1
|
Murphy J, Tharumakunarajah R, Holden KA, King C, Lee AR, Rose K, Hawcutt DB, Sinha IP. Impact of indoor environment on children's pulmonary health. Expert Rev Respir Med 2023; 17:1249-1259. [PMID: 38240133 DOI: 10.1080/17476348.2024.2307561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/16/2024] [Indexed: 02/01/2024]
Abstract
INTRODUCTION A child's living environment has a significant impact on their respiratory health, with exposure to poor indoor air quality (IAQ) contributing to potentially lifelong respiratory morbidity. These effects occur throughout childhood, from the antenatal period through to adolescence. Children are particularly susceptible to the effects of environmental insults, and children living in socioeconomic deprivation globally are more likely to breathe air both indoors and outdoors, which poses an acute and long-term risk to their health. Adult respiratory health is, at least in part, determined by exposures and respiratory system development in childhood, starting in utero. AREAS COVERED This narrative review will discuss, from a global perspective, what contributes to poor IAQ in the child's home and school environment and the impact that indoor air pollution exposure has on respiratory health throughout the different stages of childhood. EXPERT OPINION All children have the right to a living and educational environment without the threat of pollution affecting their health. Action is needed at multiple levels to address this pressing issue to improve lifelong respiratory health. Such action should incorporate a child's rights-based approach, empowering children, and their families, to have access to clean air to breathe in their living environment.
Collapse
Affiliation(s)
- Jared Murphy
- Department of Women's and Children's Health, University of Liverpool, Liverpool, UK
| | | | - Karl A Holden
- Department of Women's and Children's Health, University of Liverpool, Liverpool, UK
- Lab to Life Child Health Data Centre, Alder Hey Children's Hospital, Liverpool, UK
| | - Charlotte King
- Department of Women's and Children's Health, University of Liverpool, Liverpool, UK
| | - Alice R Lee
- Department of Women's and Children's Health, University of Liverpool, Liverpool, UK
- Lab to Life Child Health Data Centre, Alder Hey Children's Hospital, Liverpool, UK
| | - Katie Rose
- Department of Respiratory Medicine, Alder Hey Children's NHS Foundation Trust, Liverpool, UK
| | - Daniel B Hawcutt
- Department of Women's and Children's Health, University of Liverpool, Liverpool, UK
- NIHR Alder Hey Clinical Research Facility, Alder Hey Children's NHS Foundation Trust, Liverpool, UK
| | - Ian P Sinha
- Department of Women's and Children's Health, University of Liverpool, Liverpool, UK
- Department of Respiratory Medicine, Alder Hey Children's NHS Foundation Trust, Liverpool, UK
| |
Collapse
|
2
|
Nauwelaerts SJD, De Cremer K, Bustos Sierra N, Gand M, Van Geel D, Delvoye M, Vandermassen E, Vercauteren J, Stroobants C, Bernard A, Saenen ND, Nawrot TS, Roosens NHC, De Keersmaecker SCJ. Assessment of the Feasibility of a Future Integrated Larger-Scale Epidemiological Study to Evaluate Health Risks of Air Pollution Episodes in Children. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19148531. [PMID: 35886381 PMCID: PMC9323067 DOI: 10.3390/ijerph19148531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/08/2022] [Accepted: 07/10/2022] [Indexed: 02/07/2023]
Abstract
Air pollution exposure can lead to exacerbation of respiratory disorders in children. Using sensitive biomarkers helps to assess the impact of air pollution on children’s respiratory health and combining protein, genetic and epigenetic biomarkers gives insights on their interrelatedness. Most studies do not contain such an integrated approach and investigate these biomarkers individually in blood, although its collection in children is challenging. Our study aimed at assessing the feasibility of conducting future integrated larger-scale studies evaluating respiratory health risks of air pollution episodes in children, based on a qualitative analysis of the technical and logistic aspects of a small-scale field study involving 42 children. This included the preparation, collection and storage of non-invasive samples (urine, saliva), the measurement of general and respiratory health parameters and the measurement of specific biomarkers (genetic, protein, epigenetic) of respiratory health and air pollution exposure. Bottlenecks were identified and modifications were proposed to expand this integrated study to a higher number of children, time points and locations. This would allow for non-invasive assessment of the impact of air pollution exposure on the respiratory health of children in future larger-scale studies, which is critical for the development of policies or measures at the population level.
Collapse
Affiliation(s)
- Sarah J. D. Nauwelaerts
- Transversal Activities in Applied Genomics, Sciensano, 1050 Brussels, Belgium; (S.J.D.N.); (M.G.); (D.V.G.); (M.D.); (E.V.); (N.H.C.R.)
