1
|
Zhu M, Liang H, Zhang Z, Jiang H, Pu J, Hang X, Zhou Q, Xiang J, He X. Distinct mononuclear diploid cardiac subpopulation with minimal cell-cell communications persists in embryonic and adult mammalian heart. Front Med 2023; 17:939-956. [PMID: 37294383 DOI: 10.1007/s11684-023-0987-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 01/31/2023] [Indexed: 06/10/2023]
Abstract
A small proportion of mononuclear diploid cardiomyocytes (MNDCMs), with regeneration potential, could persist in adult mammalian heart. However, the heterogeneity of MNDCMs and changes during development remains to be illuminated. To this end, 12 645 cardiac cells were generated from embryonic day 17.5 and postnatal days 2 and 8 mice by single-cell RNA sequencing. Three cardiac developmental paths were identified: two switching to cardiomyocytes (CM) maturation with close CM-fibroblast (FB) communications and one maintaining MNDCM status with least CM-FB communications. Proliferative MNDCMs having interactions with macrophages and non-proliferative MNDCMs (non-pMNDCMs) with minimal cell-cell communications were identified in the third path. The non-pMNDCMs possessed distinct properties: the lowest mitochondrial metabolisms, the highest glycolysis, and high expression of Myl4 and Tnni1. Single-nucleus RNA sequencing and immunohistochemical staining further proved that the Myl4+Tnni1+ MNDCMs persisted in embryonic and adult hearts. These MNDCMs were mapped to the heart by integrating the spatial and single-cell transcriptomic data. In conclusion, a novel non-pMNDCM subpopulation with minimal cell-cell communications was unveiled, highlighting the importance of microenvironment contribution to CM fate during maturation. These findings could improve the understanding of MNDCM heterogeneity and cardiac development, thus providing new clues for approaches to effective cardiac regeneration.
Collapse
Affiliation(s)
- Miaomiao Zhu
- Department of Physiology, School of Basic Medicine, Tongji Medical College, `, Wuhan, 430030, China
- Center for Genomics and Proteomics Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Huamin Liang
- Department of Physiology, School of Basic Medicine, Tongji Medical College, `, Wuhan, 430030, China
- Center for Genomics and Proteomics Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhe Zhang
- Department of Physiology, School of Basic Medicine, Tongji Medical College, `, Wuhan, 430030, China
| | - Hao Jiang
- Department of Physiology, School of Basic Medicine, Tongji Medical College, `, Wuhan, 430030, China
- Center for Genomics and Proteomics Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jingwen Pu
- Department of Physiology, School of Basic Medicine, Tongji Medical College, `, Wuhan, 430030, China
- Center for Genomics and Proteomics Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaoyi Hang
- Department of Physiology, School of Basic Medicine, Tongji Medical College, `, Wuhan, 430030, China
- Center for Genomics and Proteomics Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qian Zhou
- Department of Physiology, School of Basic Medicine, Tongji Medical College, `, Wuhan, 430030, China
- Center for Genomics and Proteomics Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jiacheng Xiang
- Department of Physiology, School of Basic Medicine, Tongji Medical College, `, Wuhan, 430030, China
- Center for Genomics and Proteomics Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ximiao He
- Department of Physiology, School of Basic Medicine, Tongji Medical College, `, Wuhan, 430030, China.
- Center for Genomics and Proteomics Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
2
|
Future regenerative medicine developments and their therapeutic applications. Biomed Pharmacother 2023; 158:114131. [PMID: 36538861 DOI: 10.1016/j.biopha.2022.114131] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Although the currently available pharmacological assays can cure most pathological disorders, they have limited therapeutic value in relieving certain disorders like myocardial infarct, peripheral vascular disease, amputated limbs, or organ failure (e.g. renal failure). Pilot studies to overcome such problems using regenerative medicine (RM) delivered promising data. Comprehensive investigations of RM in zebrafish or reptilians are necessary for better understanding. However, the precise mechanisms remain poorly understood despite the tremendous amount of data obtained using the zebrafish model investigating the exact mechanisms behind their regenerative capability. Indeed, understanding such mechanisms and their application to humans can save millions of lives from dying due to potentially life-threatening events. Recent studies have launched a revolution in replacing damaged human organs via different approaches in the last few decades. The newly established branch of medicine (known as Regenerative Medicine aims to enhance natural repair mechanisms. This can be done through the application of several advanced broad-spectrum technologies such as organ transplantation, tissue engineering, and application of Scaffolds technology (support vascularization using an extracellular matrix), stem cell therapy, miRNA treatment, development of 3D mini-organs (organoids), and the construction of artificial tissues using nanomedicine and 3D bio-printers. Moreover, in the next few decades, revolutionary approaches in regenerative medicine will be applied based on artificial intelligence and wireless data exchange, soft intelligence biomaterials, nanorobotics, and even living robotics capable of self-repair. The present work presents a comprehensive overview that summarizes the new and future advances in the field of RM.
