1
|
Mafe AN, Nkene IH, Ali ABM, Edo GI, Akpoghelie PO, Yousif E, Isoje EF, Igbuku UA, Ismael SA, Essaghah AEA, Ahmed DS, Umar H, Alamiery AA. Smart Probiotic Solutions for Mycotoxin Mitigation: Innovations in Food Safety and Sustainable Agriculture. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10569-4. [PMID: 40312537 DOI: 10.1007/s12602-025-10569-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2025] [Indexed: 05/03/2025]
Abstract
Mycotoxin contamination poses severe risks to food safety and agricultural sustainability. Probiotic-based interventions offer a promising strategy for mitigating these toxic compounds through adsorption, biodegradation, and gut microbiota modulation. This review examines the mechanisms by which specific probiotic strains inhibit mycotoxin biosynthesis, degrade existing toxins, and enhance host detoxification pathways. Emphasis is placed on strain-specific interactions, genetic and metabolic adaptations, and advancements in formulation technologies that improve probiotic efficacy in food matrices. Also, the review explores smart delivery systems, such as encapsulation techniques and biofilm applications, to enhance probiotic stability and functionality. Issues related to regulatory approval, strain viability, and large-scale implementation are also discussed. By integrating molecular insights, applied case studies, and innovative probiotic-based solutions, this review provides a roadmap for advancing safe and sustainable strategies to combat mycotoxin contamination in food and agricultural systems.
Collapse
Affiliation(s)
- Alice Njolke Mafe
- Department of Biological Sciences, Faculty of Science, Taraba State University Jalingo, Taraba State, Jalingo, Nigeria
| | - Istifanus Haruna Nkene
- Department of Microbiology, Faculty of Natural and Applied Sciences, Nasarawa State University, Keffi, Nigeria
| | - Ali B M Ali
- Department of Air Conditioning Engineering, College of Engineering, University of Warith Al-Anbiyaa, Karbala, Iraq
| | - Great Iruoghene Edo
- Department of Chemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro, Nigeria.
- Department of Chemistry, College of Sciences, Al-Nahrain University, Baghdad, Iraq.
| | - Patrick Othuke Akpoghelie
- Department of Food Science and Technology, Faculty of Science, Delta State University of Science and Technology, Ozoro, Delta State, Nigeria
| | - Emad Yousif
- Department of Chemistry, College of Sciences, Al-Nahrain University, Baghdad, Iraq
| | - Endurance Fegor Isoje
- Department of Biochemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Ufuoma Augustina Igbuku
- Department of Chemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Shams A Ismael
- Department of Medical Physics, College of Science, Al-Nahrain University, Baghdad, Iraq
| | - Arthur Efeoghene Athan Essaghah
- Department of Urban and Regional Planning, Faculty of Environmental Sciences, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Dina S Ahmed
- Department of Chemical Industries, Institute of Technology-Baghdad, Middle Technical University, Baghdad, Iraq
| | - Huzaifa Umar
- Operational Research Centre in Healthcare, Near East University, Nicosia, Cyprus
| | - Ahmed A Alamiery
- AUIQ, Al-Ayen Scientific Research Center, Al-Ayen Iraqi University, Thi Qar, P.O. Box: 64004, An Nasiriyah, Iraq
| |
Collapse
|
2
|
Tong H, Liang S, Lv X, Zhang H, Hou Q, Ren Z, Yang X, Sun L, Yang X. Lactiplantibacillus plantarum JM113 alleviates mitochondrial dysfunction induced by deoxynivalenol in the jejunum of broiler chickens. Poult Sci 2025; 104:104948. [PMID: 40024015 PMCID: PMC11919433 DOI: 10.1016/j.psj.2025.104948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/18/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025] Open
Abstract