- Centre for Toxicology and Applied Pharmacology, University Catholique de Louvain, 1200 Brussels, Belgium;
| | - Koen De Cremer
- Platform Chromatography and Mass Spectrometry, Sciensano, 1050 Brussels, Belgium;
| | | | - Mathieu Gand
- Transversal Activities in Applied Genomics, Sciensano, 1050 Brussels, Belgium; (S.J.D.N.); (M.G.); (D.V.G.); (M.D.); (E.V.); (N.H.C.R.)
| | - Dirk Van Geel
- Transversal Activities in Applied Genomics, Sciensano, 1050 Brussels, Belgium; (S.J.D.N.); (M.G.); (D.V.G.); (M.D.); (E.V.); (N.H.C.R.)
| | - Maud Delvoye
- Transversal Activities in Applied Genomics, Sciensano, 1050 Brussels, Belgium; (S.J.D.N.); (M.G.); (D.V.G.); (M.D.); (E.V.); (N.H.C.R.)
| | - Els Vandermassen
- Transversal Activities in Applied Genomics, Sciensano, 1050 Brussels, Belgium; (S.J.D.N.); (M.G.); (D.V.G.); (M.D.); (E.V.); (N.H.C.R.)
| | - Jordy Vercauteren
- Unit Air, Vlaamse Milieumaatschappij, 2000 Antwerpen, Belgium; (J.V.); (C.S.)
| | | | - Alfred Bernard
- Centre for Toxicology and Applied Pharmacology, University Catholique de Louvain, 1200 Brussels, Belgium;
| | - Nelly D. Saenen
- Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium; (N.D.S.); (T.S.N.)
| | - Tim S. Nawrot
- Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium; (N.D.S.); (T.S.N.)
- Department of Public Health and Primary Care, KU Leuven, 3000 Leuven, Belgium
| | - Nancy H. C. Roosens
- Transversal Activities in Applied Genomics, Sciensano, 1050 Brussels, Belgium; (S.J.D.N.); (M.G.); (D.V.G.); (M.D.); (E.V.); (N.H.C.R.)
| | - Sigrid C. J. De Keersmaecker
- Transversal Activities in Applied Genomics, Sciensano, 1050 Brussels, Belgium; (S.J.D.N.); (M.G.); (D.V.G.); (M.D.); (E.V.); (N.H.C.R.)
- Correspondence:
| |
Collapse
|
3
|
Floros J, Tsotakos N. Differential Regulation of Human Surfactant Protein A Genes, SFTPA1 and SFTPA2, and Their Corresponding Variants. Front Immunol 2021; 12:766719. [PMID: 34917085 PMCID: PMC8669794 DOI: 10.3389/fimmu.2021.766719] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/02/2021] [Indexed: 11/26/2022] Open
Abstract
The human SFTPA1 and SFTPA2 genes encode the surfactant protein A1 (SP-A1) and SP-A2, respectively, and they have been identified with significant genetic and epigenetic variability including sequence, deletion/insertions, and splice variants. The surfactant proteins, SP-A1 and SP-A2, and their corresponding variants play important roles in several processes of innate immunity as well in surfactant-related functions as reviewed elsewhere [1]. The levels of SP-A have been shown to differ among individuals both under baseline conditions and in response to various agents or disease states. Moreover, a number of agents have been shown to differentially regulate SFTPA1 and SFTPA2 transcripts. The focus in this review is on the differential regulation of SFTPA1 and SFTPA2 with primary focus on the role of 5′ and 3′ untranslated regions (UTRs) and flanking sequences on this differential regulation as well molecules that may mediate the differential regulation.
Collapse
Affiliation(s)
- Joanna Floros
- Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, United States.,Department of Obstetrics and Gynecology, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Nikolaos Tsotakos
- School of Science, Engineering, and Technology, The Pennsylvania State University - Harrisburg, Middletown, PA, United States
| |
Collapse
|
4
|
Gallo M, Street ME, Guerra F, Fanos V, Marcialis MA. A review of current knowledge on Pollution, Cigarette Smoking and COVID-19 diffusion and their relationship with inflammation. ACTA BIO-MEDICA : ATENEI PARMENSIS 2020; 91:e2020148. [PMID: 33525222 PMCID: PMC7927491 DOI: 10.23750/abm.v91i4.10263] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 01/08/2023]
Abstract
Coronavirus disease (COVID-19) is an infectious disease caused by the newly discovered coronavirus, Sars-Cov-2. This infection can cause mild to very severe respiratory and systemic illness mainly related with a cytokine storm. The epidemiology of COVID-19 is under continuous evolution, and studies are ongoing aiming at identifying the possible factors facilitating the diffusion of this infection. (www.actabiomedica.it)
Collapse
Affiliation(s)
- Manuela Gallo
- School of Pediatrics, University of Cagliari, Italy.
| | | | | | - Vassilios Fanos
- Department of Surgery, University of Cagliari, Italy; Neonatal Intensive Care Unit, AOU Cagliari, Italy.
