are rich sources of protein, vitamins, and minerals, significantly contributing to individual health. A global increase in consumption has been observed. Listeria monocytogenes is a known problem in food processing environments and is found in various seafood forms, including raw, smoked, salted, and ready-to-eat. Without heat treatment and given L. monocytogenes' ability to multiply under refrigerated conditions, consuming seafood poses a substantial health hazard, particularly to immunocompromised individuals. Numerous global outbreaks of listeriosis have been linked to various fish products, underscoring the importance of studying L. monocytogenes. Different strains exhibit varying disease-causing abilities, making it crucial to understand and monitor the organism's virulence and resistance aspects for food safety. This paper aims to highlight the genetic diversity of L. monocytogenes found in fish products globally and to enhance understanding of contamination routes from raw fish to the final product.
Collapse
Affiliation(s)
| | - Diane Rip
- Department of Food ScienceStellenbosch UniversityMatielandSouth Africa
| |
Collapse
|
6
|
Kawacka I, Olejnik-Schmidt A. Gene emrC Associated with Resistance to Quaternary Ammonium Compounds Is Common among Listeria monocytogenes from Meat Products and Meat Processing Plants in Poland. Antibiotics (Basel) 2024; 13:749. [PMID: 39200049 PMCID: PMC11350778 DOI: 10.3390/antibiotics13080749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
(1) Background: L. monocytogenes is a food pathogen of great importance, characterized by a high mortality rate. Quaternary ammonium compounds (QACs), such as benzalkonium chloride (BC), are often used as disinfectants in food processing facilities. The effectiveness of disinfection procedures is crucial to food safety. (2) Methods: A collection of 153 isolates of L. monocytogenes from meat processing industry was analyzed for their sensitivity to BC using the agar diffusion method. Genes of interest were detected with PCR. (3) Results: Genes emrC, bcrABC, and qacH were found in 64 (41.8%), 6 (3.9%), and 1 isolate (0.7%), respectively, and 79 isolates (51.6%) were classified as having reduced sensitivity to BC. A strong correlation between carrying QACs resistance-related genes and phenotype was found (p-value < 0.0001). Among 51 isolates originating from bacon (collected over 13 months), 48 had the emrC gene, which could explain their persistent presence in a processing facility. Isolates with the ilsA gene (from LIPI-3) were significantly (p-value 0.006) less likely to carry QACs resistance-related genes. (4) Conclusions: Reduced sensitivity to QACs is common among L. monocytogenes from the meat processing industry. Persistent presence of these bacteria in a processing facility is presumably caused by emrC-induced QACs resistance.
Collapse
Affiliation(s)
- Iwona Kawacka
- Department of Food Biotechnology and Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-627 Poznan, Poland
| | - Agnieszka Olejnik-Schmidt
- Department of Food Biotechnology and Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-627 Poznan, Poland
| |
Collapse
|
7
|
Lambrechts K, Gouws P, Rip D. Genetic diversity of Listeria monocytogenes from seafood products, its processing environment, and clinical origin in the Western Cape, South Africa using whole genome sequencing. AIMS Microbiol 2024; 10:608-643. [PMID: 39219753 PMCID: PMC11362271 DOI: 10.3934/microbiol.2024029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/08/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
Listeria monocytogenes is a concern in seafood and its food processing environment (FPE). Several outbreaks globally have been linked to various types of seafood. Genetic profiling of L. monocytogenes is valuable to track bacterial contamination throughout the FPE and in understanding persistence mechanisms, with limited studies from South Africa. Forty-six L. monocytogenes isolates from origins: Fish/seafood products (n = 32) (salmon, smoked trout, fresh hake, oysters), the FPE (n = 6), and clinical (n = 8) were included in this study. Lineage typing, antibiotic susceptibility testing, and screening for two genes (bcrABC and emrC) conferring sanitizer tolerance was conducted. The seafood and FPE isolates originated from seven different factories processing various seafood products with undetermined origin. All clinical isolates were categorized as lineage I, and seafood and FPE isolates were mostly categorized into lineage II (p < 0.01). Seafood and FPE isolates (53%) carried the bcrABC gene cassette and one fish isolate, the emrC gene. A subset, n = 24, was grouped into serotypes, sequence types (STs), and clonal complexes (CCs) with whole genome sequencing (WGS). Eight CCs and ten STs were identified. All clinical isolates belonged to serogroup 4b, hypervirulent CC1. CC121 was the most prevalent in isolates from food and the FPE. All isolates carried Listeria pathogenicity islands (LIPI) 1 and 2. LIPI-3 and LIPI-4 were found in certain isolates. We identified genetic determinants linked to enhanced survival in the FPE, including stress survival islets (SSI) and genes conferring tolerance to sanitizers. SSI-1 was found in 44% isolates from seafood and the FPE. SSI-2 was found in all the ST121 seafood isolates. Isolates (42%) harbored transposon Tn1688_qac (ermC), conferring tolerance to quaternary ammonium compounds. Five plasmids were identified in 13 isolates from seafood and the FPE. This is the first One Health study reporting on L. monocytogenes genetic diversity, virulence and resistance profiles from various types of seafood and its FPE in South Africa.
Collapse
Affiliation(s)
| | | | - Diane Rip
- Department of Food Science, Stellenbosch University, 7602, South Africa
| |
Collapse
|
8
|
Rolon ML, Voloshchuk O, Bartlett KV, LaBorde LF, Kovac J. Multi-species biofilms of environmental microbiota isolated from fruit packing facilities promoted tolerance of Listeria monocytogenes to benzalkonium chloride. Biofilm 2024; 7:100177. [PMID: 38304489 PMCID: PMC10832383 DOI: 10.1016/j.bioflm.2024.100177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 02/03/2024] Open
Abstract
Listeria monocytogenes may survive and persist in food processing environments due to formation of complex multi-species biofilms of environmental microbiota that co-exists in these environments. This study aimed to determine the effect of selected environmental microbiota on biofilm formation and tolerance of L. monocytogenes to benzalkonium chloride in formed biofilms. The studied microbiota included bacterial families previously shown to co-occur with L. monocytogenes in tree fruit packing facilities, including Pseudomonadaceae, Xanthomonadaceae, Microbacteriaceae, and Flavobacteriaceae. Biofilm formation ability and the effect of formed biofilms on the tolerance of L. monocytogenes to benzalkonium chloride was measured in single- and multi-family assemblages. Biofilms were grown statically on polystyrene pegs submerged in a R2A broth. Biofilm formation was quantified using a crystal violet assay, spread-plating, confocal laser scanning microscopy, and its composition was assessed using amplicon sequencing. The concentration of L. monocytogenes in biofilms was determined using the most probable number method. Biofilms were exposed to the sanitizer benzalkonium chloride, and the death kinetics of L. monocytogenes were quantified using a most probable number method. A total of 8, 8, 6, and 3 strains of Pseudomonadaceae, Xanthomonadaceae, Microbacteriaceae, and Flavobacteriaceae, respectively, were isolated from the environmental microbiota of tree fruit packing facilities and were used in this study. Biofilms formed by Pseudomonadaceae, Xanthomonadaceae, and all multi-family assemblages had significantly higher concentration of bacteria, as well as L. monocytogenes, compared to biofilms formed by L. monocytogenes alone. Furthermore, multi-family assemblage biofilms increased the tolerance of L. monocytogenes to benzalkonium chloride compared to L. monocytogenes mono-species biofilms and planktonic multi-family assemblages. These findings suggest that L. monocytogenes control strategies should focus not only on assessing the efficacy of sanitizers against L. monocytogenes, but also against biofilm-forming microorganisms that reside in the food processing built environment, such as Pseudomonadaceae or Xanthomonadaceae.
