1
|
Seliga-Gąsior D, Sokól-Leszczyñska B, Krzysztoñ-Russjan J, Wierzbicka D, Stępieñ-Hołubczat K, Lewandowska P, Frankiewicz E, Cacko A, Leszczyñska B, Demkow U, Podsiadły E. Epidemiological Characteristics of Shiga Toxin-Producing Escherichia coli Responsible for Infections in the Polish Pediatric Population. Pol J Microbiol 2024; 73:177-187. [PMID: 38727736 PMCID: PMC11192175 DOI: 10.33073/pjm-2024-016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) are zoonotic pathogens causing hemorrhagic colitis and hemolytic uremic syndrome (HUS) in children and the elderly. Stool samples were collected from 180 children hospitalized in five pediatric centers in Poland in 2018-2022. Direct stx1/stx2 gene detection by PCR in feces and E. coli isolates was performed. Antibiotic susceptibility was tested according to EUCAST v.12. Randomly selected isolates were serotyped with O157 antiserum and genotyped by pulsed-field gel electrophoresis (PFGE). A total of 44 E. coli isolates were confirmed as STEC by PCR. Among them, 84.4% were positive for stx2, and equally 6,8% for only stx1 and both stx1 and stx2 genes. The stx1 gene was also found in one Citrobacter freundii isolate. E. coli serotype O157 was present in 97.6% of the isolates. STEC infections most often occurred between June-October with a peak in July and August (51%). The highest, 77.8% of STEC isolates were found in the 1-5 years old group. No extended-spectrum β-lactamases (ESBL) were found. Resistance only to amoxicillin/clavulanic acid (24.4%), piperacillin/tazobactam (3%), cefotaxime (6%), gentamicin (6%), ciprofloxacin (3%), azithromycin (3%), trimethoprim/sulfamethoxazole (24,2%) was detected. PFGE analysis showed 18 PFGE types with no clonal distribution. Eight isolates with A, B, and C PFGE types showed genetic relatedness in the type with no detection of transmission way of distribution. STEC strains pose a serious threat to human health, therefore demographic and epidemiological characteristics are crucial for their surveillance.
Collapse
Affiliation(s)
- Dominika Seliga-Gąsior
- Microbiological Laboratory, University Center for Laboratory Medicine, University Medical Center, Medical University of Warsaw, Warsaw, Poland
| | - Beata Sokól-Leszczyñska
- Microbiological Laboratory, University Center for Laboratory Medicine, University Medical Center, Medical University of Warsaw, Warsaw, Poland
- Department of Medical Microbiology, Medical University of Warsaw, Warsaw, Poland
| | - Jolanta Krzysztoñ-Russjan
- Microbiological Laboratory, University Center for Laboratory Medicine, University Medical Center, Medical University of Warsaw, Warsaw, Poland
| | - Diana Wierzbicka
- Microbiological Laboratory, University Center for Laboratory Medicine, University Medical Center, Medical University of Warsaw, Warsaw, Poland
| | | | - Paulina Lewandowska
- Microbiological Laboratory, University Center for Laboratory Medicine, University Medical Center, Medical University of Warsaw, Warsaw, Poland
| | - Ewa Frankiewicz
- Department of Medical Informatics and Telemedicine, Medical University of Warsaw, Warsaw, Poland
| | - Andrzej Cacko
- Department of Medical Informatics and Telemedicine, Medical University of Warsaw, Warsaw, Poland
| | - Beata Leszczyñska
- Department of Pediatrics and Nephrology, Medical University of Warsaw, Warsaw, Poland
| | - Urszula Demkow
- Department of Laboratory Medicine and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, Poland
| | - Edyta Podsiadły
- Microbiological Laboratory, University Center for Laboratory Medicine, University Medical Center, Medical University of Warsaw, Warsaw, Poland
- Department of Dental Microbiology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
2
|
Han N, Peng X, Zhang T, Qiang Y, Li X, Zhang W. Rapid turnover and short-term blooms of Escherichia coli in the human gut. J Bacteriol 2024; 206:e0023923. [PMID: 38099689 PMCID: PMC10810211 DOI: 10.1128/jb.00239-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/28/2023] [Indexed: 01/26/2024] Open
Abstract
Escherichia coli (E. coli) is a common microorganism that is widely present in the environment and closely related to human health. The extent of E. coli presence in the human gut has been a subject of ongoing debate. Through whole-genome shotgun metagenomic sequencing, our study revealed that E. coli exists in the human body at a low abundance (average abundance 1.21%), with occasional short-term bursts leading to temporary increases in abundance, with the highest recorded at 50.91%. Further investigations into the factors contributing to these short-term blooms of E. coli showed significant variations in strain types and genomes within fecal samples collected from the same individuals at different time points. Evolutionary tree analysis indicated that samples from different individuals crossed, suggesting a change in the dominant E. coli strains within the human gut. Therefore, it can be inferred that E. coli in the human body are more likely to be transient bacteria rather than permanent residents in the gut. The rapid rate of turnover among months (87.5% within a month) and short-term blooms of E. coli in the human body can establish "latent infections" of nonpathogenic strains in healthy individuals while also posing a potential risk of introducing pathogenic strains, thereby impacting human health. In summary, our study revealed the variation in E. coli abundance and strains within the human gut, influenced by geographic area and temporal factors. These findings contribute to a better understanding of the relationship between E. coli, the gut microbiota, and human health. IMPORTANCE Escherichia coli (E. coli) is a microorganism closely linked to human health, and its presence in the human gut has been a topic of debate. Our study, using whole-genome shotgun metagenomic sequencing, revealed that E. coli exists at a low abundance in the human body, with occasional short-term bursts leading to temporary increases. Strain and genome variations were observed within fecal samples from the same individuals at different time points, suggesting transient rather than permanent residence of E. coli in the gut. The rapid turnover rate and short-term blooms of E. coli can establish latent infections while also posing a risk of introducing pathogenic strains. These findings enhance our understanding of the relationship between E. coli, the gut microbiota, and human health.