| | | |
Collapse
|
5
|
Park CK, Kim SJ. Trends and Updated Statistics of Lung Cancer in Korea. Tuberc Respir Dis (Seoul) 2019; 82:175-177. [PMID: 30915782 PMCID: PMC6435935 DOI: 10.4046/trd.2019.0015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 03/04/2019] [Accepted: 03/08/2019] [Indexed: 12/31/2022] Open
Affiliation(s)
- Chan Kwon Park
- Division of Pulmonology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
- The Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seung Joon Kim
- Division of Pulmonology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
- The Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| |
Collapse
|
6
|
de Oliveira AAF, de Oliveira TF, Dias MF, Medeiros MHG, Di Mascio P, Veras M, Lemos M, Marcourakis T, Saldiva PHN, Loureiro APM. Genotoxic and epigenotoxic effects in mice exposed to concentrated ambient fine particulate matter (PM 2.5) from São Paulo city, Brazil. Part Fibre Toxicol 2018; 15:40. [PMID: 30340610 PMCID: PMC6194750 DOI: 10.1186/s12989-018-0276-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 10/03/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The Metropolitan Area of São Paulo has a unique composition of atmospheric pollutants, and positive correlations between exposure and the risk of diseases and mortality have been observed. Here we assessed the effects of ambient fine particulate matter (PM2.5) on genotoxic and global DNA methylation and hydroxymethylation changes, as well as the activities of antioxidant enzymes, in tissues of AJ mice exposed whole body to ambient air enriched in PM2.5, which was concentrated in a chamber near an avenue of intense traffic in São Paulo City, Brazil. RESULTS Mice exposed to concentrated ambient PM2.5 (1 h daily, 3 months) were compared to in situ ambient air exposed mice as the study control. The concentrated PM2.5 exposed group presented increased levels of the oxidized nucleoside 8-oxo-7,8-dihydro-2'-deoxyguanosine in lung and kidney DNA and increased levels of the etheno adducts 1,N6-etheno-2'-deoxyadenosine and 1,N2-etheno-2'-deoxyguanosine in kidney and liver DNA, respectively. Apart from the genotoxic effects, the exposure to PM2.5 led to decreased levels of the epigenetic mark 5-hydroxymethylcytosine (5-hmC) in lung and liver DNA. Changes in lung, liver, and erythrocyte antioxidant enzyme activities were also observed. Decreased glutathione reductase and increased superoxide dismutase (SOD) activities were observed in the lungs, while the liver presented increased glutathione S-transferase and decreased SOD activities. An increase in SOD activity was also observed in erythrocytes. These changes are consistent with the induction of local and systemic oxidative stress. CONCLUSIONS Mice exposed daily to PM2.5 at a concentration that mimics 24-h exposure to the mean concentration found in ambient air presented, after 3 months, increased levels of DNA lesions related to the occurrence of oxidative stress in the lungs, liver, and kidney, in parallel to decreased global levels of 5-hmC in lung and liver DNA. Genetic and epigenetic alterations induced by pollutants may affect the genes committed to cell cycle control, apoptosis, and cell differentiation, increasing the chance of cancer development, which merits further investigation.
Collapse
Affiliation(s)
- Antonio Anax Falcão de Oliveira
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Av. Prof. Lineu Prestes 580, Bloco 13 B, São Paulo, CEP 05508-000 Brazil
| | - Tiago Franco de Oliveira
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Av. Prof. Lineu Prestes 580, Bloco 13 B, São Paulo, CEP 05508-000 Brazil
- Present address: Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Rua Sarmento Leite 245, Porto Alegre, Rio Grande do Sul CEP 90050-170 Brazil
| | - Michelle Francini Dias
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Av. Prof. Lineu Prestes 580, Bloco 13 B, São Paulo, CEP 05508-000 Brazil
| | - Marisa Helena Gennari Medeiros
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, CEP 05508-000 Brazil
| | - Paolo Di Mascio
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, CEP 05508-000 Brazil
| | - Mariana Veras
- Laboratório de Poluição Atmosférica Experimental – LIM05, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, Av. Dr. Arnaldo 455, São Paulo, CEP 01246903 Brazil
| | - Miriam Lemos
- Laboratório de Poluição Atmosférica Experimental – LIM05, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, Av. Dr. Arnaldo 455, São Paulo, CEP 01246903 Brazil
| | - Tania Marcourakis
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Av. Prof. Lineu Prestes 580, Bloco 13 B, São Paulo, CEP 05508-000 Brazil
| | - Paulo Hilário Nascimento Saldiva
- Laboratório de Poluição Atmosférica Experimental – LIM05, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, Av. Dr. Arnaldo 455, São Paulo, CEP 01246903 Brazil
- Instituto de Estudos Avançados, Universidade de São Paulo, R. do Anfiteatro, 513, São Paulo, CEP 05508060 Brazil