Collapse
Affiliation(s)
- M. Laura Rolon
- Department of Food Science, The Pennsylvania State University, University Park, PA, 16802, USA
- One Health Microbiome Center, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Olena Voloshchuk
- Department of Food Science, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Katelyn V. Bartlett
- Department of Food Science, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Luke F. LaBorde
- Department of Food Science, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Jasna Kovac
- Department of Food Science, The Pennsylvania State University, University Park, PA, 16802, USA
- One Health Microbiome Center, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
9
|
Cooper AL, Wong A, Tamber S, Blais BW, Carrillo CD. Analysis of Antimicrobial Resistance in Bacterial Pathogens Recovered from Food and Human Sources: Insights from 639,087 Bacterial Whole-Genome Sequences in the NCBI Pathogen Detection Database. Microorganisms 2024; 12:709. [PMID: 38674654 PMCID: PMC11051753 DOI: 10.3390/microorganisms12040709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Understanding the role of foods in the emergence and spread of antimicrobial resistance necessitates the initial documentation of antibiotic resistance genes within bacterial species found in foods. Here, the NCBI Pathogen Detection database was used to query antimicrobial resistance gene prevalence in foodborne and human clinical bacterial isolates. Of the 1,843,630 sequence entries, 639,087 (34.7%) were assigned to foodborne or human clinical sources with 147,788 (23.14%) from food and 427,614 (76.88%) from humans. The majority of foodborne isolates were either Salmonella (47.88%), Campylobacter (23.03%), Escherichia (11.79%), or Listeria (11.3%), and the remaining 6% belonged to 20 other genera. Most foodborne isolates were from meat/poultry (95,251 or 64.45%), followed by multi-product mixed food sources (29,892 or 20.23%) and fish/seafood (6503 or 4.4%); however, the most prominent isolation source varied depending on the genus/species. Resistance gene carriage also varied depending on isolation source and genus/species. Of note, Klebsiella pneumoniae and Enterobacter spp. carried larger proportions of the quinolone resistance gene qnrS and some clinically relevant beta-lactam resistance genes in comparison to Salmonella and Escherichia coli. The prevalence of mec in S. aureus did not significantly differ between meat/poultry and multi-product sources relative to clinical sources, whereas this resistance was rare in isolates from dairy sources. The proportion of biocide resistance in Bacillus and Escherichia was significantly higher in clinical isolates compared to many foodborne sources but significantly lower in clinical Listeria compared to foodborne Listeria. This work exposes the gaps in current publicly available sequence data repositories, which are largely composed of clinical isolates and are biased towards specific highly abundant pathogenic species. We also highlight the importance of requiring and curating metadata on sequence submission to not only ensure correct information and data interpretation but also foster efficient analysis, sharing, and collaboration. To effectively monitor resistance carriage in food production, additional work on sequencing and characterizing AMR carriage in common commensal foodborne bacteria is critical.
Collapse
Affiliation(s)
- Ashley L. Cooper
- Research and Development, Ottawa Laboratory (Carling), Canadian Food Inspection Agency, Ottawa, ON K1A 0C6, Canada;
| | - Alex Wong
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada;
| | - Sandeep Tamber
- Microbiology Research Division, Bureau of Microbial Hazards, Health Canada, Ottawa, ON K1A0K9, Canada;
| | - Burton W. Blais
- Research and Development, Ottawa Laboratory (Carling), Canadian Food Inspection Agency, Ottawa, ON K1A 0C6, Canada;
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada;
| | - Catherine D. Carrillo
- Research and Development, Ottawa Laboratory (Carling), Canadian Food Inspection Agency, Ottawa, ON K1A 0C6, Canada;
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada;
| |
Collapse
|
10
|
Brown SRB, Bland R, McIntyre L, Shyng S, Weisberg AJ, Riutta ER, Chang JH, Kovacevic J. Genomic characterization of Listeria monocytogenes recovered from dairy facilities in British Columbia, Canada from 2007 to 2017. Front Microbiol 2024; 15:1304734. [PMID: 38585707 PMCID: PMC10995413 DOI: 10.3389/fmicb.2024.1304734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 03/11/2024] [Indexed: 04/09/2024] Open
Abstract
Listeria monocytogenes is a foodborne pathogen of concern in dairy processing facilities, with the potential to cause human illness and trigger regulatory actions if found in the product. Monitoring for Listeria spp. through environmental sampling is recommended to prevent establishment of these microorganisms in dairy processing environments, thereby reducing the risk of product contamination. To inform on L. monocytogenes diversity and transmission, we analyzed genome sequences of L. monocytogenes strains (n = 88) obtained through the British Columbia Dairy Inspection Program. Strains were recovered from five different dairy processing facilities over a 10 year period (2007-2017). Analysis of whole genome sequences (WGS) grouped the isolates into nine sequence types and 11 cgMLST types (CT). The majority of isolates (93%) belonged to lineage II. Within each CT, single nucleotide polymorphism (SNP) differences ranged from 0 to 237 between isolates. A highly similar (0-16 SNPs) cluster of over 60 isolates, collected over 9 years within one facility (#71), was identified suggesting a possible persistent population. Analyses of genome content revealed a low frequency of genes associated with stress tolerance, with the exception of widely disseminated cadmium resistance genes cadA1 and cadA2. The distribution of virulence genes and mutations within internalin genes varied across the isolates and facilities. Further studies are needed to elucidate their phenotypic effect on pathogenicity and stress response. These findings demonstrate the diversity of L. monocytogenes isolates across dairy facilities in the same region. Findings also showed the utility of using WGS to discern potential persistence events within a single facility over time.
Collapse
Affiliation(s)
| | - Rebecca Bland
- Food Innovation Center, Oregon State University, Portland, OR, United States
| | | | - Sion Shyng
- British Columbia Centre for Disease Control, Vancouver, BC, Canada
| | - Alexandra J. Weisberg
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Elizabeth R. Riutta
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Jeff H. Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Jovana Kovacevic
- Food Innovation Center, Oregon State University, Portland, OR, United States
| |
Collapse
|
11
|
Osek J, Wieczorek K. Why does Listeria monocytogenes survive in food and food-production environments? J Vet Res 2023; 67:537-544. [PMID: 38130454 PMCID: PMC10730553 DOI: 10.2478/jvetres-2023-0068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023] Open
Abstract
Listeria monocytogenes is one of the most dangerous food-borne pathogens and is responsible for human listeriosis, a severe disease with a high mortality rate, especially among the elderly, pregnant women and newborns. Therefore, this bacterium has an important impact on food safety and public health. It is able to survive and even grow in a temperature range from -0.4°C to 45°C, a broad pH range from 4.6 to 9.5 and at a relatively low water activity (aW < 0.90), and tolerates salt content up to 20%. It is also resistant to ultraviolet light, biocides and heavy metals and forms biofilm structures on a variety of surfaces in food-production environments. These features make it difficult to remove and allow it to persist for a long time, increasing the risk of contamination of food-production facilities and ultimately of food. In the present review, the key mechanisms of the pathogen's survival and stress adaptation have been presented. This information may grant better understanding of bacterial adaptation to food environmental conditions.
