1
|
Shen Z, Tang X, Zhang Y, Jia Y, Guo X, Guo X, Bao J, Xie X, Xing Y, Xing J, Tian S. Efficacy and safety of mesenchymal stem cell therapies for ischemic stroke: a systematic review and meta-analysis. Stem Cells Transl Med 2024; 13:886-897. [PMID: 39159204 PMCID: PMC11386217 DOI: 10.1093/stcltm/szae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 05/05/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND The efficacy and safety of mesenchymal stem cells (MSCs) in the treatment of ischemic stroke (IS) remains controversial. Therefore, this study aimed to evaluate the efficacy and safety of MSCs for IS. METHODS A literature search until May 23, 2023, was conducted using PubMed, EMBASE, the Cochrane Library, and the Web of Science to identify studies on stem cell therapy for IS. Interventional and observational clinical studies of MSCs in patients with IS were included, and the safety and efficacy were assessed. Two reviewers extracted data and assessed the quality independently. The meta-analysis was performed using RevMan5.4. RESULTS Fifteen randomized controlled trials (RCTs) and 15 non-randomized trials, including 1217 patients (624 and 593 in the intervention and control arms, respectively), were analyzed. MSCs significantly improved patients' activities of daily living according to the modified Rankin scale (mean difference [MD]: -0.26; 95% confidence interval [CI]: -0.50 to -0.01; P = .04) and National Institutes of Health Stroke Scale score (MD: -1.69; 95% CI: -2.66 to -0.73; P < .001) in RCTs. MSC treatment was associated with lower mortality rates in RCTs (risk ratio: 0.44; 95% CI: 0.28-0.69; P < .001). Fever and headache were among the most reported adverse effects. CONCLUSIONS Based on our review, MSC transplantation improves neurological deficits and daily activities in patients with IS. In the future, prospective studies with large sample sizes are needed for stem cell studies in ischemic stroke. This meta-analysis has been registered at PROSPERO with CRD42022347156.
Collapse
Affiliation(s)
- Zhiyuan Shen
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050030, People’s Republic of China
- Department of Neurology, Hebei Hospital, Xuanwu Hospital, Capital Medical University, Shijiazhuang, Hebei 050030, People’s Republic of China
- Neuromedical Technology Innovation Center of Hebei Province, Shijiazhuang, Hebei 050030, People’s Republic of China
| | - Xian Tang
- Department of Rehabilitation Medicine, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050030, People’s Republic of China
| | - Yaxin Zhang
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050030, People’s Republic of China
| | - Yicun Jia
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050030, People’s Republic of China
| | - Xin Guo
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050030, People’s Republic of China
- Department of Neurology, Hebei Hospital, Xuanwu Hospital, Capital Medical University, Shijiazhuang, Hebei 050030, People’s Republic of China
- Neuromedical Technology Innovation Center of Hebei Province, Shijiazhuang, Hebei 050030, People’s Republic of China
| | - Xiaosu Guo
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050030, People’s Republic of China
- Department of Neurology, Hebei Hospital, Xuanwu Hospital, Capital Medical University, Shijiazhuang, Hebei 050030, People’s Republic of China
- Neuromedical Technology Innovation Center of Hebei Province, Shijiazhuang, Hebei 050030, People’s Republic of China
| | - Junqiang Bao
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050030, People’s Republic of China
- Department of Neurology, Hebei Hospital, Xuanwu Hospital, Capital Medical University, Shijiazhuang, Hebei 050030, People’s Republic of China
- Neuromedical Technology Innovation Center of Hebei Province, Shijiazhuang, Hebei 050030, People’s Republic of China
| | - Xiongwei Xie
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050030, People’s Republic of China
- Department of Neurology, Hebei Hospital, Xuanwu Hospital, Capital Medical University, Shijiazhuang, Hebei 050030, People’s Republic of China
- Neuromedical Technology Innovation Center of Hebei Province, Shijiazhuang, Hebei 050030, People’s Republic of China
| | - Yuan Xing
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050030, People’s Republic of China
- Department of Neurology, Hebei Hospital, Xuanwu Hospital, Capital Medical University, Shijiazhuang, Hebei 050030, People’s Republic of China
- Neuromedical Technology Innovation Center of Hebei Province, Shijiazhuang, Hebei 050030, People’s Republic of China
| | - Jun Xing
- Department of Rehabilitation Medicine, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050030, People’s Republic of China
| | - Shujuan Tian
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050030, People’s Republic of China
- Department of Neurology, Hebei Hospital, Xuanwu Hospital, Capital Medical University, Shijiazhuang, Hebei 050030, People’s Republic of China
- Neuromedical Technology Innovation Center of Hebei Province, Shijiazhuang, Hebei 050030, People’s Republic of China
| |
Collapse
|
2
|
Xiong Y, Guo X, Gao W, Ke C, Huang X, Pan Z, Chen C, Zheng H, Hu W, Zheng F, Yao H. Efficacy and safety of stem cells in the treatment of ischemic stroke: A meta-analysis. Medicine (Baltimore) 2024; 103:e37414. [PMID: 38518043 PMCID: PMC10956950 DOI: 10.1097/md.0000000000037414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/07/2024] [Indexed: 03/24/2024] Open
Abstract
BACKGROUND Stem cell therapy on ischemic stroke has long been studied using animal experiments. The efficacy and safety of this treatment in ischemic stroke patients remain uncertain. METHODS We searched for all clinical randomized controlled trials published before October 2023, on PubMed, EMBASE, and the Cochrane Library using predetermined search terms, and performed a meta-analysis of the efficacy of stem cell therapy in ischemic stroke patients. RESULTS 13 studies that included 592 ischemic stroke patients were reviewed. The mRS (MD -0.32, 95% CI -0.64 to 0.00, I2 = 63%, P = .05), NIHSS (MD -1.63, 95% CI -2.69 to -0.57, I2 = 58%, P = .003), and BI (MD 14.22, 95% CI 3.95-24.48, I2 = 43%, P = .007) showed effective stem cell therapy. The mortality (OR 0.42, 95% CI 0.23-0.79, I2 = 0%, P = .007) showed improved prognosis and reduce mortality with stem cell therapy. CONCLUSION Stem cell therapy reduces mortality and improves the neurological prognosis of ischemic stroke patients. However, due to the different types of stem cells used and the limited data in the reported studies, the safety of clinical applications of stem cells in patients with ischemic stroke must be carefully evaluated. Future randomized controlled trials with large sample sizes from controlled cell sources are warranted to validate this finding.