| | - Ana Paula Melo Loureiro
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Av. Prof. Lineu Prestes 580, Bloco 13 B, São Paulo, CEP 05508-000 Brazil
| |
Collapse
|
7
|
Lin Z, Thorenoor N, Wu R, DiAngelo SL, Ye M, Thomas NJ, Liao X, Lin TR, Warren S, Floros J. Genetic Association of Pulmonary Surfactant Protein Genes, SFTPA1, SFTPA2, SFTPB, SFTPC, and SFTPD With Cystic Fibrosis. Front Immunol 2018; 9:2256. [PMID: 30333828 PMCID: PMC6175982 DOI: 10.3389/fimmu.2018.02256] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/11/2018] [Indexed: 01/03/2023] Open
Abstract
Surfactant proteins (SP) are involved in surfactant function and innate immunity in the human lung. Both lung function and innate immunity are altered in CF, and altered SP levels and genetic association are observed in Cystic Fibrosis (CF). We hypothesized that single nucleotide polymorphisms (SNPs) within the SP genes associate with CF or severity subgroups, either through single SNP or via SNP-SNP interactions between two SNPs of a given gene (intragenic) and/or between two genes (intergenic). We genotyped a total of 17 SP SNPs from 72 case-trio pedigree (SFTPA1 (5), SFTPA2 (4), SFTPB (4), SFTPC (2), and SFTPD (2)), and identified SP SNP associations by applying quantitative genetic principles. The results showed (a) Two SNPs, SFTPB rs7316 (p = 0.0083) and SFTPC rs1124 (p = 0.0154), each associated with CF. (b) Three intragenic SNP-SNP interactions, SFTPB (rs2077079, rs3024798), and SFTPA1 (rs1136451, rs1059057 and rs4253527), associated with CF. (c) A total of 34 intergenic SNP-SNP interactions among the 4 SP genes to be associated with CF. (d) No SNP-SNP interaction was observed between SFTPA1 or SFTPA2 and SFTPD. (e) Equal number of SNP-SNP interactions were observed between SFTPB and SFTPA1/SFTPA2 (n = 7) and SP-B and SFTPD (n = 7). (f) SFTPC exhibited significant SNP-SNP interactions with SFTPA1/SFTPA2 (n = 11), SFTPB (n = 4) and SFTPD (n = 3). (g) A single SFTPB SNP was associated with mild CF after Bonferroni correction, and several intergenic interactions that are associated (p < 0.01) with either mild or moderate/severe CF were observed. These collectively indicate that complex SNP-SNP interactions of the SP genes may contribute to the pulmonary disease in CF patients. We speculate that SPs may serve as modifiers for the varied progression of pulmonary disease in CF and/or its severity.
Collapse
Affiliation(s)
- Zhenwu Lin
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Nithyananda Thorenoor
- Department of Pediatrics, Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Pennsylvania State University, Hershey, PA, United States
| | - Rongling Wu
- Public Health Science, College of Medicine, Pennsylvania State University, Hershey, PA, United States
| | - Susan L. DiAngelo
- Department of Pediatrics, Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Pennsylvania State University, Hershey, PA, United States
| | - Meixia Ye
- Public Health Science, College of Medicine, Pennsylvania State University, Hershey, PA, United States
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Neal J. Thomas
- Department of Pediatrics, Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Pennsylvania State University, Hershey, PA, United States
| | - Xiaojie Liao
- Department of Pediatrics, Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Pennsylvania State University, Hershey, PA, United States
| | - Tony R. Lin
- Department of Pediatrics, Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Pennsylvania State University, Hershey, PA, United States
| | - Stuart Warren
- Department of Pediatrics, Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Pennsylvania State University, Hershey, PA, United States
| | - Joanna Floros
- Department of Pediatrics, Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Pennsylvania State University, Hershey, PA, United States
- Obstetrics and Gynecology, Pennsylvania State University College of Medicine, Hershey, PA, United States
| |
Collapse
|
8
|
Bae JM. Necessity of Epigenetic Epidemiology Studies on the Carcinogenesis of Lung Cancer in Never Smokers. J Prev Med Public Health 2018; 51:263-264. [PMID: 30286599 PMCID: PMC6182273 DOI: 10.3961/jpmph.18.076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/08/2018] [Indexed: 12/31/2022] Open
Abstract
Based on epidemiological and genomic characteristics, lung cancer in never smokers (LCNS) is a different disease from lung cancer in smokers. Based on current research, the main risk factor for LCNS may be air pollution. A recent case-control study in Koreans reported that nitrogen dioxide (NO2) may be a risk factor for LCNS. Additionally, a cohort study showed that exposure to NO2 was associated with significant hypomethylation. Thus, epigenetic epidemiology studies are needed in the near future to evaluate the carcinogenesis of LCNS according to chronic exposure to air pollution and/or viral infections.