Collapse
Affiliation(s)
- Na Han
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xianhui Peng
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Tingting Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yujun Qiang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiuwen Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wen Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
3
|
Sui X, Yang X, Luo M, Wang H, Liu Q, Sun H, Jin Y, Wu Y, Bai X, Xiong Y. Characteristics of Shiga Toxin-Producing Escherichia coli Circulating in Asymptomatic Food Handlers. Toxins (Basel) 2023; 15:640. [PMID: 37999503 PMCID: PMC10675304 DOI: 10.3390/toxins15110640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/22/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is a foodborne zoonotic pathogen that causes diarrhea, hemorrhagic colitis (HC), and hemolytic uremic syndrome (HUS) worldwide. Since the infection can be asymptomatic, the circulation of STEC in some asymptomatic carriers, especially in healthy-food-related professionals, is not yet well understood. In this study, a total of 3987 anal swab samples from asymptomatic food handlers were collected, and ten swabs recovered STEC strains (0.251%). Of the ten STEC isolates, seven serotypes and eight sequence types (ST) were determined using whole genome sequencing (WGS). Two stx1 subtypes (stx1a and stx1c) and four stx2 subtypes (stx2a, stx2b, stx2d, and stx2e) were detected. Seven different insertion sites were found in fourteen Stx prophages, and the dmsB and yfhL were the newly identified insertion sites. The ten strains showed the variable Stx transcription levels after the mitomycin C induction. The whole-genome phylogeny indicated that the strains from the asymptomatic food handlers were genetically distant from the strains of HUS patients. The STEC isolates circulating in asymptomatic carriers might pose a low potential to cause disease.
Collapse
Affiliation(s)
- Xinxia Sui
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Xi Yang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Ming Luo
- Yulin Center for Disease Control and Prevention, Yulin 537000, China
| | - Hua Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Qian Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Hui Sun
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yujuan Jin
- Longgang Center for Disease Control and Prevention, Shenzhen 518172, China
| | - Yannong Wu
- Yulin Center for Disease Control and Prevention, Yulin 537000, China
| | - Xiangning Bai
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
- Division of Laboratory Medicine, Oslo University Hospital, 0372 Oslo, Norway
| | - Yanwen Xiong
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| |
Collapse
|
4
|
Zhang SX, Wang JC, Li ZW, Zheng JX, Zhou WT, Yang GB, Yu YF, Wu XP, Lv S, Liu Q, Chen MX, Lu Y, Dou ZH, Zhang DW, Lv WW, Wang L, Lu ZH, Yang M, Zheng PY, Chen YL, Tian LG, Zhou XN. Impact factors of Blastocystis hominis infection in persons living with human immunodeficiency virus: a large-scale, multi-center observational study from China. Infect Dis Poverty 2023; 12:82. [PMID: 37697423 PMCID: PMC10494452 DOI: 10.1186/s40249-023-01137-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/02/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND Blastocystis hominis (Bh) is zoonotic parasitic pathogen with a high prevalent globally, causing opportunistic infections and diarrhea disease. Human immunodeficiency virus (HIV) infection disrupts the immune system by depleting CD4+ T lymphocyte (CD4+ T) cell counts, thereby increasing Bh infection risk among persons living with HIV (PLWH). However, the precise association between Bh infection risk and HIV-related biological markers and treatment processes remains poorly understood. Hence, the purpose of the study was to explore the association between Bh infection risk and CD4+ T cell counts, HIV viral load (VL), and duration of interruption in antiviral therapy among PLWH. METHODS A large-scale multi-center cross-sectional study was conducted in China from June 2020 to December 2022. The genetic presence of Bh in fecal samples was detected by real-time fluorescence quantitative polymerase chain reaction, the CD4+ T cell counts in venous blood was measured using flowcytometry, and the HIV VL in serum was quantified using fluorescence-based instruments. Restricted cubic spline (RCS) was applied to assess the non-linear association between Bh infection risk and CD4+ T cell counts, HIV VL, and duration of interruption in highly active antiretroviral therapy (HARRT). RESULTS A total of 1245 PLWH were enrolled in the study, the average age of PLWH was 43 years [interquartile range (IQR): 33, 52], with 452 (36.3%) being female, 50.4% (n = 628) had no immunosuppression (CD4+ T cell counts > 500 cells/μl), and 78.1% (n = 972) achieved full virological suppression (HIV VL < 