Collapse
|
3
|
Liang T, Gao F, Chen J. Role of PTEN-less in cardiac injury, hypertrophy and regeneration. CELL REGENERATION (LONDON, ENGLAND) 2021; 10:25. [PMID: 34337686 PMCID: PMC8326232 DOI: 10.1186/s13619-021-00087-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/18/2021] [Indexed: 12/20/2022]
Abstract
Cardiovascular diseases are the leading cause of death worldwide. Cardiomyocytes are capable of coordinated contractions, which are mainly responsible for pumping blood. When cardiac stress occurs, cardiomyocytes undergo transition from physiological homeostasis to hypertrophic growth, proliferation, or apoptosis. During these processes, many cellular factors and signaling pathways participate. PTEN is a ubiquitous dual-specificity phosphatase and functions by dephosphorylating target proteins or lipids, such as PIP3, a second messenger in the PI3K/AKT signaling pathway. Downregulation of PTEN expression or inhibiting its biologic activity improves heart function, promotes cardiomyocytes proliferation, reduces cardiac fibrosis as well as dilation, and inhibits apoptosis following ischemic stress such as myocardial infarction. Inactivation of PTEN exhibits a potentially beneficial therapeutic effects against cardiac diseases. In this review, we summarize various strategies for PTEN inactivation and highlight the roles of PTEN-less in regulating cardiomyocytes during cardiac development and stress responses.
Collapse
Affiliation(s)
- Tian Liang
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Feng Gao
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Jinghai Chen
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China. .,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.
| |
Collapse
|
4
|
Fanni D, Gerosa C, Loddo C, Castagnola M, Fanos V, Zaffanello M, Faa G. Stem/progenitor cells in fetuses and newborns: overview of immunohistochemical markers. CELL REGENERATION (LONDON, ENGLAND) 2021; 10:22. [PMID: 34219203 PMCID: PMC8255250 DOI: 10.1186/s13619-021-00084-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 04/12/2021] [Indexed: 12/26/2022]
Abstract
Microanatomy of the vast majority of human organs at birth is characterized by marked differences as compared to adult organs, regarding their architecture and the cell types detectable at histology. In preterm neonates, these differences are even more evident, due to the lower level of organ maturation and to ongoing cell differentiation. One of the most remarkable finding in preterm tissues is the presence of huge amounts of stem/progenitor cells in multiple organs, including kidney, brain, heart, adrenals, and lungs. In other organs, such as liver, the completely different burden of cell types in preterm infants is mainly related to the different function of the liver during gestation, mainly focused on hematopoiesis, a function that is taken by bone marrow after birth. Our preliminary studies showed that the antigens expressed by stem/progenitors differ significantly from one organ to the next. Moreover, within each developing human tissue, reactivity for different stem cell markers also changes during gestation, according with the multiple differentiation steps encountered by each progenitor during development. A better knowledge of stem/progenitor cells of preterms will allow neonatologists to boost preterm organ maturation, favoring the differentiation of the multiple cells types that characterize each organ in at term neonates.
Collapse
Affiliation(s)
- D Fanni
- Division of Pathology, University Hospital San Giovanni Di Dio, via Ospedale, 54, Cagliari, Italy.,Department of Biology, College of Science and Technology, Temple University, Phidelphia, USA
| | - C Gerosa
- Division of Pathology, University Hospital San Giovanni Di Dio, via Ospedale, 54, Cagliari, Italy.,Department of Biology, College of Science and Technology, Temple University, Phidelphia, USA
| | - C Loddo
- Neonatal Intensive Care Unit, Department of Surgical Sciences, University of Cagliari, Cagliari, Italy
| | - M Castagnola
- Laboratory of Biochemistry and Metabolomics, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - V Fanos
- Neonatal Intensive Care Unit, Department of Surgical Sciences, University of Cagliari, Cagliari, Italy
| | - M Zaffanello
- Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, Piazzale Stefani, 1, I-37126, Verona, Italy.
| | - G Faa
- Division of Pathology, University Hospital San Giovanni Di Dio, via Ospedale, 54, Cagliari, Italy.,Department of Biology, College of Science and Technology, Temple University, Phidelphia, USA
| |
Collapse
|
5
|
Liu C, Wang L, Wang X, Hou X. A complete heart regeneration model with inflammation as a key component. Exp Anim 2021; 70:479-487. [PMID: 34135270 PMCID: PMC8614014 DOI: 10.1538/expanim.20-0191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The neonatal mice myocardial infarction (MI) has been established as one of the heart regeneration models. However, the role of inflammation in this model is still unclear. We sought to systematically evaluate this model and explore the role of inflammation in it. Postnatal day 1 (P1) or day 7 (P7) mice were conducted left anterior descending coronary artery (LAD) ligation. Cardiac damage, repair, and regeneration were examined by histology and echocardiography. Inflammation was detected by heart section hematoxylin and eosin (HE) staining and tissue qPCR. Dexamethasone (Dex) was used to inhibit inflammation and its effects on heart regeneration were evaluated. Two days after P1 mice MI, cardiomyocytes in ischemia area died and heart function decreased. Then surrounding cardiomyocytes proliferated to repair the injury. At day 28 after MI, hearts were almost fully regenerated with a little fibrosis existed. In contrary, P7 mice MI resulted in thinning and fibrosis of the ventricular wall. Inflammation was induced by LAD ligation after P1 mice MI and dynamic changed during the process. Inhibition of inflammation by Dex impaired heart regeneration. These demonstrated that cardiomyocytes death and heart regeneration occurred in this model and inflammation might play a crucial role in it. Modulating inflammation may provide a promising therapeutic strategy to support heart regeneration.