Collapse
Affiliation(s)
- Jong-Myon Bae
- Department of Preventive Medicine, Jeju National University School of Medicine, Jeju, Korea
| |
Collapse
|
9
|
Sweileh WM, Wickramage K, Pottie K, Hui C, Roberts B, Sawalha AF, Zyoud SH. Bibliometric analysis of global migration health research in peer-reviewed literature (2000-2016). BMC Public Health 2018; 18:777. [PMID: 29925353 PMCID: PMC6011263 DOI: 10.1186/s12889-018-5689-x] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 06/11/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The health of migrants has become an important issue in global health and foreign policy. Assessing the current status of research activity and identifying gaps in global migration health (GMH) is an important step in mapping the evidence-base and on advocating health needs of migrants and mobile populations. The aim of this study was to analyze globally published peer-reviewed literature in GMH. METHODS A bibliometric analysis methodology was used. The Scopus database was used to retrieve documents in peer-reviewed journals in GMH for the study period from 2000 to 2016. A group of experts in GMH developed the needed keywords and validated the final search strategy. RESULTS The number of retrieved documents was 21,457. Approximately one third (6878; 32.1%) of the retrieved documents were published in the last three years of the study period. In total, 5451 (25.4%) documents were about refugees and asylum seekers, while 1328 (6.2%) were about migrant workers, 440 (2.1%) were about international students, 679 (3.2%) were about victims of human trafficking/smuggling, 26 (0.1%) were about patients' mobility across international borders, and the remaining documents were about unspecified categories of migrants. The majority of the retrieved documents (10,086; 47.0%) were in psychosocial and mental health domain, while 2945 (13.7%) documents were in infectious diseases, 6819 (31.8%) documents were in health policy and systems, 2759 (12.8%) documents were in maternal and reproductive health, and 1918 (8.9%) were in non-communicable diseases. The contribution of authors and institutions in Asian countries, Latin America, Africa, Middle East, and Eastern European countries was low. Literature in GMH represents the perspectives of high-income migrant destination countries. CONCLUSION Our heat map of research output shows that despite the ever-growing prominence of human mobility across the globe, and Sustainable Development Goals of leaving no one behind, research output on migrants' health is not consistent with the global migration pattern. A stronger evidence base is needed to enable authorities to make evidence-informed decisions on migration health policy and practice. Research collaboration and networks should be encouraged to prioritize research in GMH.
Collapse
Affiliation(s)
- Waleed M. Sweileh
- College of Medicine and Health Science, An-Najah National University, Nablus, Palestine
| | - Kolitha Wickramage
- International Organization for Migration, UN Migration Agency, Migration Health Division, Geneva, Switzerland
| | - Kevin Pottie
- Faculty of Medicine, University of Ottawa, Ottawa, CA Canada
| | - Charles Hui
- Faculty of Medicine, University of Ottawa, Ottawa, CA Canada
| | - Bayard Roberts
- London School of Hygiene and Tropical Medicine, London, UK
| | - Ansam F. Sawalha
- College of Medicine and Health Science, An-Najah National University, Nablus, Palestine
| | - Saed H. Zyoud
- College of Medicine and Health Science, An-Najah National University, Nablus, Palestine
| |
Collapse
|
10
|
Sweileh WM, Al-Jabi SW, Zyoud SH, Sawalha AF. Outdoor air pollution and respiratory health: a bibliometric analysis of publications in peer-reviewed journals (1900 - 2017). Multidiscip Respir Med 2018; 13:15. [PMID: 29881545 PMCID: PMC5984296 DOI: 10.1186/s40248-018-0128-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/18/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Outdoor air pollution is a major threat to global public health that needs responsible participation of researchers at all levels. Assessing research output is an important step in highlighting national and international contribution and collaboration in a certain field. Therefore, the aim of this study was to analyze globally-published literature in outdoor air pollution - related respiratory health. METHOD Outdoor air pollution documents related to respiratory health were retrieved from Scopus database. The study period was up to 2017. Mapping of author keywords was carried out using VOSviewer 1.6.6. RESULTS Search query yielded 3635 documents with an h-index of 137. There was a dramatic increase in the number of publications in the last decade of the study period. The most frequently encountered author keywords were: air pollution (835 occurrences), asthma (502 occurrences), particulate matter (198 occurrences), and children (203 occurrences). The United States of America ranked first (1082; 29.8%) followed by the United Kingdom (279; 7.7%) and Italy (198; 5.4%). Annual research productivity stratified by income and population size indicated that China ranked first (22.2) followed by the USA (18.8). Analysis of regional distribution of publications indicated that the Mediterranean, African, and South-East Asia regions had the least contribution. Harvard University (92; 2.5%) was the most active institution/organization followed the US Environmental Protection Agency (89; 2.4%). International collaboration was restricted to three regions: Northern America, Europe, and Asia. The top ten preferred journals were in the field of environmental health and respiratory health. Environmental Health Perspective was the most preferred journal for publishing documents in outdoor pollution in relation to respiratory health. CONCLUSION Research on the impact of outdoor air pollution on respiratory health had accelerated lately and is receiving a lot of interest. Global research networks that include countries with high level of pollution and limited resources are highly needed to create public opinion in favor of minimizing outdoor air pollution and investing in green technologies.