Mitochondria are primary targets of deoxynivalenol (DON), which play a pivotal role in maintaining intestinal health. It has been suggested that Lactiplantibacillus plantarum JM113 (L. plantarum JM113) exhibits protective effects against the enterotoxicity of DON in broilers. However, the changes in mitochondrial homeostasis during this process remain unclear. A total of 144 one-day-old Arbor Acres broilers were randomly assigned to 3 groups, including the CON group (fed a basal diet and gavaged with 0.5 mL PBS), the DON group (supplemented with 5 mg/kg DON based on the CON group) and the DJ group (fed a basal diet challenged with 5 mg/kg DON and gavaged with 1 × 109 CFU L. plantarum JM113). The results showed that deoxynivalenol damaged mitochondrial morphology in the jejunum, characterized by swelling, vacuolation and cristae disruption, while L. plantarum JM113 reversed these alterations. Furthermore, the DON treatment significantly decreased total antioxidant capacity (T-AOC) in the jejunum compared with the CON group at both 7-day-old and 21-day-old, and T-AOC of the jejunum and jejunal mitochondria in the DJ group were notably increased at 21-day-old (P < 0.05). Compared to the DON group, the DJ group showed significantly upregulated expression of Mfn1, Mfn2, and Opa1 involved in mitochondrial fusion, and significantly downregulated expression of Drp1 and Fis1 mediated mitochondrial fission at 21-day-old (P < 0.05). Dietary DON exposure also induced inhibition of genes linked to mitochondrial biogenesis at 21-day-old, such as NRF1, NRF2, TFAM and PGC-1α, while L. plantarum JM113 reversed this state (P < 0.05). Additionally, oral administration of L. plantarum JM113 significantly inhibited the overactivation of mitophagy related genes and proteins in the jejunum caused by DON (P < 0.05). Moreover, L. plantarum JM113 alleviated jejunal apoptosis in broilers exposed to DON, manifested by a significant decrease in mRNA and protein expression of Bax and CASP3 (P < 0.05). In summary, L. plantarum JM113 alleviated oxidative stress induced by DON, improved mitochondrial homeostasis, and ultimately prevented the occurrence of apoptosis.
Collapse
Affiliation(s)
- Haonan Tong
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Saisai Liang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Xinying Lv
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Haotian Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Qihang Hou
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Zhouzheng Ren
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Lvhui Sun
- College of Animal Science and Technology, Huazhong Agriculture University, Wuhan, Hubei, 430070, PR China
| | - Xin Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.
| |
Collapse
|
3
|
Kerek Á, Román I, Szabó Á, Pézsa NP, Jerzsele Á. Antibiotic Resistance Gene Expression in Veterinary Probiotics: Two Sides of the Coin. Vet Sci 2025; 12:217. [PMID: 40266902 PMCID: PMC11945515 DOI: 10.3390/vetsci12030217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 02/21/2025] [Accepted: 02/26/2025] [Indexed: 04/25/2025] Open
Abstract
The rapid proliferation of antimicrobial resistance has emerged as one of the most pressing animal and public health challenges of our time. Probiotics, extensively employed in human and veterinary medicine, are instrumental in maintaining a balanced microbiome and mitigating its disruption during antibiotic therapy. While their numerous benefits are well documented, probiotics also present potential risks, notably the capacity to harbor antimicrobial resistance genes. This genetic reservoir could contribute to the emergence and spread of antimicrobial resistance by facilitating the horizontal transfer of resistance genes to pathogenic bacteria within the gut. This review critically examines the presence of antimicrobial resistance genes in commonly used probiotic strains, explores the underlying mechanisms of resistance, and provides a balanced analysis of the benefits and risks associated with their use. By addressing these dual aspects, this paper highlights the need for vigilant evaluation of probiotics to preserve their therapeutic potential while minimizing public health risks.