Collapse
Affiliation(s)
- Jacek Osek
- Department of Hygiene of Food of Animal Origin, National Veterinary Research Institute, 24-100Puławy, Poland
| | - Kinga Wieczorek
- Department of Hygiene of Food of Animal Origin, National Veterinary Research Institute, 24-100Puławy, Poland
| |
Collapse
|
12
|
Pereira AP, Antunes P, Bierge P, Willems RJL, Corander J, Coque TM, Pich OQ, Peixe L, Freitas AR, Novais C, from the ESCMID Study Group on Food- and Water-borne Infections (EFWISG). Unraveling Enterococcus susceptibility to quaternary ammonium compounds: genes, phenotypes, and the impact of environmental conditions. Microbiol Spectr 2023; 11:e0232423. [PMID: 37737589 PMCID: PMC10581157 DOI: 10.1128/spectrum.02324-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 07/24/2023] [Indexed: 09/23/2023] Open
Abstract
Quaternary ammonium compounds (QACs) have been extensively used in the community, healthcare facilities, and food chain, in concentrations between 20 and 30,000 mg/L. Enterococcus faecalis and Enterococcus faecium are ubiquitous in these settings and are recognized as nosocomial pathogens worldwide, but QACs' activity against strains from diverse epidemiological and genomic backgrounds remained largely unexplored. We evaluated the role of Enterococcus isolates from different sources, years, and clonal lineages as hosts of QACs tolerance genes and their susceptibility to QACs in optimal, single-stress and cross-stress growth conditions. Only 1% of the Enterococcus isolates included in this study and 0.5% of publicly available Enterococcus genomes carried qacA/B, qacC, qacG, qacJ, qacZ, qrg, bcrABC or oqxAB genes, shared with >60 species of Bacillota, Pseudomonadota, Actinomycetota, or Spirochaetota. These genes were generally found within close proximity of antibiotics and/or metals resistance genes. The minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations (MBC) of benzalkonium chloride (BC) and didecyldimethylammonium chloride ranged between 0.5 and 4 mg/L (microdilution: 37°C/20 h/pH = 7/aerobiosis) for 210 E. faecalis and E. faecium isolates (two isolates carrying qacZ). Modified growth conditions (e.g., 22°C/pH = 5) increased MICBC/MBCBC (maximum of eightfold and MBCBC = 16 mg/L) and changed bacterial growth kinetics under BC toward later stationary phases in both species, including in isolates without QACs tolerance genes. In conclusion, Enterococcus are susceptible to in-use QACs concentrations and rarely carry QACs tolerance genes. However, their potential gene exchange with different microbiota, the decreased susceptibility to QACs under specific environmental conditions, and the presence of subinhibitory QACs concentrations in various settings may contribute to the selection of particular strains and, thus, require a One Health strategy to maintain QACs effectiveness. IMPORTANCE Despite the increasing use of quaternary ammonium compounds (QACs), the susceptibility of pathogens to these antimicrobials remains largely unknown. Enterococcus faecium and Enterococcus faecalis are susceptible to in-use QACs concentrations and are not main hosts of QACs tolerance genes but participate in gene transfer pathways with diverse bacterial taxa exposed to these biocides. Moreover, QACs tolerance genes often share the same genetic contexts with antibiotics and/or metals resistance genes, raising concerns about potential co-selection events. E. faecium and E. faecalis showed increased tolerance to benzalkonium chloride under specific environmental conditions (22°C, pH = 5), suggesting that strains might be selected in settings where they occur along with subinhibitory QACs concentrations. Transcriptomic studies investigating the cellular mechanisms of Enterococcus adaptation to QACs tolerance, along with longitudinal metadata analysis of tolerant populations dynamics under the influence of diverse environmental factors, are essential and should be prioritized within a One Health strategy.
Collapse
Affiliation(s)
- Ana P. Pereira
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Microbiology, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Laboratory of Microbiology, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Patrícia Antunes
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Microbiology, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Laboratory of Microbiology, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Faculty of Nutrition and Food Sciences, University of Porto, Porto, Portugal
| | - Paula Bierge
- Laboratori de Recerca en Microbiologia i Malalties Infeccioses, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, Sabadell, Spain
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Rob J. L. Willems
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jukka Corander
- Department of Biostatistics, Faculty of Medicine, University of Oslo, Oslo, Norway
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge, UK
- Department of Mathematics and Statistics, Helsinki Institute of Information Technology, University of Helsinki, Helsinki, Finland
| | - Teresa M. Coque
- Servicio de Microbiologia, Hospital Universitario Ramón y Cajal, Madrid, Spain
- Centro de Investigación Biomédica en Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Oscar Q. Pich
- Laboratori de Recerca en Microbiologia i Malalties Infeccioses, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, Sabadell, Spain
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Luisa Peixe
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Microbiology, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Laboratory of Microbiology, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Ana R. Freitas
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Microbiology, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Laboratory of Microbiology, Faculty of Pharmacy, University of Porto, Porto, Portugal
- 1H-TOXRUN, One Health Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL., Gandra, Portugal
| | - Carla Novais
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Microbiology, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Laboratory of Microbiology, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - from the ESCMID Study Group on Food- and Water-borne Infections (EFWISG)
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Microbiology, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Laboratory of Microbiology, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Faculty of Nutrition and Food Sciences, University of Porto, Porto, Portugal
- Laboratori de Recerca en Microbiologia i Malalties Infeccioses, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, Sabadell, Spain
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, the Netherlands
- Department of Biostatistics, Faculty of Medicine, University of Oslo, Oslo, Norway
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge, UK
- Department of Mathematics and Statistics, Helsinki Institute of Information Technology, University of Helsinki, Helsinki, Finland
- Servicio de Microbiologia, Hospital Universitario Ramón y Cajal, Madrid, Spain
- Centro de Investigación Biomédica en Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
- 1H-TOXRUN, One Health Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL., Gandra, Portugal
| |
Collapse
|
13
|
Avila-Novoa MG, González-Torres B, González-Gómez JP, Guerrero-Medina PJ, Martínez-Chávez L, Martínez-Gonzáles NE, Chaidez C, Gutiérrez-Lomelí M. Genomic Insights into Listeria monocytogenes: Organic Acid Interventions for Biofilm Prevention and Control. Int J Mol Sci 2023; 24:13108. [PMID: 37685913 PMCID: PMC10487766 DOI: 10.3390/ijms241713108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/15/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
Listeria monocytogenes is an important pathogen that has been implicated in foodborne illness. The aim of the present study was to investigate the diversity of virulence factors associated with the mechanisms of pathogenicity, persistence, and formation of biofilm L. monocytogenes by tandem analysis of whole-genome sequencing. The lineages that presented L. monocytogenes (LmAV-2, LmAV-3, and LmAV-6) from Hass avocados were lineages I and II. Listeria pathogenicity island 1 (LIPI-1) and LIPI-2 were found in the isolates, while LIPI-3 and Listeria genomic island (LGI-2) only was in IIb. Stress survival island (SSI-1) was identified in lineage I and II. In the in silico analysis, resistance genes belonging to several groups of antibiotics were detected, but the bcrABC and transposon Tn6188 related to resistance to quaternary ammonium salts (QACs) were not detected in L. monocytogenes. Subsequently, the anti-L. monocytogenes planktonic cell effect showed for QACs (MIC = 6.25 ppm/MBC = 100 ppm), lactic acid (MBC = 1 mg/mL), citric acid (MBC = 0.5 mg/mL) and gallic acid (MBC = 2 mg/mL). The anti-biofilm effect with organic acids (22 °C) caused a reduction of 4-5 log10 cfu/cm2 after 10 min against control biofilm L. monocytogenes formed on PP than SS. This study is an important contribution to understanding the genomic diversity and epidemiology of L. monocytogenes to establish a control measure to reduce the impact on the environment and the consumer.
Collapse
Affiliation(s)
- María Guadalupe Avila-Novoa
- Centro de Investigación en Biotecnología Microbiana y Alimentaria, Departamento de Ciencias Básicas, División de Desarrollo Biotecnológico, Centro Universitario de la Ciénega, Universidad de Guadalajara, Av. Universidad 1115, Col. Lindavista, Ocotlán 47820, Jalisco, Mexico; (M.G.A.-N.); (P.J.G.-M.)
| | - Berenice González-Torres
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA), Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera a Eldorado Km 5.5, Campo El Diez, Culiacán 80110, Sinaloa, Mexico; (B.G.-T.); (J.P.G.-G.); (C.C.)
| | - Jean Pierre González-Gómez
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA), Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera a Eldorado Km 5.5, Campo El Diez, Culiacán 80110, Sinaloa, Mexico; (B.G.-T.); (J.P.G.-G.); (C.C.)
| | - Pedro Javier Guerrero-Medina
- Centro de Investigación en Biotecnología Microbiana y Alimentaria, Departamento de Ciencias Básicas, División de Desarrollo Biotecnológico, Centro Universitario de la Ciénega, Universidad de Guadalajara, Av. Universidad 1115, Col. Lindavista, Ocotlán 47820, Jalisco, Mexico; (M.G.A.-N.); (P.J.G.-M.)
| | - Liliana Martínez-Chávez
- Departamentos de Farmacobiología y Matemáticas, CUCEI, Universidad de Guadalajara, Marcelino García Barragán 1451, Guadalajara 44430, Jalisco, Mexico; (L.M.-C.); (N.E.M.-G.)
| | - Nanci Edid Martínez-Gonzáles
- Departamentos de Farmacobiología y Matemáticas, CUCEI, Universidad de Guadalajara, Marcelino García Barragán 1451, Guadalajara 44430, Jalisco, Mexico; (L.M.-C.); (N.E.M.-G.)
| | - Cristóbal Chaidez
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA), Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera a Eldorado Km 5.5, Campo El Diez, Culiacán 80110, Sinaloa, Mexico; (B.G.-T.); (J.P.G.-G.); (C.C.)