Collapse
Affiliation(s)
- Waleed M. Sweileh
- Division of Biomedical Sciences, Department of Physiology, Pharmacology and Toxicology, College of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Samah W. Al-Jabi
- Department of Clinical and Community Pharmacy, College of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Sa’ed H. Zyoud
- Department of Clinical and Community Pharmacy, College of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Ansam F. Sawalha
- Division of Biomedical Sciences, Department of Physiology, Pharmacology and Toxicology, College of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| |
Collapse
|
11
|
Ye Q, Fu JF, Mao JH, Shang SQ. Haze is a risk factor contributing to the rapid spread of respiratory syncytial virus in children. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:20178-20185. [PMID: 27439752 DOI: 10.1007/s11356-016-7228-6] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 07/11/2016] [Indexed: 05/26/2023]
Abstract
This study investigated whether respiratory syncytial virus (RSV) infection in children was associated with ambient temperature and air pollutants in Hangzhou, China. A distributed lag non-linear model (DLNM) was used to estimate the effects of daily meteorological data and air pollutants on the incidence of RSV infection among children. A total of 3650 childhood RSV infection cases were included in the study. The highest air pollutant concentrations were in January to May and October to December during the year. The yearly RSV-positive rate was 10.0 % among children with an average age of 4.3 months. The highest RSV-positive rate occurred among patients 0 to 3 months old. Children under 6.5 months old accounted for 80 % of the total patients infected by RSV. A negative correlation was found between ambient temperature and RSV infection, and it was strongest with minimum ambient temperature (r = -0.804, P < 0.001). There was a positive correlation between the infection rate and the particulate matter (PM) 2.5 (r = 0.446, P < 0.001), PM10 (r = 0.397, P < 0.001), SO2 (r = 0.389, P < 0.001), NO2 (r = 0.365, P < 0.001) and CO (r = 0.532, P < 0.001). The current study suggested that temperature was an important factor associated with RSV infection among children in Hangzhou. Air pollutants significantly increased the risk of RSV infection with dosage, lag and cumulative effects.
Collapse
Affiliation(s)
- Qing Ye
- Zhejiang Key Laboratory for Neonatal Diseases, The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Jun-Fen Fu
- Zhejiang Key Laboratory for Neonatal Diseases, The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Jian-Hua Mao
- Zhejiang Key Laboratory for Neonatal Diseases, The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Shi-Qiang Shang
- Zhejiang Key Laboratory for Neonatal Diseases, The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China.
- Clinical Laboratory, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.
| |
Collapse
|
12
|
Carreto-Binaghi LE, Aliouat EM, Taylor ML. Surfactant proteins, SP-A and SP-D, in respiratory fungal infections: their role in the inflammatory response. Respir Res 2016; 17:66. [PMID: 27250970 PMCID: PMC4888672 DOI: 10.1186/s12931-016-0385-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 05/25/2016] [Indexed: 12/20/2022] Open
Abstract
Pulmonary surfactant is a complex fluid that comprises phospholipids and four proteins (SP-A, SP-B, SP-C, and SP-D) with different biological functions. SP-B, SP-C, and SP-D are essential for the lungs’ surface tension function and for the organization, stability and metabolism of lung parenchyma. SP-A and SP-D, which are also known as pulmonary collectins, have an important function in the host’s lung immune response; they act as opsonins for different pathogens via a C-terminal carbohydrate recognition domain and enhance the attachment to phagocytic cells or show their own microbicidal activity by increasing the cellular membrane permeability. Interactions between the pulmonary collectins and bacteria or viruses have been extensively studied, but this is not the same for fungal pathogens. SP-A and SP-D bind glucan and mannose residues from fungal cell wall, but there is still a lack of information on their binding to other fungal carbohydrate residues. In addition, both their relation with immune cells for the clearance of these pathogens and the role of surfactant proteins’ regulation during respiratory fungal infections remain unknown. Here we highlight the relevant findings associated with SP-A and SP-D in those respiratory mycoses where the fungal infective propagules reach the lungs by the airways.
Collapse
Affiliation(s)
- Laura Elena Carreto-Binaghi
- Laboratorio de Inmunología de Hongos, Unidad de Micología, Departamento de Microbiología-Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM); Circuito Interior, Ciudad Universitaria, Av. Universidad 3000, México, D.F., 04510, Mexico
| | - El Moukhtar Aliouat
- Laboratoire Biologie et Diversité des Pathogènes Eucaryotes Emergents, CIIL Institut Pasteur de Lille, Bâtiment Guérin, 1 rue du Professeur Calmette, Lille, France
| | - Maria Lucia Taylor
- Laboratorio de Inmunología de Hongos, Unidad de Micología, Departamento de Microbiología-Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM); Circuito Interior, Ciudad Universitaria, Av. Universidad 3000, México, D.F., 04510, Mexico.
| |
Collapse
|
13
|
Aghilinejad M, Kabir-Mokamelkhah E, Nassiri-Kashani MH, Bahrami-Ahmadi A, Dehghani A. Assessment of Pulmonary Function Parameters and Respiratory Symptoms in Shipyard Workers of Asaluyeh City, Iran. TANAFFOS 2016; 15:108-111. [PMID: 27904543 PMCID: PMC5127612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND Workers in shipyard companies are exposed to different respiratory hazards. The present case-control study was designed to evaluate pulmonary function tests and respiratory symptoms among shipyard workers in Asaluyeh city in Southwest Iran. MATERIAL AND METHOD Between March and October 2015 we recruited participants from two separate populations: shipyard workers as cases and office workers from the same shipyard company, who are not exposed to the same respiratory hazards, as controls. History was obtained from all participants and they all underwent physical examination and spirometry. RESULTS Respiratory signs and symptoms were present in a significantly higher number of shipyard workers compared to the unexposed office workers. Similarly, there were significant spirometric differences between cases and controls. CONCLUSION It seems that workplace hazards play a more significant role than other factors such as air pollution in development of respiratory diseases, and future studies for investigating respiratory symptoms, pulmonary function parameters, biological monitoring and measurement of respiratory hazard need to be performed.