Collapse
Affiliation(s)
- Chang Liu
- Center for Cardiac Intensive Care, Beijing Anzhen Hospital, Capital Medical University.,Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Liangshan Wang
- Center for Cardiac Intensive Care, Beijing Anzhen Hospital, Capital Medical University
| | - Xianpei Wang
- Department of Cardiology, People's Hospital of Zhengzhou University (Henan Provincial People's Hospital), Fuwai Central China Cardiovascular Hospital
| | - Xiaotong Hou
- Center for Cardiac Intensive Care, Beijing Anzhen Hospital, Capital Medical University
| |
Collapse
|
6
|
Chen W, Bian W, Zhou Y, Zhang J. Cardiac Fibroblasts and Myocardial Regeneration. Front Bioeng Biotechnol 2021; 9:599928. [PMID: 33842440 PMCID: PMC8026894 DOI: 10.3389/fbioe.2021.599928] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 03/05/2021] [Indexed: 12/15/2022] Open
Abstract
The billions of cardiomyocytes lost to acute myocardial infarction (MI) cannot be replaced by the limited regenerative capacity of adult mammalian hearts, and despite decades of research, there are still no clinically effective therapies for remuscularizing and restoring damaged myocardial tissue. Although the majority of the cardiac mass is composed of cardiomyocytes, cardiac fibroblasts (CFs) are one type of most numerous cells in the heart and the primary drivers of fibrosis, which prevents ventricular rupture immediately after MI but the fibrotic scar expansion and LV dilatation can eventually lead to heart failure. However, embryonic CFs produce cytokines that can activate proliferation in cultured cardiomyocytes, and the structural proteins produced by CFs may regulate cardiomyocyte cell-cycle activity by modulating the stiffness of the extracellular matrix (ECM). CFs can also be used to generate induced-pluripotent stem cells and induced cardiac progenitor cells, both of which can differentiate into cardiomyocytes and vascular cells, but cardiomyocytes appear to be more readily differentiated from iPSCs that have been reprogrammed from CFs than from other cell types. Furthermore, the results from recent studies suggest that cultured CFs, as well as the CFs present in infarcted hearts, can be reprogrammed directly into cardiomyocytes. This finding is very exciting as should we be able to successfully increase the efficiency of this reprogramming, we could remuscularize the injured ventricle and restore the LV function without need the transplantation of cells or cell products. This review summarizes the role of CFs in the innate response to MI and how their phenotypic plasticity and involvement in ECM production might be manipulated to improve cardiac performance in injured hearts.
Collapse
Affiliation(s)
- Wangping Chen
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, United States.,Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Weihua Bian
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Yang Zhou
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jianyi Zhang
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
7
|
Programming of Cardiovascular Dysfunction by Postnatal Overfeeding in Rodents. Int J Mol Sci 2020; 21:ijms21249427. [PMID: 33322275 PMCID: PMC7763005 DOI: 10.3390/ijms21249427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 11/17/2022] Open
Abstract
Nutritional environment in the perinatal period has a great influence on health and diseases in adulthood. In rodents, litter size reduction reproduces the effects of postnatal overnutrition in infants and reveals that postnatal overfeeding (PNOF) not only permanently increases body weight but also affects the cardiovascular function in the short- and long-term. In addition to increased adiposity, the metabolic status of PNOF rodents is altered, with increased plasma insulin and leptin levels, associated with resistance to these hormones, changed profiles and levels of circulating lipids. PNOF animals present elevated arterial blood pressure with altered vascular responsiveness to vasoactive substances. The hearts of overfed rodents exhibit hypertrophy and elevated collagen content. PNOF also induces a disturbance of cardiac mitochondrial respiration and produces an imbalance between oxidants and antioxidants. A modification of the expression of crucial genes and epigenetic alterations is reported in hearts of PNOF animals. In vivo, a decreased ventricular contractile function is observed during adulthood in PNOF hearts. All these alterations ultimately lead to an increased sensitivity to cardiac pathologic challenges such as ischemia-reperfusion injury. Nevertheless, caloric restriction and physical exercise were shown to improve PNOF-induced cardiac dysfunction and metabolic abnormalities, drawing a path to the potential therapeutic correction of early nutritional programming.
Collapse
|
8
|
Brodehl A, Ebbinghaus H, Deutsch MA, Gummert J, Gärtner A, Ratnavadivel S, Milting H. Human Induced Pluripotent Stem-Cell-Derived Cardiomyocytes as Models for Genetic Cardiomyopathies. Int J Mol Sci 2019; 20:ijms20184381. [PMID: 31489928 PMCID: PMC6770343 DOI: 10.3390/ijms20184381] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/29/2019] [Accepted: 09/03/2019] [Indexed: 12/17/2022] Open
Abstract
In the last few decades, many pathogenic or likely pathogenic genetic mutations in over hundred different genes have been described for non-ischemic, genetic cardiomyopathies. However, the functional knowledge about most of these mutations is still limited because the generation of adequate animal models is time-consuming and challenging. Therefore, human induced pluripotent stem cells (iPSCs) carrying specific cardiomyopathy-associated mutations are a promising alternative. Since the original discovery that pluripotency can be artificially induced by the expression of different transcription factors, various patient-specific-induced pluripotent stem cell lines have been generated to model non-ischemic, genetic cardiomyopathies in vitro. In this review, we describe the genetic landscape of non-ischemic, genetic cardiomyopathies and give an overview about different human iPSC lines, which have been developed for the disease modeling of inherited cardiomyopathies. We summarize different methods and protocols for the general differentiation of human iPSCs into cardiomyocytes. In addition, we describe methods and technologies to investigate functionally human iPSC-derived cardiomyocytes. Furthermore, we summarize novel genome editing approaches for the genetic manipulation of human iPSCs. This review provides an overview about the genetic landscape of inherited cardiomyopathies with a focus on iPSC technology, which might be of interest for clinicians and basic scientists interested in genetic cardiomyopathies.