Collapse
Affiliation(s)
- Yu Xiong
- Department of Neurosurgery, the Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Xiumei Guo
- Department of Neurosurgery, the Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Wen Gao
- Department of Neurosurgery, the Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Chuhan Ke
- Department of Neurosurgery, the Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Xinyue Huang
- Department of Neurosurgery, the Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Zhigang Pan
- Department of Neurosurgery, the Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Chunhui Chen
- Department of Neurosurgery, the Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Hanlin Zheng
- Department of Neurosurgery, the Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Weipeng Hu
- Department of Neurosurgery, the Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Feng Zheng
- Department of Neurosurgery, the Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Hao Yao
- Department of Neurosurgery, Jinjiang Municipal Hospital, Quanzhou, China
| |
Collapse
|
3
|
Saleh RO, Majeed AA, Margiana R, Alkadir OKA, Almalki SG, Ghildiyal P, Samusenkov V, Jabber NK, Mustafa YF, Elawady A. Therapeutic gene delivery by mesenchymal stem cell for brain ischemia damage: Focus on molecular mechanisms in ischemic stroke. Cell Biochem Funct 2024; 42:e3957. [PMID: 38468129 DOI: 10.1002/cbf.3957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/02/2024] [Accepted: 02/12/2024] [Indexed: 03/13/2024]
Abstract
Cerebral ischemic damage is prevalent and the second highest cause of death globally across patient populations; it is as a substantial reason of morbidity and mortality. Mesenchymal stromal cells (MSCs) have garnered significant interest as a potential treatment for cerebral ischemic damage, as shown in ischemic stroke, because of their potent intrinsic features, which include self-regeneration, immunomodulation, and multi-potency. Additionally, MSCs are easily obtained, isolated, and cultured. Despite this, there are a number of obstacles that hinder the effectiveness of MSC-based treatment, such as adverse microenvironmental conditions both in vivo and in vitro. To overcome these obstacles, the naïve MSC has undergone a number of modification processes to enhance its innate therapeutic qualities. Genetic modification and preconditioning modification (with medications, growth factors, and other substances) are the two main categories into which these modification techniques can be separated. This field has advanced significantly and is still attracting attention and innovation. We examine these cutting-edge methods for preserving and even improving the natural biological functions and therapeutic potential of MSCs in relation to adhesion, migration, homing to the target site, survival, and delayed premature senescence. We address the use of genetically altered MSC in stroke-induced damage. Future strategies for improving the therapeutic result and addressing the difficulties associated with MSC modification are also discussed.
Collapse
Affiliation(s)
- Raed Obaid Saleh
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq
| | - Ali A Majeed
- Department of Pathological Analyses, Faculty of Science, University of Kufa, Najaf, Iraq
| | - Ria Margiana
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Ola Kamal A Alkadir
- Department of Medical Engineering, Al-Nisour University College, Baghdad, Iraq
| | - Sami G Almalki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | - Pallavi Ghildiyal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Vadim Samusenkov
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russia
| | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| | - Ahmed Elawady
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
4
|
Afshar Hezarkhani L, Veysi K, Rahmani A, Salari N, Hasheminezhad R, Nasr V, Mohammadi M. Safety and Efficacy of Bone Marrow and Adipose Tissue-Derived Mesenchymal Stem Cells for the Treatment of Ischemic Stroke: A Systematic Review. Cardiol Rev 2024:00045415-990000000-00214. [PMID: 38358290 DOI: 10.1097/crd.0000000000000671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Neurological diseases, including ischemic stroke, are considered a big challenge for public health due to their high prevalence and lack of definitive and effective treatments. Addressing these issues requires innovative therapeutic approaches and among the limited methods available, stem cells have shown promise in improving central nervous system repair by enhancing myelin regeneration and neuronal recovery. To advance this field of research, this systematic review aims to assess the safety and effectiveness of mesenchymal stem cells (MSCs) derived from both bone marrow and adipose tissue for the treatment of ischemic stroke. This study conducted a systematic review in the electronic databases PubMed, Scopus, Web of Science, Embase, ScienceDirect, and Google Scholar to assess the efficacy and safety of MSCs generated from bone marrow and adipose tissue for the treatment of ischemic stroke. It was extracted without a time limit until April 2023. The studies were then transferred to the information management program (EndNote) and duplicates were eliminated. The remaining studies were then examined using the entry and exit criteria and the 3 stages of primary, secondary, and qualitative evaluation, and finally, the results of the final studies were extracted. According to the initial search in the desired databases, 1028 possible related articles were identified and transferred to the information management software (EndNote). After removing 390 duplicate studies, 608 studies were excluded based on inclusion and exclusion criteria. Finally, 37 final studies were included in the systematic review process. Based on the investigations, it was evident that the administration of MSCs derived from both bone marrow and adipose tissue holds significant promise as an effective and safe treatment approach for ischemic stroke. The results consistently showed acceptable outcomes in the studies and this evidence can be recommended for the clinical application of this treatment. Also, the findings of this study report that the use of adipose tissue and bone marrow MSCs in the treatment of ischemic stroke can be used as a practical method.
Collapse
Affiliation(s)
- Leila Afshar Hezarkhani
- From the Neuroscience Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kazhal Veysi
- Medical Biology Research Centre, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Adibeh Rahmani
- Center for Musculoskeletal Biomechanics and Regeneration, Julius Wolff Institut, Charité, Berlin, Germany
| | - Nader Salari
- Department of Biostatistics, School of Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Razie Hasheminezhad
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Vahideh Nasr
- Department of Neurology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Masoud Mohammadi
- Cellular and Molecular Research Center, Gerash University of Medical Sciences, Gerash, Iran
| |
Collapse
|
5
|
Santa Cruz-Pavlovich FJ, Bolaños-Chang AJ, Del Rio-Murillo XI, Aranda-Preciado GA, Razura-Ruiz EM, Santos A, Navarro-Partida J. Beyond Vision: An Overview of Regenerative Medicine and Its Current Applications in Ophthalmological Care. Cells 2024; 13:179. [PMID: 38247870 PMCID: PMC10814238 DOI: 10.3390/cells13020179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/23/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Regenerative medicine (RM) has emerged as a promising and revolutionary solution to address a range of unmet needs in healthcare, including ophthalmology. Moreover, RM takes advantage of the body's innate ability to repair and replace pathologically affected tissues. On the other hand, despite its immense promise, RM faces challenges such as ethical concerns, host-related immune responses, and the need for additional scientific validation, among others. The primary aim of this review is to present a high-level overview of current strategies in the domain of RM (cell therapy, exosomes, scaffolds, in vivo reprogramming, organoids, and interspecies chimerism), centering around the field of ophthalmology. A search conducted on clinicaltrials.gov unveiled a total of at least 209 interventional trials related to RM within the ophthalmological field. Among these trials, there were numerous early-phase studies, including phase I, I/II, II, II/III, and III trials. Many of these studies demonstrate potential in addressing previously challenging and degenerative eye conditions, spanning from posterior segment pathologies like Age-related Macular Degeneration and Retinitis Pigmentosa to anterior structure diseases such as Dry Eye Disease and Limbal Stem Cell Deficiency. Notably, these therapeutic approaches offer tailored solutions specific to the underlying causes of each pathology, thus allowing for the hopeful possibility of bringing forth a treatment for ocular diseases that previously seemed incurable and significantly enhancing patients' quality of life. As advancements in research and technology continue to unfold, future objectives should focus on ensuring the safety and prolonged viability of transplanted cells, devising efficient delivery techniques, etc.