Collapse
Affiliation(s)
| | - Elaheh Kabir-Mokamelkhah
- Correspondence to: Kabir-Mokamelkhah E Address: Occupational Medicine Research Center (OMRC), Iran University of medical sciences and health services (IUMS); Tehran, Iran. Email address:
| | | | | | | |
Collapse
|
14
|
Grageda M, Silveyra P, Thomas NJ, DiAngelo SL, Floros J. DNA methylation profile and expression of surfactant protein A2 gene in lung cancer. Exp Lung Res 2014; 41:93-102. [PMID: 25514367 DOI: 10.3109/01902148.2014.976298] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Knowledge of the methylation profile of genes allow for the identification of biomarkers that may guide diagnosis and effective treatment of disease. Human surfactant protein A (SP-A) plays an important role in lung homeostasis and immunity, and is encoded by two genes (SFTPA1 and SFTPA2). The goal of this study was to identify differentially methylated CpG sites in the promoter region of the SFTPA2 gene in lung cancer tissue, and to determine the correlation between the promoter's methylation profile and gene expression. For this, we collected 28 pairs of cancerous human lung tissue and adjacent noncancerous (NC) lung tissue: 17 adenocarcinoma (AC), 9 squamous cell carcinoma (SCC), and 2 AC with SCC features, and we evaluated DNA methylation of the SFTPA2 promoter region by bisulfite conversion. Our results identified a higher methylation ratio in one CpG site of the SFTPA2 gene in cancerous tissue versus NC tissue (0.36 versus 0.11, p = 0.001). When assessing AC samples, we also found cancerous tissues associated with a higher methylation ratio (0.43 versus 0.10, p = 0.02). In the SCC group, although cancerous tissue showed a higher methylation ratio (0.22 versus 0.11), this difference was not statistically significant (p = 0.35). Expression of SFTPA2 mRNA and total SP-A protein was significantly lower in cancer tissue when compared to adjacent NC tissue (p < 0.001), and correlated with the hypermethylated status of an SFTPA2 CpG site in AC samples. The findings of this pilot study may hold promise for future use of SFTPA2 as a biomarker for the diagnosis of lung cancer.
Collapse
Affiliation(s)
- Melissa Grageda
- 1Pediatric Critical Care Division, Department of Pediatrics, Pennsylvania State Children's Hospital, The Pennsylvania State University College of Medicine , Hershey, PA , United States
| | | | | | | | | |
Collapse
|
15
|
Silveyra P, DiAngelo SL, Floros J. An 11-nt sequence polymorphism at the 3'UTR of human SFTPA1 and SFTPA2 gene variants differentially affect gene expression levels and miRNA regulation in cell culture. Am J Physiol Lung Cell Mol Physiol 2014; 307:L106-19. [PMID: 24793167 DOI: 10.1152/ajplung.00313.2013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Surfactant protein A (SP-A) plays a vital role in maintaining normal lung function and in host defense. Two genes encode SP-A in humans (SFTPA1, SFTPA2), and several gene variants have been identified for these. We have previously shown that sequence elements of SFTPA1 and SFTPA2 3' untranslated regions (UTRs) differentially affect translation efficiency in vitro. Polymorphisms at the 3'UTRs of mRNA variants may account for differential binding of miRNAs, a class of small noncoding RNAs that regulate gene expression. In this work, we generated 3'UTR reporter constructs of the SFTPA1 and SFTPA2 variants most frequently found in the population, as well as mutants of a previously described 11-nt indel element (refSNP rs368700152). Reporter constructs were transfected in NCI-H441 cells in the presence or absence of miRNA mimics, and reporter gene expression was analyzed. We found that human miRNA mir-767 negatively affected expression of constructs containing SFTPA1 and SFTPA2 variants, whereas mir-4507 affected only constructs with 3'UTRs of SFTPA1 variants 6A, 6A(3), and 6A(4) (not containing the 11-nt element). Three miRNAs (mir-183, mir-449b, and mir-612) inhibited expression of recombinants of SFTPA2 variants and the SFTPA1 variant 6A(2), all containing the 11-nt element. Similar results were obtained for SP-A expression when these miRNAs were transfected in Chinese hamster ovary cells expressing SFTPA1 or SFTPA2 variants or in NCI-H441 cells (genotype 1A(5)/1A(5)-6A(4)/6A(4)). Moreover, transfection with a specific antagomir (antagomir-183) reversed the effects of mir-183 on SP-A mRNA levels. Our results indicate that sequence variability at the 3'UTR of SP-A variants differentially affects miRNA regulation of gene expression.