Collapse
Affiliation(s)
- Ádám Kerek
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary; (I.R.); (Á.S.); (N.P.P.); (Á.J.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary
| | - István Román
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary; (I.R.); (Á.S.); (N.P.P.); (Á.J.)
| | - Ábel Szabó
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary; (I.R.); (Á.S.); (N.P.P.); (Á.J.)
| | - Nikolett Palkovicsné Pézsa
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary; (I.R.); (Á.S.); (N.P.P.); (Á.J.)
| | - Ákos Jerzsele
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary; (I.R.); (Á.S.); (N.P.P.); (Á.J.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary
| |
Collapse
|
4
|
Song C, Wang W, Hua Y, Liu A. 18beta-glycyrrhetinic acid alleviates deoxynivalenol-induced hepatotoxicity by inhibiting GPX4-dependent ferroptosis. Toxicon 2025; 255:108228. [PMID: 39798898 DOI: 10.1016/j.toxicon.2025.108228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/25/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
Deoxynivalenol (DON), a mycotoxin that severely contaminates agri-food products can cause hepatotoxicity. Ferroptosis is an iron-dependent form of cell death, and the liver is an important organ for iron accumulation. 18beta-glycyrrhetinic acid (GA) has anti-ferroptosis and hepatoprotective effects. This study aimed to investigate the role of ferroptosis in the protective effects of GA against DON-induced hepatotoxicity in HepG2 cells and mice. The in vitro results revealed that DON (0.4 μM) decreased GPX4, SLC7A11, GCLC, NQO1, and Nrf2 expression; promoted TFR-1 expression and MDA, 4-HNE, and total ROS production; accelerated GSH depletion; and enhanced lipid ROS accumulation and Fe(II) overload, leading to ferroptosis. Pre-treatment with GA (0.4 and 6 μM) reversed these changes and alleviated DON-induced ferroptosis, thereby increasing cell viability and proliferation. In vivo results also showed that GA (10 mg/kg bw) pre-administration attenuated DON (2 mg/kg bw)-induced mouse liver injury, in part by inhibiting ferroptosis through reducing mitochondrial damage and lipid peroxidation. In addition, GA prevented erastin- and RSL3-induced ferroptosis by promoting GPX4 and SLC7A11 expression. Altogether, GA attenuated DON-induced hepatotoxicity by preventing ferroptosis via activation of GPX4-dependent pathway. The findings of this study provide a theoretical basis for the prevention of food mycotoxin toxicity.
Collapse
Affiliation(s)
- Chenchen Song
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning Hubei 437100, China
| | - Wei Wang
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning Hubei 437100, China
| | - Yu Hua
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning Hubei 437100, China
| | - Aimei Liu
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China; Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China.
| |
Collapse
|
5
|
Lee MG, Lee BR, Lee P, Choi S, Kim JH, Oh MH, Yoo JG. Apical-out intestinal organoids as an alternative model for evaluating deoxynivalenol toxicity and Lactobacillus detoxification in bovine. Sci Rep 2024; 14:31373. [PMID: 39733018 PMCID: PMC11682149 DOI: 10.1038/s41598-024-82928-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 12/10/2024] [Indexed: 12/30/2024] Open
Abstract
Small intestinal organoids are similar to actual small intestines in structure and function and can be used in various fields, such as nutrition, disease, and toxicity research. However, the basal-out type is difficult to homogenize because of the diversity of cell sizes and types, and the Matrigel-based culture conditions. Contrastingly, the apical-out form of small intestinal organoids is relatively uniform and easy to manipulate without Matrigel. Therefore, we sought to investigate the possibility of replacing animal testing with bovine apical-out small intestinal organoids (Apo-IOs) by confirming the toxicity of mycotoxins and effectiveness of L. plantarum as mycotoxin-reducing agents. The characteristics and functions of Apo-IOs were first confirmed. The gene and protein expression of stem cell, proliferation, mucous, and adherence markers were detected, and the absorption capacity of amino and fatty acids was also confirmed. FITC-4 kDa dextran, a marker of intestinal barrier function, did not penetrate the Apo-IOs, confirming the role of the organoids as a barrier. However, when co-treated with deoxynivalenol (DON), FITC-4 kDa dextran was detected deep within the organoids. Moreover, qPCR and immunofluorescence staining confirmed a decrease in the expression of key markers, such as LGR5, Ki67, Mucin2, Villin2, and E-cadherin. In addition, when Apo-IOs were treated with Lactobacillus plantarum ATCC14917 culture supernatant (LCS) and DON together, cell death was reduced compared to when treated with DON alone, and FITC-4 kDa dextran was confirmed to flow only to the peripheral part of the organoid. The qPCR and immunofluorescence staining results of LCS and DON co-treatment group showed that LGR5, Ki67, Mucin2, Villin2, and E-cadherin were expressed at significant higher levels than those in the DON treatment group alone. In this study, we found that the characteristics and functions of bovine Apo-IOs were similar to those of the intestinal structure in vivo. Additionally, the effects of mycotoxins and effectiveness of L. plantarum as mycotoxin-reducing agents were confirmed using bovine Apo-IOs. Therefore, bovine Apo-IOs could be applied in toxicity studies of mycotoxins and could also be used as in vitro models to replace animal testing and improve animal welfare.