| | - Melesio Gutiérrez-Lomelí
- Centro de Investigación en Biotecnología Microbiana y Alimentaria, Departamento de Ciencias Básicas, División de Desarrollo Biotecnológico, Centro Universitario de la Ciénega, Universidad de Guadalajara, Av. Universidad 1115, Col. Lindavista, Ocotlán 47820, Jalisco, Mexico; (M.G.A.-N.); (P.J.G.-M.)
| |
Collapse
|
14
|
Félix B, Capitaine K, Te S, Felten A, Gillot G, Feurer C, van den Bosch T, Torresi M, Sréterné Lancz Z, Delannoy S, Brauge T, Midelet G, Leblanc JC, Roussel S. Identification by High-Throughput Real-Time PCR of 30 Major Circulating Listeria monocytogenes Clonal Complexes in Europe. Microbiol Spectr 2023; 11:e0395422. [PMID: 37158749 PMCID: PMC10269651 DOI: 10.1128/spectrum.03954-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 04/14/2023] [Indexed: 05/10/2023] Open
Abstract
Listeria monocytogenes is a ubiquitous bacterium that causes a foodborne illness, listeriosis. Most strains can be classified into major clonal complexes (CCs) that account for the majority of outbreaks and sporadic cases in Europe. In addition to the 20 CCs known to account for the majority of human and animal clinical cases, 10 CCs are frequently reported in food production, thereby posing a serious challenge for the agrifood industry. Therefore, there is a need for a rapid and reliable method to identify these 30 major CCs. The high-throughput real-time PCR assay presented here provides accurate identification of these 30 CCs and eight genetic subdivisions within four CCs, splitting each CC into two distinct subpopulations, along with the molecular serogroup of a strain. Based on the BioMark high-throughput real-time PCR system, our assay analyzes 46 strains against 40 real-time PCR arrays in a single experiment. This European study (i) designed the assay from a broad panel of 3,342 L. monocytogenes genomes, (ii) tested its sensitivity and specificity on 597 sequenced strains collected from 24 European countries, and (iii) evaluated its performance in the typing of 526 strains collected during surveillance activities. The assay was then optimized for conventional multiplex real-time PCR for easy implementation in food laboratories. It has already been used for outbreak investigations. It represents a key tool for assisting food laboratories to establish strain relatedness with human clinical strains during outbreak investigations and for helping food business operators by improving their microbiological management plans. IMPORTANCE Multilocus sequence typing (MLST) is the reference method for Listeria monocytogenes typing but is expensive and takes time to perform, from 3 to 5 days for laboratories that outsource sequencing. Thirty major MLST clonal complexes (CCs) are circulating in the food chain and are currently identifiable only by sequencing. Therefore, there is a need for a rapid and reliable method to identify these CCs. The method presented here enables the rapid identification, by real-time PCR, of 30 CCs and eight genetic subdivisions within four CCs, splitting each CC into two distinct subpopulations. The assay was then optimized on different conventional multiplex real-time PCR systems for easy implementation in food laboratories. The two assays will be used for frontline identification of L. monocytogenes isolates prior to whole-genome sequencing. Such assays are of great interest for all food industry stakeholders and public agencies for tracking L. monocytogenes food contamination.
Collapse
Affiliation(s)
- Benjamin Félix
- ANSES, European Union Reference Laboratory for Listeria monocytogenes, Laboratory for Food Safety, Salmonella and Listeria Unit, University of Paris-Est, Maisons-Alfort, France
| | - Karine Capitaine
- ANSES, European Union Reference Laboratory for Listeria monocytogenes, Laboratory for Food Safety, Salmonella and Listeria Unit, University of Paris-Est, Maisons-Alfort, France
| | - Sandrine Te
- ANSES, European Union Reference Laboratory for Listeria monocytogenes, Laboratory for Food Safety, Salmonella and Listeria Unit, University of Paris-Est, Maisons-Alfort, France
| | - Arnaud Felten
- ANSES, Ploufragan/Plouzané/Niort Laboratory, Viral Genetics and Bio-Security Unit, Université Européenne de Bretagne, Ploufragan, France
| | | | - Carole Feurer
- IFIP–The French Pig and Pork Institute, Department of Fresh and Processed Meat, Le Rheu, France
| | - Tijs van den Bosch
- Wageningen Food Safety Research, Department of Bacteriology, Molecular Technology and Antimicrobial Resistance, Wageningen, The Netherlands
| | - Marina Torresi
- National Reference Laboratory for Listeria monocytogenes, Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise “G. Caporale” Via Campo Boario, Teramo, Italy
| | - Zsuzsanna Sréterné Lancz
- Microbiological National Reference Laboratory, National Food Chain Safety Office, Food Chain Safety Laboratory Directorate, Budapest, Hungary
| | - Sabine Delannoy
- ANSES, Laboratory for Food Safety, IdentyPath Platform, Maisons-Alfort, France
| | - Thomas Brauge
- ANSES, Laboratory for Food Safety, Bacteriology and Parasitology of Fishery and Aquaculture Products Unit, Boulogne-sur-Mer, France
| | - Graziella Midelet
- ANSES, Laboratory for Food Safety, Bacteriology and Parasitology of Fishery and Aquaculture Products Unit, Boulogne-sur-Mer, France
| | - Jean-Charles Leblanc
- ANSES, European Union Reference Laboratory for Listeria monocytogenes, Laboratory for Food Safety, Salmonella and Listeria Unit, University of Paris-Est, Maisons-Alfort, France
| | - Sophie Roussel
- ANSES, European Union Reference Laboratory for Listeria monocytogenes, Laboratory for Food Safety, Salmonella and Listeria Unit, University of Paris-Est, Maisons-Alfort, France
| |
Collapse
|
15
|
Lakicevic B, Jankovic V, Pietzka A, Ruppitsch W. Wholegenome sequencing as the gold standard approach for control of Listeria monocytogenes in the food chain. J Food Prot 2023; 86:100003. [PMID: 36916580 DOI: 10.1016/j.jfp.2022.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 10/05/2022] [Accepted: 10/19/2022] [Indexed: 12/23/2022]
Abstract
Listeria monocytogenes has been implicated in numerous outbreaks and related deaths of listeriosis. In food production, L. monocytogenes occurs in raw food material and above all, through postprocessing contamination. The use of next-generation sequencing technologies such as whole-genome sequencing (WGS) facilitates foodborne outbreak investigations, pathogen source tracking and tracing geographic distributions of different clonal complexes, routine microbiological/epidemiological surveillance of listeriosis, and quantitative microbial risk assessment. WGS can also be used to predict various genetic traits related to virulence, stress, or antimicrobial resistance, which can be of great benefit for improving food safety management as well as public health.
Collapse
Affiliation(s)
- Brankica Lakicevic
- Department for Microbiological and Molecular-biological Testing, Institute of Meat Hygiene and Technology, Belgrade, Serbia.
| | - Vesna Jankovic
- Department for Microbiological and Molecular-biological Testing, Institute of Meat Hygiene and Technology, Belgrade, Serbia
| | - Ariane Pietzka
- Institute of Medical Microbiology and Hygiene/National Reference Laboratory for Listeria Division for Public Health, Austrian Agency for Health and Food Safety, Graz, Austria
| | - Werner Ruppitsch
- Institute of Medical Microbiology and Hygiene Division for Public Health, Austrian Agency for Health and Food Safety, Vienna, Austria
| |
Collapse
|
16
|
Maillard J. Impact of benzalkonium chloride, benzethonium chloride and chloroxylenol on bacterial antimicrobial resistance. J Appl Microbiol 2022; 133:3322-3346. [PMID: 35882500 PMCID: PMC9826383 DOI: 10.1111/jam.15739] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 01/11/2023]
Abstract
This review examined 3655 articles on benzalkonium chloride (BKC), benzethonium chloride (BZT) and chloroxylenol (CHO) aiming to understand their impact on antimicrobial resistance. Following the application of inclusion/exclusion criteria, only 230 articles were retained for analysis; 212 concerned BKC, with only 18 for CHO and BZT. Seventy-eight percent of studies used MIC to measure BKC efficacy. Very few studies defined the term 'resistance' and 85% of studies defined 'resistance' as <10-fold increase (40% as low as 2-fold) in MIC. Only a few in vitro studies reported on formulated products and when they did, products performed better. In vitro studies looking at the impact of BKC exposure on bacterial resistance used either a stepwise training protocol or exposure to constant BKC concentrations. In these, BKC exposure resulted in elevated MIC or/and MBC, often associated with efflux, and at time, a change in antibiotic susceptibility profile. The clinical relevance of these findings was, however, neither reported nor addressed. Of note, several studies reported that bacterial strains with an elevated MIC or MBC remained susceptible to the in-use BKC concentration. BKC exposure was shown to reduce bacterial diversity in complex microbial microcosms, although the clinical significance of such a change has not been established. The impact of BKC exposure on the dissemination of resistant genes (notably efflux) remains speculative, although it manifests that clinical, veterinary and food isolates with elevated BKC MIC carried multiple efflux pump genes. The correlation between BKC usage and gene carriage, maintenance and dissemination has also not been established. The lack of clinical interpretation and significance in these studies does not allow to establish with certainty the role of BKC on AMR in practice. The limited literature and BZT and CHO do not allow to conclude that these will impact negatively on emerging bacterial resistance in practice.