Collapse
Affiliation(s)
- Patricia Silveyra
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, Department of Biochemistry and Molecular Biology; and
| | - Susan L DiAngelo
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics
| | - Joanna Floros
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, Department of Obstetrics and Gynecology, Penn State Hershey College of Medicine, Pennsylvania State University, Hershey, Pennsylvania
| |
Collapse
|
16
|
Clay CC, Maniar-Hew K, Gerriets JE, Wang TT, Postlethwait EM, Evans MJ, Fontaine JH, Miller LA. Early life ozone exposure results in dysregulated innate immune function and altered microRNA expression in airway epithelium. PLoS One 2014; 9:e90401. [PMID: 24594710 PMCID: PMC3942419 DOI: 10.1371/journal.pone.0090401] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 01/30/2014] [Indexed: 12/26/2022] Open
Abstract
Exposure to ozone has been associated with increased incidence of respiratory morbidity in humans; however the mechanism(s) behind the enhancement of susceptibility are unclear. We have previously reported that exposure to episodic ozone during postnatal development results in an attenuated peripheral blood cytokine response to lipopolysaccharide (LPS) that persists with maturity. As the lung is closely interfaced with the external environment, we hypothesized that the conducting airway epithelium of neonates may also be a target of immunomodulation by ozone. To test this hypothesis, we evaluated primary airway epithelial cell cultures derived from juvenile rhesus macaque monkeys with a prior history of episodic postnatal ozone exposure. Innate immune function was measured by expression of the proinflammatory cytokines IL-6 and IL-8 in primary cultures established following in vivo LPS challenge or, in response to in vitro LPS treatment. Postnatal ozone exposure resulted in significantly attenuated IL-6 mRNA and protein expression in primary cultures from juvenile animals; IL-8 mRNA was also significantly reduced. The effect of antecedent ozone exposure was modulated by in vivo LPS challenge, as primary cultures exhibited enhanced cytokine expression upon secondary in vitro LPS treatment. Assessment of potential IL-6-targeting microRNAs miR-149, miR-202, and miR-410 showed differential expression in primary cultures based upon animal exposure history. Functional assays revealed that miR-149 is capable of binding to the IL-6 3' UTR and decreasing IL-6 protein synthesis in airway epithelial cell lines. Cumulatively, our findings suggest that episodic ozone during early life contributes to the molecular programming of airway epithelium, such that memory from prior exposures is retained in the form of a dysregulated IL-6 and IL-8 response to LPS; differentially expressed microRNAs such as miR-149 may play a role in the persistent modulation of the epithelial innate immune response towards microbes in the mature lung.
Collapse
Affiliation(s)
- Candice C. Clay
- California National Primate Research Center, University of California Davis, Davis, California, United States of America
| | - Kinjal Maniar-Hew
- California National Primate Research Center, University of California Davis, Davis, California, United States of America
| | - Joan E. Gerriets
- California National Primate Research Center, University of California Davis, Davis, California, United States of America
| | - Theodore T. Wang
- California National Primate Research Center, University of California Davis, Davis, California, United States of America
| | - Edward M. Postlethwait
- Department of Environmental Health Sciences, School of Public Health, University of Alabama, Birmingham, Alabama, United States of America
| | - Michael J. Evans
- California National Primate Research Center, University of California Davis, Davis, California, United States of America
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Justin H. Fontaine
- California National Primate Research Center, University of California Davis, Davis, California, United States of America
| | - Lisa A. Miller
- California National Primate Research Center, University of California Davis, Davis, California, United States of America
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| |
Collapse
|
17
|
Silveyra P, Floros J. Genetic complexity of the human surfactant-associated proteins SP-A1 and SP-A2. Gene 2012; 531:126-32. [PMID: 23069847 DOI: 10.1016/j.gene.2012.09.111] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 09/08/2012] [Accepted: 09/29/2012] [Indexed: 01/08/2023]
Abstract
Pulmonary surfactant protein A (SP-A) plays a key role in innate lung host defense, in surfactant-related functions, and in parturition. In the course of evolution, the genetic complexity of SP-A has increased, particularly in the regulatory regions (i.e. promoter, untranslated regions). Although most species have a single SP-A gene, two genes encode SP-A in humans and primates (SFTPA1 and SFTPA2). This may account for the multiple functions attributed to human SP-A, as well as the regulatory complexity of its expression by a relatively diverse set of protein and non-protein cellular factors. The interplay between enhancer cis-acting DNA sequences and trans-acting proteins that recognize these DNA elements is essential for gene regulation, primarily at the transcription initiation level. Furthermore, regulation at the mRNA level is essential to ensure proper physiological levels of SP-A under different conditions. To date, numerous studies have shown significant complexity of the regulation of SP-A expression at different levels, including transcription, splicing, mRNA decay, and translation. A number of trans-acting factors have also been described to play a role in the control of SP-A expression. The aim of this report is to describe the genetic complexity of the SFTPA1 and SFTPA2 genes, as well as to review regulatory mechanisms that control SP-A expression in humans and other animal species.
Collapse
Affiliation(s)
- Patricia Silveyra
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | | |
Collapse
|