Collapse
Affiliation(s)
- Min Gook Lee
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju, Republic of Korea
| | - Bo Ram Lee
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju, Republic of Korea
| | - Poongyeon Lee
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju, Republic of Korea
| | - Soyoung Choi
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Rural Development Administration, Wanju, Republic of Korea
| | - Jong-Hui Kim
- Animal Products Research and Development Division, National Institute of Animal Science, Rural Development Administration, Wanju, Republic of Korea
| | - Mi-Hwa Oh
- Animal Products Research and Development Division, National Institute of Animal Science, Rural Development Administration, Wanju, Republic of Korea
| | - Jae Gyu Yoo
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju, Republic of Korea.
| |
Collapse
|
6
|
Liang S, Tong H, Wang Y, Lv X, Xiong J, Zhu Y, Hou Q, Yang X, Yang X. Lactiplantibacillus plantarum JM113 alleviates deoxynivalenol induced intestinal damage by microbial modulation in broiler chickens. Poult Sci 2024; 103:104291. [PMID: 39316978 PMCID: PMC11462358 DOI: 10.1016/j.psj.2024.104291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/26/2024] Open
Abstract
Deoxynivalenol (DON) contamination causes the grievous injury in public and animal health, poultry suffer from the greater toxin challenge. Probiotic have been considered as a potential way to mitigate the deleterious effects of DON. In this study, a total of 144 1-day-old Arbor Acres chickens were randomly assigned into 3 groups: control group, DON group (5 mg/kg DON diet), DJ group (1×109 cfu Lactiplantibacillus plantarum JM113/kg DON diet). The results showed that Lactiplantibacillus plantarum JM113 (L. plantarum JM113) increased the growth performance of 21-day-old broilers that challenged by the DON (P < 0.05), and the DON-induced disorder of jejunal morphology was recovered in DJ group (P < 0.05). Compared with the DON group, the mRNA and protein levels of Nrf2 and NQO-1 were upregulated in jejunum of DJ group broilers (P < 0.05). Meanwhile, administration of L. plantarum JM113 effectively increased the expression level of barrier-related genes, and the protein abundance of occludin and claudin1 (P < 0.05). L. plantarum JM113 restored the mRNA and protein abundance of PCNA, and proliferation-linked gene (Lgr5 and Bmi1) expression levels in jejunum of DON-insulted broilers (P < 0.05). Furthermore, administration of L. plantarum JM113 significantly enhanced the relative abundance of s_Limosilactobacillus_reuteri in jejuna of DON-challenged broilers (P < 0.05). Spearman correlation analysis showed that s_Limosilactobacillus_reuteri was positively associated with the jejunal barrier related genes (P < 0.05). In conclusion, L. plantarum JM113 alleviated the toxic effects of DON by regulating the jejunal function through microbial adjustment. Our findings proposed a viable approach to mitigating the adverse effects of deoxynivalenol exposure in broilers.