Collapse
Affiliation(s)
- Andreas Brodehl
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| | - Hans Ebbinghaus
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| | - Marcus-André Deutsch
- Department of Thoracic and Cardiovascular Surgery, Heart and Diabetes Center NRW, University Hospital Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| | - Jan Gummert
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
- Department of Thoracic and Cardiovascular Surgery, Heart and Diabetes Center NRW, University Hospital Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| | - Anna Gärtner
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| | - Sandra Ratnavadivel
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| | - Hendrik Milting
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| |
Collapse
|
9
|
Landim-Vieira M, Schipper JM, Pinto JR, Chase PB. Cardiomyocyte nuclearity and ploidy: when is double trouble? J Muscle Res Cell Motil 2019; 41:329-340. [PMID: 31317457 DOI: 10.1007/s10974-019-09545-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/12/2019] [Indexed: 01/23/2023]
Abstract
Considerable effort has gone into investigating mechanisms that underlie the developmental transition in which mammalian cardiomyocytes (CMs) switch from being able to proliferate during development, to essentially having lost that ability at maturity. This problem is interesting not only for scientific curiosity, but also for its clinical relevance because controlling the ability of mature CMs to replicate would provide a much-needed approach for restoring cardiac function in damaged hearts. In this review, we focus on the propensity of mature mammalian CMs to be multinucleated and polyploid, and the extent to which this may be necessary for normal physiology yet possibly disadvantageous in some circumstances. In this context, we explore whether the concept of the myonuclear domain (MND) in multinucleated skeletal muscle fibers might apply to cardiomyocytes, and whether cardio-MND size might be related to the transition of CMs to become multinuclear. Nuclei in CMs are almost certainly integrators of not only biochemical, but also-because of their central location within the myofibrils-mechanical information, and this multimodal, integrative function in adult CMs-involving molecules that have been extensively studied along with newly identified possibilities-could influence both gene expression as well as replication of the genome and the nuclei themselves.
Collapse
Affiliation(s)
- Maicon Landim-Vieira
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Joslyn M Schipper
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA.,Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - J Renato Pinto
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - P Bryant Chase
- Department of Biological Science, Florida State University, Tallahassee, FL, USA. .,Department of Biological Science, Florida State University, Biology Unit One Room 206, 81 Chieftain Way, Tallahassee, FL, 32306-4370, USA.
| |
Collapse
|
10
|
Unno K, Oikonomopoulos A, Fujikawa Y, Okuno Y, Narita S, Kato T, Hayashida R, Kondo K, Shibata R, Murohara T, Yang Y, Dangwal S, Sereti KI, Yiling Q, Johnson K, Jha A, Sosnovik DE, Fann Y, Liao R. Alteration in ventricular pressure stimulates cardiac repair and remodeling. J Mol Cell Cardiol 2019; 133:174-187. [PMID: 31220468 DOI: 10.1016/j.yjmcc.2019.06.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 06/07/2019] [Accepted: 06/11/2019] [Indexed: 12/29/2022]
Abstract
The mammalian heart undergoes complex structural and functional remodeling to compensate for stresses such as pressure overload. While studies suggest that, at best, the adult mammalian heart is capable of very limited regeneration arising from the proliferation of existing cardiomyocytes, how myocardial stress affects endogenous cardiac regeneration or repair is unknown. To define the relationship between left ventricular afterload and cardiac repair, we induced left ventricle pressure overload in adult mice by constriction of the ascending aorta (AAC). One week following AAC, we normalized ventricular afterload in a subset of animals through removal of the aortic constriction (de-AAC). Subsequent monitoring of cardiomyocyte cell cycle activity via thymidine analog labeling revealed that an acute increase in ventricular afterload induced cardiomyocyte proliferation. Intriguingly, a release in ventricular overload (de-AAC) further increases cardiomyocyte proliferation. Following both AAC and de-AAC, thymidine analog-positive cardiomyocytes exhibited characteristics of newly generated cardiomyocytes, including single diploid nuclei and reduced cell size as compared to age-matched, sham-operated adult mouse myocytes. Notably, those smaller cardiomyocytes frequently resided alongside one another, consistent with local stimulation of cellular proliferation. Collectively, our data demonstrate that adult cardiomyocyte proliferation can be locally stimulated by an acute increase or decrease of ventricular pressure, and this mode of stimulation can be harnessed to promote cardiac repair.
Collapse
Affiliation(s)
- Kazumasa Unno
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States of America; Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Angelos Oikonomopoulos
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States of America; Cardiovascular Research Institute, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Yusuke Fujikawa
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yusuke Okuno
- Deparment of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Singo Narita
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomohiro Kato
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ryo Hayashida
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuhisa Kondo
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Rei Shibata
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yanfei Yang
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Seema Dangwal
- Cardiovascular Research Institute, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Konstantina-Ioanna Sereti
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States of America; Department of Molecular Biology, Genentech, CA, United States of America
| | - Qiu Yiling
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Kory Johnson
- Bioinformatics Section, DIR, ITP, NINDS, NIH, Bethesda, MD, United States of America
| | - Alokkumar Jha
- Insight Center for Data Analytics, National University of Ireland, Galway, Ireland
| | - David E Sosnovik
- Harvard Medical School, Program in Cardiovascular Imaging, MGH-Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States of America
| | - Yang Fann
- Bioinformatics Section, DIR, ITP, NINDS, NIH, Bethesda, MD, United States of America
| | - Ronglih Liao
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States of America; Cardiovascular Research Institute, Stanford University School of Medicine, Stanford, CA, United States of America.