Collapse
Affiliation(s)
- Jean‐Yves Maillard
- School of Pharmacy and Pharmaceutical SciencesCardiff UniversityCardiffUK
| |
Collapse
|
17
|
Integrative Assessment of Reduced Listeria monocytogenes Susceptibility to Benzalkonium Chloride in Produce Processing Environments. Appl Environ Microbiol 2022; 88:e0126922. [PMID: 36226965 PMCID: PMC9642021 DOI: 10.1128/aem.01269-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
For decades, quaternary ammonium compounds (QAC)-based sanitizers have been broadly used in food processing environments to control foodborne pathogens such as Listeria monocytogenes. Still, there is a lack of consensus on the likelihood and implication of reduced Listeria susceptibility to benzalkonium chloride (BC) that may emerge due to sublethal exposure to the sanitizers in food processing environments. With a focus on fresh produce processing, we attempted to fill multiple data and evidence gaps surrounding the debate. We determined a strong correlation between tolerance phenotypes and known genetic determinants of BC tolerance with an extensive set of fresh produce isolates. We assessed BC selection on L. monocytogenes through a large-scale and source-structured genomic survey of 25,083 publicly available L. monocytogenes genomes from diverse sources in the United States. With the consideration of processing environment constraints, we monitored the temporal onset and duration of adaptive BC tolerance in both tolerant and sensitive isolates. Finally, we examined residual BC concentrations throughout a fresh produce processing facility at different time points during daily operation. While genomic evidence supports elevated BC selection and the recommendation for sanitizer rotation in the general context of food processing environments, it also suggests a marked variation in the occurrence and potential impact of the selection among different commodities and sectors. For the processing of fresh fruits and vegetables, we conclude that properly sanitized and cleaned facilities are less affected by BC selection and unlikely to provide conditions that are conducive for the emergence of adaptive BC tolerance in L. monocytogenes. IMPORTANCE Our study demonstrates an integrative approach to improve food safety assessment and control strategies in food processing environments through the collective leveraging of genomic surveys, laboratory assays, and processing facility sampling. In the example of assessing reduced Listeria susceptibility to a widely used sanitizer, this approach yielded multifaceted evidence that incorporates population genetic signals, experimental findings, and real-world constraints to help address a lasting debate of policy and practical importance.
Collapse
|
18
|
Alonso VPP, Furtado MM, Iwase CHT, Brondi-Mendes JZ, Nascimento MDS. Microbial resistance to sanitizers in the food industry: review. Crit Rev Food Sci Nutr 2022; 64:654-669. [PMID: 35950465 DOI: 10.1080/10408398.2022.2107996] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Hygiene programs which comprise the cleaning and sanitization steps are part of the Good Hygiene Practices (GHP) and are considered essential to ensure food safety and quality. Inadequate hygiene practices may contribute to the occurrence of foodborne diseases, development of microbial resistance to sanitizers, and economic losses. In general, the sanitizer resistance is classified as intrinsic or acquired. The former is an inherent characteristic, naturally present in some microorganisms, whereas the latter is linked to genetic modifications that can occur at random or after continuous exposure to a nonnormal condition. The resistance mechanisms can involve changes in membrane permeability or in the efflux pump, and enzymatic activity. The efflux pump mechanism is the most elucidated in relation to the resistance caused by the use of different types of sanitizers. In addition, microbial resistance to sanitizers can also be favored in the presence of biofilms due to the protection given by the glycocalyx matrix and genetic changes. Therefore, this review aimed to show the main microbial resistance mechanisms to sanitizers, including genetic modifications, biofilm formation, and permeability barrier.
Collapse
Affiliation(s)
| | - Marianna Miranda Furtado
- Department of Food Science and Nutrition, University of Campinas - UNICAMP, Campinas, SP, Brazil
| | | | | | | |
Collapse
|
19
|
Daeschel D, Pettengill JB, Wang Y, Chen Y, Allard M, Snyder AB. Genomic analysis of Listeria monocytogenes from US food processing environments reveals a high prevalence of QAC efflux genes but limited evidence of their contribution to environmental persistence. BMC Genomics 2022; 23:488. [PMID: 35787787 PMCID: PMC9252043 DOI: 10.1186/s12864-022-08695-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/10/2022] [Indexed: 12/28/2022] Open
Abstract
Background Quaternary ammonium compound (QAC) efflux genes increase the minimum inhibitory concentration of Listeria monocytogenes (Lm) to benzalkonium chloride sanitizer, but the contribution of these genes to persistence in food processing environments is unclear. The goal of this study was to leverage genomic data and associated metadata for 4969 Lm isolates collected between 1999 and 2019 to: (1) evaluate the prevalence of QAC efflux genes among Lm isolates from diverse US food processors, (2) use comparative genomic analyses to assess confounding factors, such as clonal complex identity and stress tolerance genotypes, and (3) identify patterns in QAC efflux gene gain and loss among persistent clones within specific facilities over time. Results The QAC efflux gene cassette bcrABC was present in nearly half (46%) of all isolates. QAC efflux gene prevalence among isolates was associated with clonal complex (𝛘2 < 0.001) and clonal complex was associated with the facility type (𝛘2 < 0.001). Consequently, changes in the prevalence of QAC efflux genes within individual facilities were generally attributable to changes in the prevalence of specific clonal complexes. Additionally, a GWAS and targeted BLAST search revealed that clonal complexes with a high prevalence of QAC efflux genes commonly possessed other stress tolerance genes. For example, a high prevalence of bcrABC in a clonal complex was significantly associated with the presence of the SSI-1 gene cluster (p < 0.05). QAC efflux gene gain and loss were both observed among persistent populations of Lm in individual facilities, suggesting a limited direct role for QAC efflux genes as predictors of persistence. Conclusion This study suggests that although there is evidence that QAC efflux genes are part of a suite of adaptations common among Lm isolated from some food production environments, these genes may be neither sufficient nor necessary to enhance persistence. This is a crucial distinction for decision making in the food industry. For example, changes to sanitizer regimen targeting QAC tolerance would not address other contributing genetic or non-genetic factors, such as equipment hygienic design which physically mediates sanitizer exposure. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08695-2.