Collapse
Affiliation(s)
- Saisai Liang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Haonan Tong
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yinlong Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xinying Lv
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jiaying Xiong
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yufei Zhu
- Dayu Biological Industry Development Research Institute in Xi'an, Xi'an, China
| | - Qihang Hou
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xin Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
7
|
Yao J, Chen S, Li Y, Liao C, Shang K, Guo R, Chen J, Wang L, Xia X, Yu Z, Ding K. Unveiling a Novel Antidote for Deoxynivalenol Contamination: Isolation, Identification, Whole Genome Analysis and In Vivo Safety Evaluation of Lactobacillus rhamnosus MY-1. Foods 2024; 13:2057. [PMID: 38998563 PMCID: PMC11241047 DOI: 10.3390/foods13132057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
Deoxynivalenol (DON) is a global contaminant found in crop residues, grains, feed, and animal and human food. Biodegradation is currently the best solution for addressing DON pollution. However, efficient detoxification bacteria or enzymes that can be applied in complex matrices are lacking. The aim of this study was to isolate a DON-detoxifying probiotic strain with a high degradation rate, a good safety profile, and a clear genetic background. One hundred and eight bacterial strains were isolated from 300 samples collected from a school farm and surrounding livestock farms. A new DON-degrading strain, Lactobacillus rhamnosus MY-1 (L. rhamnosus MY-1), with a degradation rate of 93.34% after 48 h and a comprehensive degradation method, was identified. Then, MY-1 at a concentration of 1 × 108 CFU/mL was administered to mice in a chronic intoxication experiment for 28 days. The experimental group showed significantly higher weight gain and exhibited good production performance compared to the control group. The length of the ileal villi in the experimental group was significantly longer than that in the control group. The expression of pro-inflammatory cytokines decreased, while the expression of anti-inflammatory factors increased in the experimental group. Whole-genome analysis revealed that most of the MY-1 genes were involved in carbohydrate metabolism and membrane transport, with a cluster of secondary metabolite genes encoding antimicrobial properties. In summary, this study successfully identified a Lactobacillus strain with good safety performance, high DON degradation efficiency, and a clear genetic background, providing a new approach for the treatment of DON contamination.
Collapse
Affiliation(s)
- Jie Yao
- Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471023, China
| | - Songbiao Chen
- Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471023, China
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang 471003, China
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450000, China
| | - Yijia Li
- Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471023, China
| | - Chengshui Liao
- Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471023, China
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang 471003, China
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450000, China
| | - Ke Shang
- Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471023, China
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang 471003, China
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| | - Rongxian Guo
- Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471023, China
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang 471003, China
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| | - Jian Chen
- Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471023, China
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang 471003, China
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| | - Lei Wang
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450000, China
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Xiaojing Xia
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450000, China
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Zuhua Yu
- Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471023, China
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang 471003, China
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| | - Ke Ding
- Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471023, China
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang 471003, China
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450000, China
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| |
Collapse
|
8
|
de Souza M, Baptista AAS, Menck-Costa MF, Justino L, da Glória EM, Shimizu GD, Ferraz CR, Verri WA, Van Immerseel F, Bracarense APFRL. Modulation of Broiler Intestinal Changes Induced by Clostridium perfringens and Deoxynivalenol through Probiotic, Paraprobiotic, and Postbiotic Supplementation. Toxins (Basel) 2024; 16:46. [PMID: 38251262 PMCID: PMC10820081 DOI: 10.3390/toxins16010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/28/2023] [Accepted: 01/07/2024] [Indexed: 01/23/2024] Open
Abstract
Deoxynivalenol (DON) is a predisposing factor for necrotic enteritis. This study aimed to investigate the effects of a DON and Clostridium perfringens (CP) challenge on the intestinal morphology, morphometry, oxidative stress, and immune response of broilers. Additionally, we evaluated the potential of a Lactobacillus spp. mixture as an approach to mitigate the damage induced by the challenge. One-day-old broiler chickens (n = 252) were divided into seven treatment groups: Control, DON, CP, CP + DON, VL (DON + CP + viable Lactobacillus spp. mixture), HIL (DON + CP + heat-inactivated Lactobacillus spp. mixture), and LCS (DON + CP + Lactobacillus spp. mixture culture supernatant). Macroscopic evaluation of the intestines revealed that the CP + DON group exhibited the highest lesion score, while the VL and HIL groups showed the lowest scores. Microscopically, all Lactobacillus spp. treatments mitigated the morphological changes induced by the challenge. DON increased levels of reactive oxygen species (ROS) in the jejunum, and CP increased ROS levels in the jejunum and ileum. Notably, the Lactobacillus spp. treatments did not improve the antioxidant defense against CP-induced oxidative stress. In summary, a Lactobacillus spp. mixture, whether used as a probiotic, paraprobiotic, or postbiotic, exerted a partially protective effect in mitigating most of the intestinal damage induced by DON and CP challenges.