50 copies/ml). Approximately 10.5% (n = 131) of PLWH had interruption. The prevalence of Bh was found to be 4.9% [95% confidence interval (CI): 3.8-6.4%] among PLWH. Significant nonlinear associations were observed between the Bh infection risk and CD4+ T cell counts (Pfor nonlinearity < 0.001, L-shaped), HIV VL (Pfor nonlinearity < 0.001, inverted U-shaped), and duration of interruption in HARRT (Pfor nonlinearity < 0.001, inverted U-shaped). CONCLUSIONS The study revealed that VL was a better predictor of Bh infection than CD4+ T cell counts. It is crucial to consider the simultaneous surveillance of HIV VL and CD4+ T cell counts in PLWH in the regions with high level of socioeconomic development. The integrated approach can offer more comprehensive and accurate understanding in the aspects of Bh infection and other opportunistic infections, the efficacy of therapeutic drugs, and the assessment of preventive and control strategies.
Collapse
Affiliation(s)
- Shun-Xian Zhang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research On Tropical Diseases, National Institute of Parasitic Diseases, Shanghai, 200025, China
- School of Global Health, Chinese Center for Tropical Diseases Research-Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ji-Chun Wang
- Department of Science and Technology, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Zhong-Wei Li
- Gansu Province People's Hospital, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Jin-Xin Zheng
- Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research On Tropical Diseases, National Institute of Parasitic Diseases, Shanghai, 200025, China
- School of Global Health, Chinese Center for Tropical Diseases Research-Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wen-Ting Zhou
- National Health Commission (NHC) Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Guo-Bing Yang
- Gansu Provincial Center for Disease Control and Prevention, Lanzhou, 730000, China
| | - Ying-Fang Yu
- Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research On Tropical Diseases, National Institute of Parasitic Diseases, Shanghai, 200025, China
- School of Global Health, Chinese Center for Tropical Diseases Research-Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiu-Ping Wu
- Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research On Tropical Diseases, National Institute of Parasitic Diseases, Shanghai, 200025, China
- School of Global Health, Chinese Center for Tropical Diseases Research-Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shan Lv
- Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research On Tropical Diseases, National Institute of Parasitic Diseases, Shanghai, 200025, China
- School of Global Health, Chinese Center for Tropical Diseases Research-Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qin Liu
- Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research On Tropical Diseases, National Institute of Parasitic Diseases, Shanghai, 200025, China
- School of Global Health, Chinese Center for Tropical Diseases Research-Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Mu-Xin Chen
- Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research On Tropical Diseases, National Institute of Parasitic Diseases, Shanghai, 200025, China
- School of Global Health, Chinese Center for Tropical Diseases Research-Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yan Lu
- Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research On Tropical Diseases, National Institute of Parasitic Diseases, Shanghai, 200025, China
- School of Global Health, Chinese Center for Tropical Diseases Research-Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhi-Hui Dou
- National Center for AIDS/STD Control and Prevention, China Center for Disease Control and Prevention, Beijing, 102206, China
| | - Da-Wei Zhang
- The People's Liberation Army 302 Hospital, Beijing, 100039, China
| | - Wen-Wen Lv
- Clinical Research Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lei Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Zhen-Hui Lu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Ming Yang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Pei-Yong Zheng
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Yue-Lai Chen
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Li-Guang Tian
- Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research On Tropical Diseases, National Institute of Parasitic Diseases, Shanghai, 200025, China.
- School of Global Health, Chinese Center for Tropical Diseases Research-Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Xiao-Nong Zhou
- Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research On Tropical Diseases, National Institute of Parasitic Diseases, Shanghai, 200025, China.
- School of Global Health, Chinese Center for Tropical Diseases Research-Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|