| |
Collapse
|
11
|
Robich MP, Ryzhov S, Sawyer DB. Successful rebuilding after disaster, even in the heart, starts with infrastructure. J Thorac Dis 2019; 10:S4165-S4167. [PMID: 30631583 DOI: 10.21037/jtd.2018.10.95] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Michael P Robich
- Maine Medical Center, Cardiovascular Institute, Portland, ME, USA.,Maine Medical Center Research Institute, Scarborough, ME, USA
| | - Sergey Ryzhov
- Maine Medical Center, Cardiovascular Institute, Portland, ME, USA
| | - Douglas B Sawyer
- Maine Medical Center, Cardiovascular Institute, Portland, ME, USA.,Maine Medical Center Research Institute, Scarborough, ME, USA
| |
Collapse
|
12
|
Jacyniak K, Vickaryous MK. Constitutive cardiomyocyte proliferation in the leopard gecko (Eublepharis macularius
). J Morphol 2018; 279:1355-1367. [DOI: 10.1002/jmor.20850] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/14/2018] [Accepted: 05/19/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Kathy Jacyniak
- Department of Biomedical Sciences; Ontario Veterinary College, University of Guelph; Guelph Ontario Canada
| | - Matthew K. Vickaryous
- Department of Biomedical Sciences; Ontario Veterinary College, University of Guelph; Guelph Ontario Canada
| |
Collapse
|
13
|
Abstract
Death of adult cardiac myocytes and supportive tissues resulting from cardiovascular diseases such as myocardial infarction is the proximal driver of pathological ventricular remodeling that often culminates in heart failure. Unfortunately, no currently available therapeutic barring heart transplantation can directly replenish myocytes lost from the injured heart. For decades, the field has struggled to define the intrinsic capacity and cellular sources for endogenous myocyte turnover in pursuing more innovative therapeutic strategies aimed at regenerating the injured heart. Although controversy persists to this day as to the best therapeutic regenerative strategy to use, a growing consensus has been reached that the very limited capacity for new myocyte formation in the adult mammalian heart is because of proliferation of existing cardiac myocytes but not because of the activity of an endogenous progenitor cell source of some sort. Hence, future therapeutic approaches should take into consideration the fundamental biology of myocyte renewal in designing strategies to potentially replenish these cells in the injured heart.
Collapse
Affiliation(s)
| | - Jeffery D Molkentin
- From the Department of Pediatrics (R.J.V., J.D.M.)
- Howard Hughes Medical Institute (J.D.M.)
| | - Steven R Houser
- Cincinnati Children's Hospital Medical Center, OH; and the Lewis Katz School of Medicine, Cardiovascular Research Center, Temple University, Philadelphia, PA (S.R.H.)
| |
Collapse
|
14
|
Lara-Martínez LA, Gutiérrez-Villegas I, Arenas-Luna VM, Hernández-Gutierrez S. [Stem cells: searching predisposition to cardiac commitment by surface markers expression]. ARCHIVOS DE CARDIOLOGIA DE MEXICO 2018; 88:483-495. [PMID: 29311024 DOI: 10.1016/j.acmx.2017.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 11/30/2017] [Accepted: 12/01/2017] [Indexed: 11/19/2022] Open
Abstract
It is well-known that cardiovascular diseases are the leading cause of death worldwide, and represent an important economic burden to health systems. In an attempt to solve this problem, stem cell therapy has emerged as a therapeutic option. Within the last 20 years, a great variety of stem cells have been used in different myocardial infarction models. Up until now, the use of cardiac stem cells (CSCs) has seemed to be the best option, but the inaccessibility and scarcity of these cells make their use unreliable. Additionally, there is a high risk as they have to be obtained directly from the heart of the patient. Unlike CSCs, adult stem cells originating from bone marrow or adipose tissue, among others, appear to be an attractive option due to their easier accessibility and abundance, but particularly due to the probable existence of cardiac progenitors among their different sub-populations. In this review an analysis is made of the surface markers present in CSCs compared with other adult stem cells. This suggested the pre-existence of cells sharing specific surface markers with CSCs, a predictable immunophenotype present in some cells, although in low proportions, and with a potential of cardiac differentiation that could be similar to CSCs, thus increasing their therapeutic value. This study highlights new perspectives regarding MSCs that would enable some of these sub-populations to be differentiated at cardiac tissue level.