Collapse
Affiliation(s)
- Marielen de Souza
- Laboratory of Animal Pathology (LAP), Department of Preventive Veterinary Medicine, Universidade Estadual de Londrina, Londrina 86057-970, Brazil;
- Laboratory of Avian Medicine (LAM), Department of Preventive Veterinary Medicine, Universidade Estadual de Londrina, Londrina 86057-970, Brazil; (A.A.S.B.); (M.F.M.-C.); (L.J.)
- Livestock Gut Health Team (LiGHT), Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium;
| | - Ana Angelita Sampaio Baptista
- Laboratory of Avian Medicine (LAM), Department of Preventive Veterinary Medicine, Universidade Estadual de Londrina, Londrina 86057-970, Brazil; (A.A.S.B.); (M.F.M.-C.); (L.J.)
| | - Maísa Fabiana Menck-Costa
- Laboratory of Avian Medicine (LAM), Department of Preventive Veterinary Medicine, Universidade Estadual de Londrina, Londrina 86057-970, Brazil; (A.A.S.B.); (M.F.M.-C.); (L.J.)
| | - Larissa Justino
- Laboratory of Avian Medicine (LAM), Department of Preventive Veterinary Medicine, Universidade Estadual de Londrina, Londrina 86057-970, Brazil; (A.A.S.B.); (M.F.M.-C.); (L.J.)
| | - Eduardo Micotti da Glória
- Biological Science Department, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba 13418-900, Brazil;
| | - Gabriel Danilo Shimizu
- Department of Statistics, Universidade Estadual de Londrina, Londrina 86057-970, Brazil;
| | - Camila Rodrigues Ferraz
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of General Pathology, Universidade Estadual de Londrina, Londrina 86057-970, Brazil; (C.R.F.); (W.A.V.)
| | - Waldiceu A. Verri
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of General Pathology, Universidade Estadual de Londrina, Londrina 86057-970, Brazil; (C.R.F.); (W.A.V.)
| | - Filip Van Immerseel
- Livestock Gut Health Team (LiGHT), Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium;
| | | |
Collapse
|
9
|
Murtaza B, Wang L, Li X, Nawaz MY, Saleemi MK, Khatoon A, Yongping X. Recalling the reported toxicity assessment of deoxynivalenol, mitigating strategies and its toxicity mechanisms: Comprehensive review. Chem Biol Interact 2024; 387:110799. [PMID: 37967807 DOI: 10.1016/j.cbi.2023.110799] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/04/2023] [Accepted: 11/07/2023] [Indexed: 11/17/2023]
Abstract
Mycotoxins frequently contaminate a variety of food items, posing significant concerns for both food safety and public health. The adverse consequences linked to poisoning from these substances encompass symptoms such as vomiting, loss of appetite, diarrhea, the potential for cancer development, impairments to the immune system, disruptions in neuroendocrine function, genetic damage, and, in severe cases, fatality. The deoxynivalenol (DON) raises significant concerns for both food safety and human health, particularly due to its potential harm to vital organs in the body. It is one of the most prevalent fungal contaminants found in edible items used by humans and animals globally. The presence of harmful mycotoxins, including DON, in food has caused widespread worry. Altered versions of DON have arisen as possible risks to the environment and well-being, as they exhibit a greater propensity to revert back to the original mycotoxins. This can result in the buildup of mycotoxins in both animals and humans, underscoring the pressing requirement for additional investigation into the adverse consequences of these modified mycotoxins. Furthermore, due to the lack of sufficient safety data, accurately evaluating the risk posed by modified mycotoxins remains challenging. Our review study delves into conjugated forms of DON, exploring its structure, toxicity, control strategies, and a novel animal model for assessing its toxicity. Various toxicities, such as acute, sub-acute, chronic, and cellular, are proposed as potential mechanisms contributing to the toxicity of conjugated forms of DON. Additionally, the study offers an overview of DON's toxicity mechanisms and discusses its widespread presence worldwide. A thorough exploration of the health risk evaluation associated with conjugated form of DON is also provided in this discussion.