Collapse
Affiliation(s)
- Francisco J. Santa Cruz-Pavlovich
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Mexico; (F.J.S.C.-P.); (A.J.B.-C.); (X.I.D.R.-M.); (E.M.R.-R.); (A.S.)
| | - Andres J. Bolaños-Chang
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Mexico; (F.J.S.C.-P.); (A.J.B.-C.); (X.I.D.R.-M.); (E.M.R.-R.); (A.S.)
| | - Ximena I. Del Rio-Murillo
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Mexico; (F.J.S.C.-P.); (A.J.B.-C.); (X.I.D.R.-M.); (E.M.R.-R.); (A.S.)
| | | | - Esmeralda M. Razura-Ruiz
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Mexico; (F.J.S.C.-P.); (A.J.B.-C.); (X.I.D.R.-M.); (E.M.R.-R.); (A.S.)
| | - Arturo Santos
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Mexico; (F.J.S.C.-P.); (A.J.B.-C.); (X.I.D.R.-M.); (E.M.R.-R.); (A.S.)
| | - Jose Navarro-Partida
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Mexico; (F.J.S.C.-P.); (A.J.B.-C.); (X.I.D.R.-M.); (E.M.R.-R.); (A.S.)
| |
Collapse
|
6
|
Hovhannisyan L, Khachatryan S, Khamperyan A, Matinyan S. A review and meta-analysis of stem cell therapies in stroke patients: effectiveness and safety evaluation. Neurol Sci 2024; 45:65-74. [PMID: 37733251 PMCID: PMC10761518 DOI: 10.1007/s10072-023-07032-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/21/2023] [Indexed: 09/22/2023]
Abstract
PURPOSE Stem cells have been extensively used during the last decade to improve clinical outcomes after stroke. The dramatic increase in trials in this field has led us to perform a systematic review and meta-analysis to understand the safety, effectiveness, and relative limitations of this type of intervention. METHOD This review summarizes the current evidence pooled from PubMed (Medline), EMBASE, EBSCOhost, http://clinicaltrials.gov , Scopus (Elsevier), Cochrane Central Register of Controlled Trials (CENTRAL), and Web of Science (Science Citation Index Expanded) databases for the use of stem cell therapies in stroke patients without combinations with other treatment modalities. The National Institutes of Health Stroke, modified Rankin Scales, and Barthel Index scores after external stem cell administration have been evaluated on the 3rd, 6th, and 12th months after treatment. The random effect analysis was performed using the Review Manager 5.4.1. The characteristics of stem cell sources and their adverse effects have been discussed as well. FINDINGS Although reasonably safe, the effectiveness evidence fluctuated to a large extent due to the heterogeneity of the clinical trials and the absence of a systematic approach. The stem cell sources and the administration window were not strongly associated with clinical outcomes. CONCLUSION Further studies should be conducted to understand the deep discrepancy between preclinical and clinical trials and to execute phase 3 clinical trials with robust control of study characteristics and outcomes.
Collapse
Affiliation(s)
- L Hovhannisyan
- MatinyanLab Foundation, 0096, Yerevan, Armenia
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, 3008, Bern, Switzerland
| | | | | | - S Matinyan
- MatinyanLab Foundation, 0096, Yerevan, Armenia.
- Faculty of Science, University of Basel, Basel, Switzerland.
| |
Collapse
|
7
|
Nguyen QT, Thanh LN, Hoang VT, Phan TTK, Heke M, Hoang DM. Bone Marrow-Derived Mononuclear Cells in the Treatment of Neurological Diseases: Knowns and Unknowns. Cell Mol Neurobiol 2023; 43:3211-3250. [PMID: 37356043 PMCID: PMC11410020 DOI: 10.1007/s10571-023-01377-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/14/2023] [Indexed: 06/27/2023]
Abstract
Bone marrow-derived mononuclear cells (BMMNCs) have been used for decades in preclinical and clinical studies to treat various neurological diseases. However, there is still a knowledge gap in the understanding of the underlying mechanisms of BMMNCs in the treatment of neurological diseases. In addition, prerequisite factors for the efficacy of BMMNC administration, such as the optimal route, dose, and number of administrations, remain unclear. In this review, we discuss known and unknown aspects of BMMNCs, including the cell harvesting, administration route and dose; mechanisms of action; and their applications in neurological diseases, including stroke, cerebral palsy, spinal cord injury, traumatic brain injury, amyotrophic lateral sclerosis, autism spectrum disorder, and epilepsy. Furthermore, recommendations on indications for BMMNC administration and the advantages and limitations of BMMNC applications for neurological diseases are discussed. BMMNCs in the treatment of neurological diseases. BMMNCs have been applied in several neurological diseases. Proposed mechanisms for the action of BMMNCs include homing, differentiation and paracrine effects (angiogenesis, neuroprotection, and anti-inflammation). Further studies should be performed to determine the optimal cell dose and administration route, the roles of BMMNC subtypes, and the indications for the use of BMMNCs in neurological conditions with and without genetic abnormalities.
Collapse
Affiliation(s)
- Quyen Thi Nguyen
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, 458 Minh Khai, Hai Ba Trung, Hanoi, 11622, Vietnam
| | - Liem Nguyen Thanh
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, 458 Minh Khai, Hai Ba Trung, Hanoi, 11622, Vietnam.
- College of Health Science, Vin University, Vinhomes Ocean Park, Gia Lam District, Hanoi, 12400, Vietnam.