Collapse
Affiliation(s)
- Devin Daeschel
- Department of Food Science, Cornell University, Ithaca, NY, USA
| | - James B Pettengill
- Biostatistics and Bioinformatics Staff, Office of Analytics and Outreach, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, USA
| | - Yu Wang
- Biostatistics and Bioinformatics Staff, Office of Analytics and Outreach, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, USA
| | - Yi Chen
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, USA
| | - Marc Allard
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, USA
| | - Abigail B Snyder
- Department of Food Science, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
20
|
Nonsynonymous Mutations in fepR Are Associated with Adaptation of Listeria monocytogenes and Other Listeria spp. to Low Concentrations of Benzalkonium Chloride but Do Not Increase Survival of L. monocytogenes and Other Listeria spp. after Exposure to Benzalkonium Chloride Concentrations Recommended for Use in Food Processing Environments. Appl Environ Microbiol 2022; 88:e0048622. [PMID: 35587542 PMCID: PMC9195947 DOI: 10.1128/aem.00486-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Selection for Listeria monocytogenes strains that are tolerant to quaternary ammonium compounds (such as benzalkonium chloride [BC]) is a concern across the food industry, including in fresh produce processing environments. This study evaluated the ability of 67 strains of produce-associated L. monocytogenes and other Listeria spp. (“parent strains”) to show enhanced BC tolerance after serial passaging in increasing BC concentrations and to maintain this tolerance after substreaking in the absence of BC. After serial passaging in BC, 62/67 “BC passaged cultures” showed higher MICs (4 to 20 mg/L) than parent strains (2 to 6 mg/L). After the substreaking of two isolates from BC passaged cultures for each parent strain, 105/134 “adapted isolates” maintained MICs (4 to 6 mg/L) higher than parent strain MICs. These results suggested that adapted isolates acquired heritable adaptations that confer BC tolerance. Whole-genome sequencing and Sanger sequencing of fepR, a local repressor of the MATE family efflux pump FepA, identified nonsynonymous fepR mutations in 48/67 adapted isolates. The mean inactivation of adapted isolates after exposure to use-level concentrations of BC (300 mg/L) was 4.48 log, which was not significantly different from inactivation observed in parent strains. Serial passaging of cocultures of L. monocytogenes strains containing bcrABC or qacH did not yield adapted isolates that showed enhanced BC tolerance in comparison to that of monocultures. These results suggest that horizontal gene transfer either did not occur or did not yield isolates with enhanced BC tolerance. Overall, this study provides new insights into selection of BC tolerance among L. monocytogenes and other Listeria spp. IMPORTANCEListeria monocytogenes tolerance to quaternary ammonium compounds has been raised as a concern with regard to L. monocytogenes persistence in food processing environments, including in fresh produce packing and processing environments. Persistence of L. monocytogenes can increase the risk of product contamination, food recalls, and foodborne illness outbreaks. Our study shows that strains of L. monocytogenes and other Listeria spp. can acquire heritable adaptations that confer enhanced tolerance to low concentrations of benzalkonium chloride, but these adaptations do not increase survival of L. monocytogenes and other Listeria spp. when exposed to concentrations of benzalkonium chloride used for food contact surface sanitation (300 mg/L). Overall, these findings suggest that the emergence of benzalkonium chloride-tolerant Listeria strains in food processing environments is of limited concern, as even strains adapted to gain higher MICs in vitro maintain full sensitivity to the concentrations of benzalkonium chloride used for food contact surface sanitation.
Collapse
|
21
|
Osek J, Lachtara B, Wieczorek K. Listeria monocytogenes - How This Pathogen Survives in Food-Production Environments? Front Microbiol 2022; 13:866462. [PMID: 35558128 PMCID: PMC9087598 DOI: 10.3389/fmicb.2022.866462] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/04/2022] [Indexed: 12/13/2022] Open
Abstract
The foodborne pathogen Listeria monocytogenes is the causative agent of human listeriosis, a severe disease, especially dangerous for the elderly, pregnant women, and newborns. Although this infection is comparatively rare, it is often associated with a significant mortality rate of 20-30% worldwide. Therefore, this microorganism has an important impact on food safety. L. monocytogenes can adapt, survive and even grow over a wide range of food production environmental stress conditions such as temperatures, low and high pH, high salt concentration, ultraviolet lights, presence of biocides and heavy metals. Furthermore, this bacterium is also able to form biofilm structures on a variety of surfaces in food production environments which makes it difficult to remove and allows it to persist for a long time. This increases the risk of contamination of food production facilities and finally foods. The present review focuses on the key issues related to the molecular mechanisms of the pathogen survival and adaptation to adverse environmental conditions. Knowledge and understanding of the L. monocytogenes adaptation approaches to environmental stress factors will have a significant influence on the development of new, efficient, and cost-effective methods of the pathogen control in the food industry, which is critical to ensure food production safety.
Collapse
Affiliation(s)
- Jacek Osek
- Department of Hygiene of Food of Animal Origin, National Veterinary Research Institute, Puławy, Poland
| | | | | |
Collapse
|
22
|
Parra-Flores J, Holý O, Bustamante F, Lepuschitz S, Pietzka A, Contreras-Fernández A, Castillo C, Ovalle C, Alarcón-Lavín MP, Cruz-Córdova A, Xicohtencatl-Cortes J, Mancilla-Rojano J, Troncoso M, Figueroa G, Ruppitsch W. Virulence and Antibiotic Resistance Genes in Listeria monocytogenes Strains Isolated From Ready-to-Eat Foods in Chile. Front Microbiol 2022; 12:796040. [PMID: 35299835 PMCID: PMC8921925 DOI: 10.3389/fmicb.2021.796040] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/13/2021] [Indexed: 01/30/2023] Open
Abstract
Listeria monocytogenes is causing listeriosis, a rare but severe foodborne infection. Listeriosis affects pregnant women, newborns, older adults, and immunocompromised individuals. Ready-to-eat (RTE) foods are the most common sources of transmission of the pathogen This study explored the virulence factors and antibiotic resistance in L. monocytogenes strains isolated from ready-to-eat (RTE) foods through in vitro and in silico testing by whole-genome sequencing (WGS). The overall positivity of L. monocytogenes in RTE food samples was 3.1% and 14 strains were isolated. L. monocytogenes ST8, ST2763, ST1, ST3, ST5, ST7, ST9, ST14, ST193, and ST451 sequence types were identified by average nucleotide identity, ribosomal multilocus sequence typing (rMLST), and core genome MLST. Seven isolates had serotype 1/2a, five 1/2b, one 4b, and one 1/2c. Three strains exhibited in vitro resistance to ampicillin and 100% of the strains carried the fosX, lin, norB, mprF, tetA, and tetC resistance genes. In addition, the arsBC, bcrBC, and clpL genes were detected, which conferred resistance to stress and disinfectants. All strains harbored hlyA, prfA, and inlA genes almost thirty-two the showed the bsh, clpCEP, hly, hpt, iap/cwhA, inlA, inlB, ipeA, lspA, mpl, plcA, pclB, oat, pdgA, and prfA genes. One isolate exhibited a type 11 premature stop codon (PMSC) in the inlA gene and another isolate a new mutation (deletion of A in position 819). The Inc18(rep25), Inc18(rep26), and N1011A plasmids and MGEs were found in nine isolates. Ten isolates showed CAS-Type II-B systems; in addition, Anti-CRISPR AcrIIA1 and AcrIIA3 phage-associated systems were detected in three genomes. These virulence and antibiotic resistance traits in the strains isolated in the RTE foods indicate a potential public health risk for consumers.
Collapse
Affiliation(s)
- Julio Parra-Flores
- Department of Nutrition and Public Health, Universidad del Bío-Bío, Chillán, Chile
| | - Ondrej Holý
- Science and Research Centre, Faculty of Health Sciences, Palacký University Olomouc, Olomouc, Czechia
| | - Fernanda Bustamante
- Environmental and Public Health Laboratory, Regional Secretariat of the Ministry of Health in Maule, Talca, Chile
| | - Sarah Lepuschitz
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, Vienna, Austria
| | - Ariane Pietzka
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, Vienna, Austria
| | | | - Claudia Castillo
- School of Nutrition and Dietetics, Universidad del Bío-Bío, Chillán, Chile
| | - Catalina Ovalle
- School of Nutrition and Dietetics, Universidad del Bío-Bío, Chillán, Chile
| | | | - Ariadnna Cruz-Córdova
- Intestinal Bacteriology Research Laboratory, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Juan Xicohtencatl-Cortes
- Intestinal Bacteriology Research Laboratory, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Jetsi Mancilla-Rojano
- Intestinal Bacteriology Research Laboratory, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
- Faculty of Medicine, Biological Sciences Graduate Program, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Miriam Troncoso
- Microbiology and Probiotics Laboratory, Institute of Nutrition and Food Technology, Universidad de Chile, Santiago, Chile
| | - Guillermo Figueroa
- Microbiology and Probiotics Laboratory, Institute of Nutrition and Food Technology, Universidad de Chile, Santiago, Chile
| | - Werner Ruppitsch
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, Vienna, Austria
| |
Collapse
|
23
|
Lakicevic BZ, Den Besten HMW, De Biase D. Landscape of Stress Response and Virulence Genes Among Listeria monocytogenes Strains. Front Microbiol 2022; 12:738470. [PMID: 35126322 PMCID: PMC8811131 DOI: 10.3389/fmicb.2021.738470] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 11/30/2021] [Indexed: 12/23/2022] Open
Abstract
The pathogenic microorganism Listeria monocytogenes is ubiquitous and responsible for listeriosis, a disease with a high mortality rate in susceptible people. It can persist in different habitats, including the farm environment, the food production environments, and in foods. This pathogen can grow under challenging conditions, such as low pH, low temperatures, and high salt concentrations. However, L. monocytogenes has a high degree of strain divergence regarding virulence potential, environmental adaption, and stress response. This review seeks to provide the reader with an up-to-date overview of clonal and serotype-specific differences among L. monocytogenes strains. Emphasis on the genes and genomic islands responsible for virulence and resistance to environmental stresses is given to explain the complex adaptation among L. monocytogenes strains. Moreover, we highlight the use of advanced diagnostic technologies, such as whole-genome sequencing, to fine-tune quantitative microbiological risk assessment for better control of listeriosis.