Collapse
Affiliation(s)
- Bilal Murtaza
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China.
| | - Lili Wang
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China; Center for Food Safety of Animal Origin, Ministry of Education, Dalian University of Technology, Dalian, 116600, China
| | - Xiaoyu Li
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China; Center for Food Safety of Animal Origin, Ministry of Education, Dalian University of Technology, Dalian, 116600, China
| | | | | | - Aisha Khatoon
- Department of Pathology, University of Agriculture, Faisalabad, Pakistan
| | - Xu Yongping
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China; Center for Food Safety of Animal Origin, Ministry of Education, Dalian University of Technology, Dalian, 116600, China.
| |
Collapse
|
10
|
Kim JH, Chan KL, Hart-Cooper WM, Palumbo JD, Orts WJ. High-efficiency fungal pathogen intervention for seed protection: new utility of long-chain alkyl gallates as heat-sensitizing agents. FRONTIERS IN FUNGAL BIOLOGY 2023; 4:1172893. [PMID: 37746121 PMCID: PMC10512402 DOI: 10.3389/ffunb.2023.1172893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/13/2023] [Indexed: 09/26/2023]
Abstract
Control of food-contaminating fungi, especially pathogens that produce mycotoxins, is problematic since effective method for intervening fungal infection on food crops is often limited. Generally Regarded As Safe (GRAS) chemicals, such as natural compounds or their structural derivatives, can be developed as antimicrobial agents for sustainable food/crop production. This study identified that long-chain alkyl gallates, i.e., octyl-, nonyl-, and decyl gallates (OG (octyl 3,4,5-trihydroxybenzoic acid), NG, DG), can function as heat-sensitizing agents that effectively prevent fungal contamination. Out of twenty-eight candidate compounds and six conventional antifungal agents examined, the heat-sensitizing capacity was unique to the long-chain alkyl gallates, where OG exhibited the highest activity, followed by DG and NG. Since OG is a GRAS compound classified by the United States Food and Drug Administration (FDA), further in vitro antifungal studies were performed using OG. When OG and mild heat (57.5°C) were co-administered for 90 seconds, the treatment achieved > 99.999% fungal death (> 5 log reduction). Application of either treatment alone was significantly less effective at reducing fungal survival. Of note, co-application of OG (3 mM) and mild heat (50°C) for 20 minutes completely prevented the survival of aflatoxigenic Aspergillus flavus contaminating crop seeds (Brassica rapa Pekinensis), while seed germination rate was unaffected. Heat-sensitization was also determined in selected bacterial strains (Escherichia coli, Agrobacterium tumefaciens). Altogether, OG is an effective heat-sensitizing agent for control of microbial pathogens. OG-mediated heat sensitization will improve the efficacy of antimicrobial practices, achieving safe, rapid, and cost-effective pathogen control in agriculture/food industry settings.
Collapse
Affiliation(s)
- Jong H. Kim
- Foodborne Toxin Detection and Prevention Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture (USDA-ARS), Albany, CA, United States
| | - Kathleen L. Chan
- Foodborne Toxin Detection and Prevention Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture (USDA-ARS), Albany, CA, United States
| | - William M. Hart-Cooper
- Bioproducts Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture (USDA-ARS), Albany, CA, United States
| | - Jeffrey D. Palumbo
- Foodborne Toxin Detection and Prevention Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture (USDA-ARS), Albany, CA, United States
| | - William J. Orts
- Bioproducts Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture (USDA-ARS), Albany, CA, United States
| |
Collapse
|