- Vinmec International Hospital-Times City, Vinmec Healthcare System, 458 Minh Khai, Hanoi, 11622, Vietnam.
| | - Van T Hoang
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, 458 Minh Khai, Hai Ba Trung, Hanoi, 11622, Vietnam
| | - Trang T K Phan
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, 458 Minh Khai, Hai Ba Trung, Hanoi, 11622, Vietnam
| | - Michael Heke
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Duc M Hoang
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, 458 Minh Khai, Hai Ba Trung, Hanoi, 11622, Vietnam
| |
Collapse
|
8
|
Fauzi AA, Thamrin AMH, Permana AT, Ranuh IGMAR, Hidayati HB, Hamdan M, Wahyuhadi J, Suroto NS, Lestari P, Chandra PS. Comparison of the Administration Route of Stem Cell Therapy for Ischemic Stroke: A Systematic Review and Meta-Analysis of the Clinical Outcomes and Safety. J Clin Med 2023; 12:jcm12072735. [PMID: 37048818 PMCID: PMC10094955 DOI: 10.3390/jcm12072735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/06/2023] [Accepted: 04/04/2023] [Indexed: 04/09/2023] Open
Abstract
Stem cell treatment is emerging as an appealing alternative for stroke patients, but there still needs to be an agreement on the protocols in place, including the route of administration. This systematic review aimed to assess the efficacy and safety of the administration routes of stem cell treatment for ischemic stroke. A systematic review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. A comprehensive literature search was undertaken using the PubMed, Scopus, and Cochrane databases. A total of 21 publications on stem cell therapy for ischemic stroke were included. Efficacy outcomes were measured using the National Institutes of Health Stroke Scale (NIHSS), the modified Rankin Scale (mRS), and the Barthel index (BI). Intracerebral administration showed a better outcome than other routes, but a greater number of adverse events followed due to its invasiveness. Adverse events were shown to be related to the natural history of stroke not to the treatment. However, further investigation is required, since studies have yet to compare the different administration methods directly.
Collapse
Affiliation(s)
- Asra Al Fauzi
- Department of Neurosurgery, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo General Academic Hospital, Surabaya 60286, Indonesia
| | - Ahmad Muslim Hidayat Thamrin
- Department of Neurosurgery, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo General Academic Hospital, Surabaya 60286, Indonesia
| | - Andhika Tomy Permana
- Department of Neurosurgery, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo General Academic Hospital, Surabaya 60286, Indonesia
| | - I. G. M. Aswin R. Ranuh
- Department of Neurosurgery, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo General Academic Hospital, Surabaya 60286, Indonesia
| | - Hanik Badriyah Hidayati
- Department of Neurology, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo General Academic Hospital, Surabaya 60286, Indonesia
| | - Muhammad Hamdan
- Department of Neurology, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo General Academic Hospital, Surabaya 60286, Indonesia
| | - Joni Wahyuhadi
- Department of Neurosurgery, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo General Academic Hospital, Surabaya 60286, Indonesia
| | - Nur Setiawan Suroto
- Department of Neurosurgery, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo General Academic Hospital, Surabaya 60286, Indonesia
| | - Pudji Lestari
- Department of Public Health and Preventive Medicine, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo General Academic Hospital, Surabaya 60286, Indonesia
| | - Poodipedi Sarat Chandra
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi 110608, India
| |
Collapse
|
9
|
Achón Buil B, Tackenberg C, Rust R. Editing a gateway for cell therapy across the blood-brain barrier. Brain 2022; 146:823-841. [PMID: 36397727 PMCID: PMC9976985 DOI: 10.1093/brain/awac393] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 11/19/2022] Open
Abstract
Stem cell therapy has been shown to improve stroke outcomes in animal models and is currently advancing towards clinical practice. However, uncertainty remains regarding the optimal route for cell delivery to the injured brain. Local intracerebral injections are effective in precisely delivering cells into the stroke cavity but carry the risk of damaging adjacent healthy tissue. Systemic endovascular injections, meanwhile, are minimally invasive, but most injected cells do not cross CNS barriers and become mechanically trapped in peripheral organs. Although the blood-brain barrier and the blood-CSF barrier tightly limit the entrance of cells and molecules into the brain parenchyma, immune cells can cross these barriers especially under pathological conditions, such as stroke. Deciphering the cell surface signature and the molecular mechanisms underlying this pathophysiological process holds promise for improving the targeted delivery of systemic injected cells to the injured brain. In this review, we describe experimental approaches that have already been developed in which (i) cells are either engineered to express cell surface proteins mimicking infiltrating immune cells; or (ii) cell grafts are preconditioned with hypoxia or incubated with pharmacological agents or cytokines. Modified cell grafts can be complemented with strategies to temporarily increase the permeability of the blood-brain barrier. Although these approaches could significantly enhance homing of stem cells into the injured brain, cell entrapment in off-target organs remains a non-negligible risk. Recent developments in safety-switch systems, which enable the precise elimination of transplanted cells on the administration of a drug, represent a promising strategy for selectively removing stem cells stuck in untargeted organs. In sum, the techniques described in this review hold great potential to substantially improve efficacy and safety of future cell therapies in stroke and may be relevant to other brain diseases.
Collapse
Affiliation(s)
- Beatriz Achón Buil
- Institute for Regenerative Medicine, University of Zurich, 8952 Schlieren, Switzerland,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Christian Tackenberg
- Institute for Regenerative Medicine, University of Zurich, 8952 Schlieren, Switzerland,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Ruslan Rust
- Correspondence to: Ruslan Rust Institute for Regenerative Medicine Wagistrasse 12, 8952 Schlieren Zurich, Switzerland E-mail:
| |
Collapse
|
10
|
Tan N, Xin W, Huang M, Mao Y. Mesenchymal stem cell therapy for ischemic stroke: Novel insight into the crosstalk with immune cells. Front Neurol 2022; 13:1048113. [PMID: 36425795 PMCID: PMC9679024 DOI: 10.3389/fneur.2022.1048113] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/17/2022] [Indexed: 09/29/2023] Open
Abstract
Stroke, a cerebrovascular accident, is prevalent and the second highest cause of death globally across patient populations; it is as a significant cause of morbidity and mortality. Mesenchymal stem cell (MSC) transplantation is emerging as a promising treatment for alleviating neurological deficits, as indicated by a great number of animal and clinical studies. The potential of regulating the immune system is currently being explored as a therapeutic target after ischemic stroke. This study will discuss recent evidence that MSCs can harness the immune system by interacting with immune cells to boost neurologic recovery effectively. Moreover, a notion will be given to MSCs participating in multiple pathological processes, such as increasing cell survival angiogenesis and suppressing cell apoptosis and autophagy in several phases of ischemic stroke, consequently promoting neurological function recovery. We will conclude the review by highlighting the clinical opportunities for MSCs by reviewing the safety, feasibility, and efficacy of MSCs therapy.