Collapse
Affiliation(s)
- Luis A Lara-Martínez
- Laboratorio de Biología Molecular, Escuela de Medicina, Universidad Panamericana, Ciudad de México, México
| | - Ingrid Gutiérrez-Villegas
- Laboratorio de Biología Molecular, Escuela de Medicina, Universidad Panamericana, Ciudad de México, México
| | - Victor M Arenas-Luna
- Laboratorio de Biología Molecular, Escuela de Medicina, Universidad Panamericana, Ciudad de México, México
| | | |
Collapse
|
15
|
Lee KN, Lu X, Nguyen C, Feng Q, Chidiac P. Cardiomyocyte specific overexpression of a 37 amino acid domain of regulator of G protein signalling 2 inhibits cardiac hypertrophy and improves function in response to pressure overload in mice. J Mol Cell Cardiol 2017. [PMID: 28641980 DOI: 10.1016/j.yjmcc.2017.06.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Regulator of G protein signalling 2 (RGS2) is known to play a protective role in maladaptive cardiac hypertrophy and heart failure via its ability to inhibit Gq- and Gs- mediated GPCR signalling. We previously demonstrated that RGS2 can also inhibit protein translation and can thereby attenuate cell growth. This G protein-independent inhibitory effect has been mapped to a 37 amino acid domain (RGS2eb) within RGS2 that binds to eukaryotic initiation factor 2B (eIF2B). When expressed in neonatal rat cardiomyocytes, RGS2eb attenuates both protein synthesis and hypertrophy induced by Gq- and Gs- activating agents. In the current study, we investigated the potential cardioprotective role of RGS2eb by determining whether RGS2eb transgenic (RGS2eb TG) mice with cardiomyocyte specific overexpression of RGS2eb show resistance to the development of hypertrophy in comparison to wild-type (WT) controls. Using transverse aortic constriction (TAC) in a pressure-overload hypertrophy model, we demonstrated that cardiac hypertrophy was inhibited in RGS2eb TG mice compared to WT controls following four weeks of TAC. Expression of the hypertrophic markers atrial natriuretic peptide (ANP) and β-myosin heavy chain (MHC-β) was also reduced in RGS2eb TG compared to WT TAC animals. Furthermore, cardiac function in RGS2eb TG TAC mice was significantly improved compared to WT TAC mice. Notably, cardiomyocyte cell size was significantly decreased in TG compared to WT TAC mice. These results suggest that RGS2 may limit pathological cardiac hypertrophy at least in part via the function of its eIF2B-binding domain.
Collapse
Affiliation(s)
- Katherine N Lee
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, N6A5C1, Canada
| | - Xiangru Lu
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, N6A5C1, Canada
| | - Chau Nguyen
- School of Pharmacy, D'Youville College, Buffalo, New York 14201, USA
| | - Qingping Feng
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, N6A5C1, Canada
| | - Peter Chidiac
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, N6A5C1, Canada.
| |
Collapse
|
16
|
Broughton KM, Sussman MA. Myocardial Regeneration for Humans ― Modifying Biology and Manipulating Evolution ―. Circ J 2017; 81:142-148. [DOI: 10.1253/circj.cj-16-1228] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kathleen M. Broughton
- San Diego State University Heart Institute and the Integrated Regenerative Research Institute
| | - Mark A. Sussman
- San Diego State University Heart Institute and the Integrated Regenerative Research Institute
| |
Collapse
|
17
|
Molecular Imaging for Comparison of Different Growth Factors on Bone Marrow-Derived Mesenchymal Stromal Cells' Survival and Proliferation In Vivo. BIOMED RESEARCH INTERNATIONAL 2016; 2016:1363902. [PMID: 27419126 PMCID: PMC4932172 DOI: 10.1155/2016/1363902] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 01/19/2016] [Accepted: 02/16/2016] [Indexed: 12/24/2022]
Abstract
Introduction. Bone marrow-derived mesenchymal stromal cells (BMSCs) have emerged as promising cell candidates but with poor survival after transplantation. This study was designed to investigate the efficacy of VEGF, bFGF, and IGF-1 on BMSCs' viability and proliferation both in vivo and in vitro using bioluminescence imaging (BLI). Methods. BMSCs were isolated from β-actin-Fluc+ transgenic FVB mice, which constitutively express firefly luciferase. Apoptosis was induced by hypoxia preconditioning for up to 24 h followed by flow cytometry and TUNEL assay. 106 BMSCs with/without growth factors were injected subcutaneously into wild type FVB mice's backs. Survival of BMSCs was longitudinally monitored using bioluminescence imaging (BLI) for 5 weeks. Protein expression of Akt, p-Akt, PARP, and caspase-3 was detected by Western blot. Results. Hypoxia-induced apoptosis was significantly attenuated by bFGF and IGF-1 compared with VEGF and control group in vitro (P < 0.05). When combined with matrigel, IGF-1 showed the most beneficial effects in protecting BMSCs from apoptosis in vivo. The phosphorylation of Akt had a higher ratio in the cells from IGF-1 group. Conclusion. IGF-1 could protect BMSCs from hypoxia-induced apoptosis through activation of p-Akt/Akt pathway.
Collapse
|
18
|
Stem Cell Banking and Its Impact on Cardiac Regenerative Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 951:163-178. [PMID: 27837563 DOI: 10.1007/978-3-319-45457-3_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Cardiovascular diseases, including heart failure, are the most frequent cause of death annually, even higher than any other pathologies. Specifically, patients who suffer from myocardial infarction may encounter adverse remodeling processes of the heart that can ultimately lead to heart failure. Prognosis of patients affected by heart failure is very poor with 5-year mortality close to 50 %. Despite the impressive progress in the clinical treatment of heart failure in recent years, heart transplantation is still required to avoid death as the result of the inexorable decline in cardiac function. Unfortunately, the availability of donor human hearts for transplantation largely fails to cover the number of potential recipient requests. From this urgent unmet clinical need the interest in stem cell applications for heart regeneration made its start, and has rapidly grown in the last decades. Indeed, the discovery and application of stem and progenitor cells as therapeutic agents has raised substantial interest with the objective of reversing these processes, and ultimately inducing cardiac regeneration. In this scenario, the role of biobanking may play a remarkable role to provide cells at the right time according to the patient's clinical needs, mostly for autologous use in the acute setting of myocardial infarction, largely reducing the time needed for cell preparation and expansion before administration.