Collapse
Affiliation(s)
- Brankica Z. Lakicevic
- Institute of Meat Hygiene and Technology, Belgrade, Serbia
- *Correspondence: Brankica Z. Lakicevic,
| | | | - Daniela De Biase
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| |
Collapse
|
24
|
Bland RN, Johnson JD, Waite-Cusic JG, Weisberg AJ, Riutta ER, Chang JH, Kovacevic J. Application of Whole Genome Sequencing to Understand Diversity and Presence of Genes Associated with Sanitizer Tolerance in Listeria monocytogenes from Produce Handling Sources. Foods 2021; 10:2454. [PMID: 34681501 PMCID: PMC8536156 DOI: 10.3390/foods10102454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/09/2021] [Accepted: 10/11/2021] [Indexed: 12/13/2022] Open
Abstract
Recent listeriosis outbreaks linked to fresh produce suggest the need to better understand and mitigate L. monocytogenes contamination in packing and processing environments. Using whole genome sequencing (WGS) and phenotype screening assays for sanitizer tolerance, we characterized 48 L. monocytogenes isolates previously recovered from environmental samples in five produce handling facilities. Within the studied population there were 10 sequence types (STs) and 16 cgMLST types (CTs). Pairwise single nucleotide polymorphisms (SNPs) ranged from 0 to 3047 SNPs within a CT, revealing closely and distantly related isolates indicative of both sporadic and continuous contamination events within the facility. Within Facility 1, we identified a closely related cluster (0-2 SNPs) of isolates belonging to clonal complex 37 (CC37; CT9492), with isolates recovered during sampling events 1-year apart and in various locations inside and outside the facility. The accessory genome of these CC37 isolates varied from 94 to 210 genes. Notable genetic elements and mutations amongst the isolates included the bcrABC cassette (2/48), associated with QAC tolerance; mutations in the actA gene on the Listeria pathogenicity island (LIPI) 1 (20/48); presence of LIPI-3 (21/48) and LIPI-4 (23/48). This work highlights the potential use of WGS in tracing the pathogen within a facility and understanding properties of L. monocytogenes in produce settings.
Collapse
Affiliation(s)
- Rebecca N. Bland
- Food Innovation Center, Oregon State University, Portland, OR 97209, USA;
| | - Jared D. Johnson
- Department of Food Science and Technology, Oregon State University, Corvallis, OR 97331, USA; (J.D.J.); (J.G.W.-C.)
| | - Joy G. Waite-Cusic
- Department of Food Science and Technology, Oregon State University, Corvallis, OR 97331, USA; (J.D.J.); (J.G.W.-C.)
| | - Alexandra J. Weisberg
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA; (A.J.W.); (E.R.R.); (J.H.C.)
| | - Elizabeth R. Riutta
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA; (A.J.W.); (E.R.R.); (J.H.C.)
| | - Jeff H. Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA; (A.J.W.); (E.R.R.); (J.H.C.)
| | - Jovana Kovacevic
- Food Innovation Center, Oregon State University, Portland, OR 97209, USA;
| |
Collapse
|
25
|
Brown P, Chen Y, Siletzky R, Parsons C, Jaykus LA, Eifert J, Ryser E, Logue CM, Stam C, Brown E, Kathariou S. Harnessing Whole Genome Sequence Data for Facility-Specific Signatures for Listeria monocytogenes: A Case Study With Turkey Processing Plants in the United States. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.742353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Listeria monocytogenes is a Gram-positive foodborne pathogen responsible for the severe disease listeriosis and notorious for its ability to persist in food processing plants, leading to contamination of processed, ready-to-eat foods. L. monocytogenes persistence in various food processing environments (FPEs) has been extensively investigated by various subtyping tools, with increasing use of whole genome sequencing (WGS). However, major knowledge gaps remain. There is a need for facility-specific molecular signatures not only for adequate attribution of L. monocytogenes to a specific FPE but also for improved understanding of the ecology and evolution of L. monocytogenes in the food processing ecosystem. Furthermore, multiple strains can be recovered from a single FPE sample, but their diversity can be underestimated with common molecular subtyping tools. In this study we investigated a panel of 54 L. monocytogenes strains from four turkey processing plants in the United States. A combination of WGS and phenotypic assays was employed to assess strain persistence as well as identify facility-specific molecular signatures. Comparative analysis of allelic variation across the whole genome revealed that allelic profiles have the potential to be specific to individual processing plants. Certain allelic profiles remained associated with individual plants even when closely-related strains from other sources were included in the analysis. Furthermore, for certain sequence types (STs) based on the seven-locus multilocus sequence typing scheme, presence and location of premature stop codons in inlA, inlB length, prophage sequences, and the sequence content of a genomic hotspot could serve as plant-specific signatures. Interestingly, the analysis of different isolates from the same environmental sample revealed major differences not only in serotype and ST, but even in the sequence content of strains of the same ST. This study highlights the potential for WGS data to be deployed for identification of facility-specific signatures, thus facilitating the tracking of strain movement through the food chain. Furthermore, deployment of WGS for intra-sample strain analysis allows for a more complete environmental surveillance of L. monocytogenes in food processing facilities, reducing the risk of failing to detect strains that may be clinically relevant and potentially novel.
Collapse
|
26
|
Sudagidan M, Yildiz G, Onen S, Al R, Temiz ŞN, Yurt MNZ, Tasbasi BB, Acar EE, Coban A, Aydin A, Dursun AD, Ozalp VC. Targeted mesoporous silica nanoparticles for improved inhibition of disinfectant resistant Listeria monocytogenes and lower environmental pollution. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126364. [PMID: 34329020 DOI: 10.1016/j.jhazmat.2021.126364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/25/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
Benzalkonium chloride (BAC) is a common ingredient of disinfectants used for industrial, medical, food safety and domestic applications. It is a common pollutant detected in surface and wastewaters to induce adverse effects on Human health as well as aquatic and terrestrial life forms. Since disinfectant use is essential in combatting against microorganisms, the best approach to reduce ecotoxicity level is to restrict BAC use. We report here that encapsulation of BAC in mesoporous silica nanoparticles can provide an efficient strategy for inhibition of microbial activity with lower than usual concentrations of disinfectants. As a proof-of-concept, Listeria monocytogenes was evaluated for minimum inhibitory concentration (MIC) of nanomaterial encapsulated BAC. Aptamer molecular gate structures provided a specific targeting of the disinfectant to Listeria cells, leading to high BAC concentrations around bacterial cells, but significantly reduced amounts in total. This strategy allowed to inhibition of BAC resistant Listeria strains with 8 times less the usual disinfectant dose. BAC encapsulated and aptamer functionalized silica nanoparticles (AptBACNP) effectively killed only target bacteria L. monocytogenes, but not the non-target cells, Staphylococcus aureus or Escherichia coli. AptBACNP was not cytotoxic to Human cells as determined by in vitro viability assays.