Collapse
Affiliation(s)
- Nana Tan
- Department of Health Management, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenqiang Xin
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Min Huang
- Department of Health Management, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuling Mao
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
11
|
Li H, Wei J, Liu X, Zhang P, Lin J. Muse cells: ushering in a new era of stem cell-based therapy for stroke. Stem Cell Res Ther 2022; 13:421. [PMID: 35986359 PMCID: PMC9389783 DOI: 10.1186/s13287-022-03126-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 08/07/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractStem cell-based regenerative therapies have recently become promising and advanced for treating stroke. Mesenchymal stem cells (MSCs) and induced pluripotent stem cells (iPSCs) have received the most attention for treating stroke because of the outstanding paracrine function of MSCs and the three-germ-layer differentiation ability of iPSCs. However, the unsatisfactory homing ability, differentiation, integration, and survival time in vivo limit the effectiveness of MSCs in regenerative medicine. The inherent tumorigenic property of iPSCs renders complete differentiation necessary before transplantation, which is complicated and expensive and affects the consistency among cell batches. Multilineage differentiating stress-enduring (Muse) cells are natural pluripotent stem cells in the connective tissues of nearly every organ and thus are considered nontumorigenic. A single Muse cell can differentiate into all three-germ-layer, preferentially migrate to damaged sites after transplantation, survive in hostile environments, and spontaneously differentiate into tissue-compatible cells, all of which can compensate for the shortcomings of MSCs and iPSCs. This review summarizes the recent progress in understanding the biological properties of Muse cells and highlights the differences between Muse cells and other types of stem cells. Finally, we summarized the current research progress on the application of Muse cells on stroke and challenges from bench to bedside.
Collapse
|
12
|
Soares MBP, Gonçalves RGJ, Vasques JF, da Silva-Junior AJ, Gubert F, Santos GC, de Santana TA, Almeida Sampaio GL, Silva DN, Dominici M, Mendez-Otero R. Current Status of Mesenchymal Stem/Stromal Cells for Treatment of Neurological Diseases. Front Mol Neurosci 2022; 15:883378. [PMID: 35782379 PMCID: PMC9244712 DOI: 10.3389/fnmol.2022.883378] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Neurological disorders include a wide spectrum of clinical conditions affecting the central and peripheral nervous systems. For these conditions, which affect hundreds of millions of people worldwide, generally limited or no treatments are available, and cell-based therapies have been intensively investigated in preclinical and clinical studies. Among the available cell types, mesenchymal stem/stromal cells (MSCs) have been widely studied but as yet no cell-based treatment exists for neurological disease. We review current knowledge of the therapeutic potential of MSC-based therapies for neurological diseases, as well as possible mechanisms of action that may be explored to hasten the development of new and effective treatments. We also discuss the challenges for culture conditions, quality control, and the development of potency tests, aiming to generate more efficient cell therapy products for neurological disorders.
Collapse
Affiliation(s)
- Milena B. P. Soares
- Laboratório de Engenharia Tecidual e Imunofarmacologia, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (IGM-FIOCRUZ/BA), Salvador, Brazil
- Instituto SENAI de Sistemas Avançados de Saúde (CIMATEC ISI-SAS), Centro Universitário SENAI/CIMATEC, Salvador, Brazil
| | - Renata G. J. Gonçalves
- Laboratório de Neurobiologia Celular e Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa Redes de Pesquisa em Saúde no Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juliana F. Vasques
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Almir J. da Silva-Junior
- Laboratório de Neurobiologia Celular e Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa Redes de Pesquisa em Nanotecnologia no Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda Gubert
- Programa Redes de Pesquisa em Saúde no Estado do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Girlaine Café Santos
- Laboratório de Engenharia Tecidual e Imunofarmacologia, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (IGM-FIOCRUZ/BA), Salvador, Brazil
- Instituto SENAI de Sistemas Avançados de Saúde (CIMATEC ISI-SAS), Centro Universitário SENAI/CIMATEC, Salvador, Brazil
| | - Thaís Alves de Santana
- Laboratório de Engenharia Tecidual e Imunofarmacologia, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (IGM-FIOCRUZ/BA), Salvador, Brazil
- Instituto SENAI de Sistemas Avançados de Saúde (CIMATEC ISI-SAS), Centro Universitário SENAI/CIMATEC, Salvador, Brazil
| | - Gabriela Louise Almeida Sampaio
- Laboratório de Engenharia Tecidual e Imunofarmacologia, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (IGM-FIOCRUZ/BA), Salvador, Brazil
- Instituto SENAI de Sistemas Avançados de Saúde (CIMATEC ISI-SAS), Centro Universitário SENAI/CIMATEC, Salvador, Brazil
| | | | - Massimo Dominici
- Laboratory of Cellular Therapy, Division of Oncology, University of Modena and Reggio Emilia (UNIMORE), Modena, Italy
| | - Rosalia Mendez-Otero
- Laboratório de Neurobiologia Celular e Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa Redes de Pesquisa em Saúde no Estado do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa Redes de Pesquisa em Nanotecnologia no Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
13
|
Permana AT, Bajamal AH, Parenrengi MA, Suroto NS, Lestari P, Fauzi AA. Clinical outcome and safety of stem cell therapy for ischemic stroke: A systematic review and meta-analysis. Surg Neurol Int 2022; 13:206. [PMID: 35673677 PMCID: PMC9168316 DOI: 10.25259/sni_1174_2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 04/13/2022] [Indexed: 11/09/2022] Open
Abstract
Background Several reports on stem cell administration have emerged proving it to be an ideal therapeutic approach for improving neurological functions in ischemic stroke patients. However, some studies also show disappointing results, with some reporting no statistically significant improvements among several different parameters. Several challenges also arise relating to safety and nonscientific aspects, such as ethics. Methods We performed a systematic review and meta-analysis to evaluate the effect of stem cell therapy on the clinical outcomes of ischemic stroke patients. A systematic review and meta-analysis were performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. A thorough literature search was conducted on PubMed, Scopus, and Cochrane databases. Articles were selected systematically based on the PRISMA protocol and reviewed completely. A total of 19 publications pertaining to stem cell therapy on the ischemic route were included and reviewed. Efficacy outcomes were measured with the National Institutes of Health Stroke Scale, modified Rankin Scale, or Barthel Index. Results The results of the meta-analysis indicate that the efficacy outcomes suggest favorable results after stem cell therapy, although not all study results are statistically significant. Stem cell therapy in stroke cases showed a better outcome than standard conservative therapy alone, although our analysis shows that many factors can influence this outcome, and significant effects can only be seen after several months. Conclusion The results of this study show promising and satisfying efficacy and a relatively low rate of serious adverse events.