Collapse
|
19
|
Cardiac Niche Influences the Direct Reprogramming of Canine Fibroblasts into Cardiomyocyte-Like Cells. Stem Cells Int 2015; 2016:4969430. [PMID: 26681949 PMCID: PMC4670879 DOI: 10.1155/2016/4969430] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 06/16/2015] [Indexed: 12/23/2022] Open
Abstract
The Duchenne and Becker muscular dystrophies are caused by mutation of dystrophin gene and primarily affect skeletal and cardiac muscles. Cardiac involvement in dystrophic GRMD dogs has been demonstrated by electrocardiographic studies with the onset of a progressive cardiomyopathy similar to the cardiac disease in DMD patients. In this respect, GRMD is a useful model to explore cardiac and skeletal muscle pathogenesis and for developing new therapeutic protocols. Here we describe a protocol to convert GRMD canine fibroblasts isolated from heart and skin into induced cardiac-like myocytes (ciCLMs). We used a mix of transcription factors (GATA4, HAND2, TBX5, and MEF2C), known to be able to differentiate mouse and human somatic cells into ciCLMs. Exogenous gene expression was obtained using four lentiviral vectors carrying transcription factor genes and different resistance genes. Our data demonstrate a direct switch from fibroblast into ciCLMs with no activation of early cardiac genes. ciCLMs were unable to contract spontaneously, suggesting, differently from mouse and human cells, an incomplete differentiation process. However, when transplanted in neonatal hearts of SCID/Beige mice, ciCLMs participate in cardiac myogenesis.
Collapse
|
20
|
Cao H, Kang BJ, Lee CA, Shung KK, Hsiai TK. Electrical and Mechanical Strategies to Enable Cardiac Repair and Regeneration. IEEE Rev Biomed Eng 2015; 8:114-24. [PMID: 25974948 DOI: 10.1109/rbme.2015.2431681] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Inadequate replacement of lost ventricular myocardium from myocardial infarction leads to heart failure. Investigating the regenerative capacity of mammalian hearts represents an emerging direction for tissue engineering and cell-based therapy. Recent advances in stem cells hold promise to restore cardiac functions. However, embryonic or induced pluripotent stem cell-derived cardiomyocytes lack functional phenotypes of the native myocardium, and transplanted tissues are not fully integrated for synchronized electrical and mechanical coupling with the host. In this context, this review highlights the mechanical and electrical strategies to promote cardiomyocyte maturation and integration, and to assess the functional phenotypes of regenerating myocardium. Simultaneous microelectrocardiogram and high-frequency ultrasound techniques will also be introduced to assess electrical and mechanical coupling for small animal models of heart regeneration.
Collapse
|
21
|
Kokhuis TJA, Skachkov I, Naaijkens BA, Juffermans LJM, Kamp O, Kooiman K, van der Steen AFW, Versluis M, de Jong N. Intravital microscopy of localized stem cell delivery using microbubbles and acoustic radiation force. Biotechnol Bioeng 2014; 112:220-7. [PMID: 25088405 DOI: 10.1002/bit.25337] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 06/13/2014] [Accepted: 07/07/2014] [Indexed: 01/11/2023]
Abstract
The use of stem cells for the repair of damaged cardiac tissue after a myocardial infarction holds great promise. However, a common finding in experimental studies is the low number of cells delivered at the area at risk. To improve the delivery, we are currently investigating a novel delivery platform in which stem cells are conjugated with targeted microbubbles, creating echogenic complexes dubbed StemBells. These StemBells vibrate in response to incoming ultrasound waves making them susceptible to acoustic radiation force. The acoustic force can then be employed to propel circulating StemBells from the centerline of the vessel to the wall, facilitating localized stem cell delivery. In this study, we investigate the feasibility of manipulating StemBells acoustically in vivo after injection using a chicken embryo model. Bare stem cells or unsaturated stem cells (<5 bubbles/cell) do not respond to ultrasound application (1 MHz, peak negative acoustical pressure P_ = 200 kPa, 10% duty cycle). However, stem cells which are fully saturated with targeted microbubbles (>30 bubbles/cell) can be propelled toward and arrested at the vessel wall. The mean translational velocities measured are 61 and 177 μm/s for P- = 200 and 450 kPa, respectively. This technique therefore offers potential for enhanced and well-controlled stem cell delivery for improved cardiac repair after a myocardial infarction.