Collapse
Affiliation(s)
- Mert Sudagidan
- Kit-ARGEM R&D Center, Konya Food and Agriculture University, Konya 42080, Turkey.
| | - Gulsah Yildiz
- Kit-ARGEM R&D Center, Konya Food and Agriculture University, Konya 42080, Turkey.
| | - Selin Onen
- Department of Biology, Medical School, Atilim University, 06830 Ankara, Turkey; Department of Stem Cell Sciences, Graduate School of Health Sciences, Hacettepe University, Ankara 06100, Turkey.
| | - Rabia Al
- Department of Molecular Biology and Genetics, Muğla Sıtkı Koçman University, 48000 Muğla, Turkey.
| | | | | | - Behiye Busra Tasbasi
- Kit-ARGEM R&D Center, Konya Food and Agriculture University, Konya 42080, Turkey.
| | - Elif Esma Acar
- Kit-ARGEM R&D Center, Konya Food and Agriculture University, Konya 42080, Turkey.
| | - Aysen Coban
- Department of Gastronomy and Culinary Arts, Istanbul Gedik University, Kartal, 34876 Istanbul, Turkey.
| | - Ali Aydin
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Istanbul University-Cerrahpaşa, Avcilar, Istanbul, Turkey.
| | - Ali D Dursun
- Department of Physiology, Medical School, Atilim University, 06830 Ankara, Turkey.
| | - Veli C Ozalp
- Department of Biology, Medical School, Atilim University, 06830 Ankara, Turkey.
| |
Collapse
|
27
|
Unrath N, McCabe E, Macori G, Fanning S. Application of Whole Genome Sequencing to Aid in Deciphering the Persistence Potential of Listeria monocytogenes in Food Production Environments. Microorganisms 2021; 9:1856. [PMID: 34576750 PMCID: PMC8464834 DOI: 10.3390/microorganisms9091856] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 01/26/2023] Open
Abstract
Listeria monocytogenes is the etiological agent of listeriosis, a foodborne illness associated with high hospitalizations and mortality rates. This bacterium can persist in food associated environments for years with isolates being increasingly linked to outbreaks. This review presents a discussion of genomes of Listeria monocytogenes which are commonly regarded as persisters within food production environments, as well as genes which are involved in mechanisms aiding this phenotype. Although criteria for the detection of persistence remain undefined, the advent of whole genome sequencing (WGS) and the development of bioinformatic tools have revolutionized the ability to find closely related strains. These advancements will facilitate the identification of mechanisms responsible for persistence among indistinguishable genomes. In turn, this will lead to improved assessments of the importance of biofilm formation, adaptation to stressful conditions and tolerance to sterilizers in relation to the persistence of this bacterium, all of which have been previously associated with this phenotype. Despite much research being published around the topic of persistence, more insights are required to further elucidate the nature of true persistence and its implications for public health.
Collapse
Affiliation(s)
- Natalia Unrath
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy & Sports Science, University College Dublin, D04 N2E5 Dublin, Ireland; (N.U.); (E.M.); (G.M.)
| | - Evonne McCabe
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy & Sports Science, University College Dublin, D04 N2E5 Dublin, Ireland; (N.U.); (E.M.); (G.M.)
- Department of Microbiology, St. Vincent’s University Hospital, D04 T6F4 Dublin, Ireland
| | - Guerrino Macori
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy & Sports Science, University College Dublin, D04 N2E5 Dublin, Ireland; (N.U.); (E.M.); (G.M.)
| | - Séamus Fanning
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy & Sports Science, University College Dublin, D04 N2E5 Dublin, Ireland; (N.U.); (E.M.); (G.M.)
| |
Collapse
|
28
|
Schmitz-Esser S, Anast JM, Cortes BW. A Large-Scale Sequencing-Based Survey of Plasmids in Listeria monocytogenes Reveals Global Dissemination of Plasmids. Front Microbiol 2021; 12:653155. [PMID: 33776982 PMCID: PMC7994336 DOI: 10.3389/fmicb.2021.653155] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/19/2021] [Indexed: 12/21/2022] Open
Abstract
The food-borne pathogen Listeria monocytogenes is known for its capacity to cope with multiple stress conditions occurring in food and food production environments (FPEs). Plasmids can provide benefits to their host strains, and it is known that various Listeria strains contain plasmids. However, the current understanding of plasmid frequency and function in L. monocytogenes strains remains rather limited. To determine the presence of plasmids among L. monocytogenes strains and their potential contribution to stress survival, a comprehensive dataset was established based on 1,921 published genomes from strains representing 14 L. monocytogenes sequence types (STs). Our results show that an average of 54% of all L. monocytogenes strains in the dataset contained a putative plasmid. The presence of plasmids was highly variable between different STs. While some STs, such as ST1, ST2, and ST4, contained few plasmid-bearing strains (<15% of the strains per ST), other STs, such as ST121, ST5, ST8, ST3, and ST204, possessed a higher proportion of plasmid-bearing strains with plasmids found in >71% of the strains within each ST. Overall, the sizes of plasmids analyzed in this study ranged from 4 to 170 kbp with a median plasmid size of 61 kbp. We also identified two novel groups of putative Listeria plasmids based on the amino acid sequences of the plasmid replication protein, RepA. We show that highly conserved plasmids are shared among Listeria strains which have been isolated from around the world over the last few decades. To investigate the potential roles of plasmids, nine genes related to stress-response were selected for an assessment of their abundance and conservation among L. monocytogenes plasmids. The results demonstrated that these plasmid genes exhibited high sequence conservation but that their presence in plasmids was highly variable. Additionally, we identified a novel transposon, Tn7075, predicted to be involved in mercury-resistance. Here, we provide the largest plasmid survey of L. monocytogenes to date with a comprehensive examination of the distribution of plasmids among L. monocytogenes strains. Our results significantly increase our knowledge about the distribution, composition, and conservation of L. monocytogenes plasmids and suggest that plasmids are likely important for the survival of L. monocytogenes in food and FPEs.
Collapse
Affiliation(s)
- Stephan Schmitz-Esser
- Department of Animal Science, Iowa State University, Ames, IA, United States.,Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States
| | - Justin M Anast
- Department of Animal Science, Iowa State University, Ames, IA, United States.,Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States
| | - Bienvenido W Cortes
- Department of Animal Science, Iowa State University, Ames, IA, United States.,Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States
| |
Collapse
|
29
|
Obłąk E, Futoma-Kołoch B, Wieczyńska A. Biological activity of quaternary ammonium salts and resistance of microorganisms to these compounds. World J Microbiol Biotechnol 2021; 37:22. [PMID: 33428020 DOI: 10.1007/s11274-020-02978-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/05/2020] [Indexed: 12/23/2022]
Abstract
Quaternary ammonium salts (QASs) are ubiquitous in nature, being found in organisms ranging from microorganisms to vertebrates (e.g., glycine betaine, carnitine) where they have important cellular functions. QASs are also obtained by chemical synthesis. These compounds, due to their diverse chemical structure (e.g. monomeric QAS or gemini) and their biological properties, are widely used in medicine (as disinfectants, drugs, and DNA carriers), industry, environmental protection and agriculture (as preservatives, biocides, herbicides and fungicides). Discussed chemical compounds reduce the adhesion of microorganisms to various biotic and abiotic surfaces and cause the eradication of biofilms produced by pathogenic microorganisms. The properties of these chemicals depend on their chemical structure (length of the alkyl chain, linker and counterion), which has a direct impact on the physicochemical and biological activity of these compounds. QASs by incorporation into the membranes, inhibit the activity of proteins (H+-ATPase) and disrupt the transport of substances to the cell. Moreover, in the presence of QASs, changes in lipid composition (qualitative and quantitative) of plasma membrane are observed. The widespread use of disinfectants in commercial products can induce resistance in microorganisms to these surfactants and even to antibiotics. In this article we discuss the biological activity of QASs as cationic surfactants against microorganisms and their resistance to these compounds.
Collapse
Affiliation(s)
- Ewa Obłąk
- Department of Physico-Chemistry of Microorganisms, Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego 63/77, 51-148, Wrocław, Poland
| | - Bożena Futoma-Kołoch
- Department of Microbiology, Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego 63-77, 51-148, Wrocław, Poland.
| | - Anna Wieczyńska
- Department of Physico-Chemistry of Microorganisms, Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego 63/77, 51-148, Wrocław, Poland
| |
Collapse
|