Collapse
Affiliation(s)
- Andhika Tomy Permana
- Department of Neurosurgery Faculty of Medicine, Universitas Airlangga/Dr. Soetomo General Academic Hospital, Surabaya, East Java, Indonesia
| | - Abdul Hafid Bajamal
- Department of Neurosurgery Faculty of Medicine, Universitas Airlangga/Dr. Soetomo General Academic Hospital, Surabaya, East Java, Indonesia
| | - Muhammad Arifin Parenrengi
- Department of Neurosurgery Faculty of Medicine, Universitas Airlangga/Dr. Soetomo General Academic Hospital, Surabaya, East Java, Indonesia
| | - Nur Setiawan Suroto
- Department of Neurosurgery Faculty of Medicine, Universitas Airlangga/Dr. Soetomo General Academic Hospital, Surabaya, East Java, Indonesia
| | - Pudji Lestari
- Department of Public Health, Faculty of Medicine, Universitas Airlangga/Dr. Soetomo General Academic Hospital, Surabaya, East Java, Indonesia
| | - Asra Al Fauzi
- Department of Neurosurgery Faculty of Medicine, Universitas Airlangga/Dr. Soetomo General Academic Hospital, Surabaya, East Java, Indonesia
| |
Collapse
|
14
|
Satani N, Parsha K, Savitz SI. Enhancing Stroke Recovery With Cellular Therapies. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00062-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Lee J, Chang WH, Chung JW, Kim SK, Lee JS, Sohn SI, Kim YH, Bang OY. Efficacy of Intravenous Mesenchymal Stem Cells for Motor Recovery After Ischemic Stroke: A Neuroimaging Study. Stroke 2021; 53:20-28. [PMID: 34583525 DOI: 10.1161/strokeaha.121.034505] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND PURPOSE Stem cell-based therapy is a promising approach to repair brain damage after stroke. This study was conducted to investigate changes in neuroimaging measures using stem cell-based therapy in patients with ischemic stroke. METHODS In this prospective, open-label, randomized controlled trial with blinded outcome evaluation, patients with severe middle cerebral artery territory infarct were assigned to the autologous mesenchymal stem cell (MSC) treatment or control group. Of 54 patients who completed the intervention, 31 for the MSC and 13 for the control groups were included in this neuroimaging analysis. Motor function was assessed before the intervention and 90 days after randomization using the Fugl-Meyer assessment scale. Neuroimaging measures included fractional anisotropy values of the corticospinal tract and posterior limb of the internal capsule from diffusion tensor magnetic resonance imaging and strength of connectivity, efficiency, and density of the motor network from resting-state functional magnetic resonance imaging. RESULTS For motor function, the improvement ratio of the Fugl-Meyer assessment score was significantly higher in the MSC group compared with the control group. In neuroimaging, corticospinal tract and posterior limb of the internal capsule fractional anisotropy did not decrease in the MSC group but significantly decreased at 90 days after randomization in the control group. Interhemispheric connectivity and ipsilesional connectivity significantly increased in the MSC group. Change in interhemispheric connectivity showed a significant group difference. CONCLUSIONS Stem cell-based therapy can protect corticospinal tract against degeneration and enhance positive changes in network reorganization to facilitate motor recovery after stroke. REGISTRATION URL: https://www.clinicaltrials.gov; Unique identifier: NCT01716481.
Collapse
Affiliation(s)
- Jungsoo Lee
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea (J.L., W.H.C., Y.-H.K.)
| | - Won Hyuk Chang
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea (J.L., W.H.C., Y.-H.K.)
| | - Jong-Won Chung
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University, Seoul, South Korea (J.-W.C., S.J.K., O.Y.B.).,Translational and Stem Cell Research Laboratory on Stroke, Samsung Medical Center, Seoul, South Korea (J.-W.C., O.Y.B.)
| | - Soo-Kyoung Kim
- Department of Neurology, Gyeongsang National University School of Medicine, Jinju, South Korea (S.-K.K.)
| | - Jin Soo Lee
- Departments of Neurology, Ajou University Hospital, School of Medicine, Suwon, South Korea (J.S.L.)
| | - Sung-Il Sohn
- Department of Neurology, Keimyung University Dongsan Medical Center, Keimyung University School of Medicine, Daegu, South Korea (S.-I.S.)
| | - Yun-Hee Kim
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea (J.L., W.H.C., Y.-H.K.).,Department of Health Sciences and Technology, Department of Medical Device Management & Research, Department of Digital Health, SAIHST, Sungkyunkwan University, Seoul, South Korea (Y.-H.K.)
| | - Oh Young Bang
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University, Seoul, South Korea (J.-W.C., S.J.K., O.Y.B.).,Translational and Stem Cell Research Laboratory on Stroke, Samsung Medical Center, Seoul, South Korea (J.-W.C., O.Y.B.)
| | | |
Collapse
|
16
|
Xin WQ, Wei W, Pan YL, Cui BL, Yang XY, Bähr M, Doeppner TR. Modulating poststroke inflammatory mechanisms: Novel aspects of mesenchymal stem cells, extracellular vesicles and microglia. World J Stem Cells 2021; 13:1030-1048. [PMID: 34567423 PMCID: PMC8422926 DOI: 10.4252/wjsc.v13.i8.1030] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/25/2021] [Accepted: 08/06/2021] [Indexed: 02/06/2023] Open
Abstract
Inflammation plays an important role in the pathological process of ischemic stroke, and systemic inflammation affects patient prognosis. As resident immune cells in the brain, microglia are significantly involved in immune defense and tissue repair under various pathological conditions, including cerebral ischemia. Although the differentiation of M1 and M2 microglia is certainly oversimplified, changing the activation state of microglia appears to be an intriguing therapeutic strategy for cerebral ischemia. Recent evidence indicates that both mesenchymal stem cells (MSCs) and MSC-derived extracellular vesicles (EVs) regulate inflammation and modify tissue repair under preclinical stroke conditions. However, the precise mechanisms of these signaling pathways, especially in the context of the mutual interaction between MSCs or MSC-derived EVs and resident microglia, have not been sufficiently unveiled. Hence, this review summarizes the state-of-the-art knowledge on MSC- and MSC-EV-mediated regulation of microglial activity under ischemic stroke conditions with respect to various signaling pathways, including cytokines, neurotrophic factors, transcription factors, and microRNAs.