Collapse
Affiliation(s)
- T J A Kokhuis
- Biomedical Engineering, Thorax Center, Erasmus Medical Center, Rotterdam, The Netherlands; Interuniversity Cardiology Institute of the Netherlands, Utrecht, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Dehne T, Adam X, Materne EM, Reimann MC, Krüger JP, Van Linthout S, Tschöpe C, Haag M, Sittinger M, Ringe J. A P19 and P19CL6 Cell-Based Complementary Approach to Determine Paracrine Effects in Cardiac Tissue Engineering. Cells Tissues Organs 2014; 199:24-36. [DOI: 10.1159/000362540] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2014] [Indexed: 11/19/2022] Open
|
23
|
Haubner BJ, Adamowicz-Brice M, Khadayate S, Tiefenthaler V, Metzler B, Aitman T, Penninger JM. Complete cardiac regeneration in a mouse model of myocardial infarction. Aging (Albany NY) 2013; 4:966-77. [PMID: 23425860 PMCID: PMC3615162 DOI: 10.18632/aging.100526] [Citation(s) in RCA: 192] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Cardiac remodeling and subsequent heart failure remain critical issues after myocardial infarction despite improved treatment and reperfusion strategies. Recently, complete cardiac regeneration has been demonstrated in fish and newborn mice following resection of the cardiac apex. However, it remained entirely unclear whether the mammalian heart can also completely regenerate following a complex cardiac ischemic injury. We established a protocol to induce a severe heart attack in one-day-old mice using left anterior descending artery (LAD) ligation. LAD ligation triggered substantial cardiac injury in the left ventricle defined by Caspase 3 activation and massive cell death. Ischemia-induced cardiomyocyte death was also visible on day 4 after LAD ligation. Remarkably, 7 days after the initial ischemic insult, we observed complete cardiac regeneration without any signs of tissue damage or scarring. This tissue regeneration translated into long-term normal heart functions as assessed by echocardiography. In contrast, LAD ligations in 7-day-old mice resulted in extensive scarring comparable to adult mice, indicating that the regenerative capacity for complete cardiac healing after heart attacks can be traced to the first week after birth. RNAseq analyses of hearts on day 1, day 3, and day 10 and comparing LAD-ligated and sham-operated mice surprisingly revealed a transcriptional programme of major changes in genes mediating mitosis and cell division between days 1, 3 and 10 postnatally and a very limited set of genes, including genes regulating cell cycle and extracellular matrix synthesis, being differentially regulated in the regenerating hearts. We present for the first time a mammalian model of complete cardiac regeneration following a severe ischemic cardiac injury. This novel model system provides the unique opportunity to uncover molecular and cellular pathways that can induce cardiac regeneration after ischemic injury, findings that one day could be translated to human heart attack patients.
Collapse
Affiliation(s)
- Bernhard Johannes Haubner
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, 1030 Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death worldwide. The use of stem cells to improve recovery of the injured heart after myocardial infarction (MI) is an important emerging therapeutic strategy. However, recent reviews of clinical trials of stem cell therapy for MI and ischemic heart disease recovery report that less than half of the trials found only small improvements in cardiac function. In clinical trials, bone marrow, peripheral blood, or umbilical cord blood cells were used as the source of stem cells delivered by intracoronary infusion. Some trials administered only a stem cell mobilizing agent that recruits endogenous sources of stem cells. Important challenges to improve the effectiveness of stem cell therapy for CVD include: (1) improved identification, recruitment, and expansion of autologous stem cells; (2) identification of mobilizing and homing agents that increase recruitment; and (3) development of strategies to improve stem cell survival and engraftment of both endogenous and exogenous sources of stem cells. This review is an overview of stem cell therapy for CVD and discusses the challenges these three areas present for maximum optimization of the efficacy of stem cell therapy for heart disease, and new strategies in progress.
Collapse
Affiliation(s)
- Jane Hoover-Plow
- Departmentof Cardiovascular Medicine, Joseph J Jacobs Center for Thrombosis and Vascular Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA.
| | | |
Collapse
|
25
|
Takehara N, Matsubara H. Cardiac regeneration therapy: connections to cardiac physiology. Am J Physiol Heart Circ Physiol 2011; 301:H2169-80. [PMID: 21963835 DOI: 10.1152/ajpheart.00768.2011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Without heart transplantation, a large number of patients with failing hearts worldwide face poor outcomes. By means of cardiomyocyte regeneration, cardiac regeneration therapy is emerging with great promise as a means for restoring loss of cardiac function. However, the limited success of clinical trials using bone marrow-derived cells and myoblasts with heterogeneous constituents, transplanted at a wide range of cell doses, has led to disagreement on the efficacy of cell therapy. It is therefore essential to reevaluate the evidence for the efficacy of cell-based cardiac regeneration therapy, focusing on targets, materials, and methodologies. Meanwhile, the revolutionary innovation of cardiac regeneration therapy is sorely needed to help the millions of people who suffer heart failure from acquired loss of cardiomyocytes. Cardiac regeneration has been used only in limited species or as a developing process in the rodent heart; now, the possibility of cardiomyocyte turnover in the human heart is being revisited. In the pursuit of this concept, the use of cardiac stem/progenitor stem cells in the cardiac niche must be focused to usher in a second era of cardiac regeneration therapy for the severely injured heart. In addition, tissue engineering and cellular reprogramming will advance the next era of treatment that will enable current cell-based therapy to progress to "real" cardiac regeneration therapy. Although many barriers remain, the prevention of refractory heart failure through cardiac regeneration is now becoming a realistic possibility.
Collapse
Affiliation(s)
- Naofumi Takehara
- Department of Cardiovascular Regeneration and Innovation, Asahikawa Medical University, Japan
| | | |
Collapse
|
26
|
Abstract
Heart failure plagues industrialized nations, killing more people than any other disease. It usually results from a deficiency of specialized cardiac muscle cells known as cardiomyocytes, and a robust therapy to regenerate lost myocardium could help millions of patients every year. Heart regeneration is well documented in amphibia and fish and in developing mammals. After birth, however, human heart regeneration becomes limited to very slow cardiomyocyte replacement. Several experimental strategies to remuscularize the injured heart using adult stem cells and pluripotent stem cells, cellular reprogramming and tissue engineering are in progress. Although many challenges remain, these interventions may eventually lead to better approaches to treat or prevent heart failure.
Collapse
Affiliation(s)
- Michael A Laflamme
- Department of Pathology, Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington 98109, USA
| | | |
Collapse
|
27
|
Shiojima I, Komuro I. Molecular and cellular basis for cardiac regeneration. Inflamm Regen 2011. [DOI: 10.2492/inflammregen.31.334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|