Collapse
Affiliation(s)
- Wen-Qiang Xin
- Department of Neurology, University Medical Center Göttingen, Göttingen 37075, Germany
| | - Wei Wei
- Department of Neurology, University Medical Center Göttingen, Göttingen 37075, Germany
| | - Yong-Li Pan
- Department of Neurology, University Medical Center Göttingen, Göttingen 37075, Germany
| | - Bao-Long Cui
- Department of Neurology, University Medical Center Göttingen, Göttingen 37075, Germany
| | - Xin-Yu Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Mathias Bähr
- Department of Neurology, University Medical Center Göttingen, Göttingen 37075, Germany
| | - Thorsten R Doeppner
- Department of Neurology, University Medical Center Göttingen, Göttingen 37075, Germany
| |
Collapse
|
17
|
Huang H, Mao G, Chen L, Sharma HS. Clinical neurorestorative cell therapies for stroke. PROGRESS IN BRAIN RESEARCH 2021; 265:231-247. [PMID: 34560922 DOI: 10.1016/bs.pbr.2021.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Clinical neurorestorative cell therapies for stroke have been explored for over 20 years. Majority cell therapies have shown neurorestorative effects for stroke on non-double-blind studies. In this review, we summarize types of cell transplantation, transplanted routes, therapeutic time windows, dosage, results of exploring trials or clinical studies, results of multicenter, double-blind or observing-blind, randomized, placebo-controlled clinical trials. The clinical application prospects of majority cell therapies for stroke need to prove their neurorestorative effects through trials with higher-level evidence-based medical evidence. Currently olfactory ensheathing cell is only one kind of cell to show neurorestorative effects through multicenter, double-blind, randomized, placebo-controlled clinical trials, which should be explored to optimize themselves effects and combination with others.
Collapse
Affiliation(s)
- Hongyun Huang
- Beijing Hongtianji Neuroscience Academy, Beijing, People Republic of China; Institute of Neurorestoratology, Third Medical Center of General Hospital of PLA, Beijing, People Republic of China.
| | - Gengsheng Mao
- Beijing Hongtianji Neuroscience Academy, Beijing, People Republic of China
| | - Lin Chen
- Department of Neurosurgery, Dongzhimen Hospital of Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
18
|
Rascón-Ramírez FJ, Esteban-García N, Barcia JA, Trondin A, Nombela C, Sánchez-Sánchez-Rojas L. Are We Ready for Cell Therapy to Treat Stroke? Front Cell Dev Biol 2021; 9:621645. [PMID: 34249901 PMCID: PMC8260969 DOI: 10.3389/fcell.2021.621645] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 04/06/2021] [Indexed: 01/01/2023] Open
Abstract
Clinical trials of cell therapies that target stroke started at the beginning of this century and they have experienced a significant boost in recent years as a result of promising data from basic research studies. The increase in the information available has paved the way to carry out more innovative and varied human studies. Efforts have focused on the search for a safe and effective treatment to stimulate neuro-regeneration in the brain and to reduce the sequelae of stroke in patients. Therefore, this review aims to evaluate the clinical trials using cell therapy to treat stroke published to date and assess their limitations. From 2000 to date, most of the published clinical trials have focused on phases I or II, and the vast majority of them demonstrate that stem cells are essentially safe to use when administered by different routes, with transient and mild adverse events that do not generally have severe consequences for health. In general, there is considerable variation in the trials in terms of statistical design, sample size, the cells used, the routes of administration, and the functional assessments (both at baseline and follow-up), making it difficult to compare the studies. From this general description, possibly the experimental protocol is the main element to improve in future studies. Establishing an adequate experimental and statistical design will be essential to obtain favorable and reliable results when conducting phase III clinical trials. Thus, it is necessary to standardize the criteria used in these clinical trials in order to aid comparison. Shortly, cell therapy will be a key approach in the treatment of stroke if adequate and comprehensive levels of recovery are to be achieved.
Collapse
Affiliation(s)
| | - Noelia Esteban-García
- Regenerative Medicine and Advanced Therapies Laboratory, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Cl nico San Carlos, Madrid, Spain
| | - Juan Antonio Barcia
- Department of Neurosurgery, Hospital Cl nico San Carlos, Madrid, Spain.,Department of Surgery, Universidad Complutense de Madrid, Madrid, Spain
| | - Albert Trondin
- Department of Neurosurgery, Hospital Cl nico San Carlos, Madrid, Spain
| | - Cristina Nombela
- Department of Biological and Health Psychology, Universidad Autónoma de Madrid, Madrid, Spain
| | | |
Collapse
|
19
|
Wang J, Zhao J, Li S. Research progress on the therapeutic effect of olfactory ensheathing cell transplantation on ischemic stroke. JOURNAL OF NEURORESTORATOLOGY 2021. [DOI: 10.26599/jnr.2021.9040012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Olfactory ensheathing cells (OECs) are a special type of glial cell in the olfactory system, which exhibit neuroprotective, immunomodulatory, and angiogenic effects. Although many studies have focused on the reversal of demyelination and axonal degeneration (during spinal cord injury) by OECs, few reports have focused on the ability of OECs to repair ischemic nerve injury. This article reviews the protective effects of OEC transplantation in ischemic stroke and provides a theoretical basis and new strategy for OEC transplantation in the treatment of ischemic stroke.
Collapse
|
20
|
Clinical Trials of Stem Cell Therapy for Cerebral Ischemic Stroke. Int J Mol Sci 2020; 21:ijms21197380. [PMID: 33036265 PMCID: PMC7582939 DOI: 10.3390/ijms21197380] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/24/2020] [Accepted: 10/02/2020] [Indexed: 12/17/2022] Open
Abstract
Despite recent developments in innovative treatment strategies, stroke remains one of the leading causes of death and disability worldwide. Stem cell therapy is currently attracting much attention due to its potential for exerting significant therapeutic effects on stroke patients. Various types of cells, including bone marrow mononuclear cells, bone marrow/adipose-derived stem/stromal cells, umbilical cord blood cells, neural stem cells, and olfactory ensheathing cells have enhanced neurological outcomes in animal stroke models. These stem cells have also been tested via clinical trials involving stroke patients. In this article, the authors review potential molecular mechanisms underlying neural recovery associated with stem cell treatment, as well as recent advances in stem cell therapy, with particular reference to clinical trials and future prospects for such therapy in treating stroke.
Collapse
|
21
|
Mangin G, Kubis N. Cell Therapy for Ischemic Stroke: How to Turn a Promising Preclinical Research into a Successful Clinical Story. Stem Cell Rev Rep 2020; 15:176-193. [PMID: 30443706 DOI: 10.1007/s12015-018-9864-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Stroke is a major public health issue with limited treatment. The pharmacologically or mechanically removing of the clot is accessible to less than 10% of the patients. Stem cell therapy is a promising alternative strategy since it increases the therapeutic time window but many issues remain unsolved. To avoid a new dramatic failure when translating experimental data on the bedside, this review aims to highlight the indispensable checkpoints to make a successful clinical trial based on the current preclinical literature. The large panel of progenitors/ stem cells at the researcher's disposal is to be used wisely, regarding the type of cells, the source of cells, the route of delivery, the time window, since it will directly affect the outcome. Mechanisms are still incompletely understood, although recent studies have focused on the inflammation modulation of most cells types.
Collapse
Affiliation(s)
| | - Nathalie Kubis
- INSERM U965, F-75475, Paris, France. .,Sorbonne Paris Cité, Université Paris Diderot, F-75475, Paris, France. .,Service de Physiologie Clinique-Explorations Fonctionnelles, AP-HP, Hôpital Lariboisière, 2 rue Ambroise Paré, F-75475, Paris, France.
| |
Collapse
|
22
|
Li Z, Dong X, Tian M, Liu C, Wang K, Li L, Liu Z, Liu J. Stem cell-based therapies for ischemic stroke: a systematic review and meta-analysis of clinical trials. Stem Cell Res Ther 2020; 11:252. [PMID: 32586371 PMCID: PMC7318436 DOI: 10.1186/s13287-020-01762-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/25/2020] [Accepted: 06/08/2020] [Indexed: 12/20/2022] Open
Abstract
Recently, extensive researches about stem cell-based therapies for ischemic stroke have been published; our review evaluated the efficacy and safety of stem cell-based therapies for ischemic stroke. Our review was registered on PROSPERO (http://www.crd.york.ac.uk/PROSPERO), registration number CRD42019135805. Two independent observers searched PubMed, EMBASE, Cochrane Library (Cochrane Database of Systematic Reviews, Cochrane Central Register of Controlled Trials), and Web of Science (Science Citation Index Expanded) for relevant studies up to 31 May 2019. We included clinical trials which compared efficacy outcomes (measured by National Institutes of Health Stroke Scale (NIHSS), modified Rankin scale (mRS), or Barthel index (BI)) and safety outcomes (such as death and adverse effects) between the stem cell-based therapies and control in ischemic stroke. We performed random effect meta-analysis using Review Manager 5.3. Our review included nine randomized controlled trials (RCTs) and seven non-randomized studies (NRSs), involving 740 participants. Stem cell-based therapies were associated with better outcomes measured by NIHSS (mean difference (MD) - 1.63, 95% confidence intervals (CI) - 2.73 to - 0.53, I2 =60%) and BI (MD 14.68, 95% CI 1.12 to 28.24, I2 = 68%) in RCTs, and by BI (MD 6.40, 95% CI 3.14 to 9.65, I2 = 0%) in NRSs. However, the risk of bias was high and the efficacy outcomes of RCTs were high heterogeneity. There was no significant difference in mortality between the stem cell group and the control group. Fever, headache, and recurrent stroke were the most frequently reported adverse effects. Our review shows that stem cell-based therapies can improve the neurological deficits and activities of daily living in patients with ischemic stroke.
Collapse
Affiliation(s)
- Zhonghao Li
- Department of Neurology, Dongfang Hospital Beijing University of Chinese Medicine, No. 6 Fangxingyuan 1st Block, Fengtai District, Beijing, 100078, China
| | - Xiaoke Dong
- Department of Neurology, Dongfang Hospital Beijing University of Chinese Medicine, No. 6 Fangxingyuan 1st Block, Fengtai District, Beijing, 100078, China
| | - Min Tian
- Department of Neurology, China-Japan Friendship Hospital, Ying Hua Dong Jie, Beijing, 100029, China
| | - Chongchong Liu
- Department of Neurology, Dongfang Hospital Beijing University of Chinese Medicine, No. 6 Fangxingyuan 1st Block, Fengtai District, Beijing, 100078, China
| | - Kaiyue Wang
- Department of Neurology, Dongfang Hospital Beijing University of Chinese Medicine, No. 6 Fangxingyuan 1st Block, Fengtai District, Beijing, 100078, China
| | - Lili Li
- Department of Neurology, Dongfang Hospital Beijing University of Chinese Medicine, No. 6 Fangxingyuan 1st Block, Fengtai District, Beijing, 100078, China
| | - Zunjing Liu
- Department of Neurology, China-Japan Friendship Hospital, Ying Hua Dong Jie, Beijing, 100029, China.
| | - Jinmin Liu
- Department of Neurology, Dongfang Hospital Beijing University of Chinese Medicine, No. 6 Fangxingyuan 1st Block, Fengtai District, Beijing, 100078, China.
| |
Collapse
|
23
|
Singh M, Pandey PK, Bhasin A, Padma MV, Mohanty S. Application of Stem Cells in Stroke: A Multifactorial Approach. Front Neurosci 2020; 14:473. [PMID: 32581669 PMCID: PMC7296176 DOI: 10.3389/fnins.2020.00473] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/16/2020] [Indexed: 12/21/2022] Open
Abstract
Stroke has a debilitating effect on the human body and a serious negative effect on society, with a global incidence of one in every six people. According to the World Health Organization, 15 million people suffer stroke worldwide each year. Of these, 5 million die and another 5 million are permanently disabled. Motor and cognitive deficits like hemiparesis, paralysis, chronic pain, and psychomotor and behavioral symptoms can persist long term and prevent the patient from fully reintegrating into society, therefore continuing to add to the costly healthcare burden of stroke. Regenerative medicine using stem cells seems to be a panacea for sequelae after stroke. Stem cell-based therapy aids neuro-regeneration and neuroprotection for neurological recovery in patients. However, the use of stem cells as a therapy in stroke patients still needs a lot of research at both basic and translational levels. As well as the mode of action of stem cells in reversing the symptoms not being clear, there are several clinical parameters that need to be addressed before establishing stem cell therapy in stroke, such as the type of stem cells to be administered, the number of stem cells, the timing of dosage, whether dose-boosters are required, the route of administration, etc. There are upcoming prospects of cell-free therapy also by using exosomes derived from stem cells. There are several ongoing pre-clinical studies aiming to answer these questions. Despite still being in the development stage, stem cell therapy holds great potential for neurological rehabilitation in patients suffering from stroke.
Collapse
Affiliation(s)
- Manisha Singh
- Stem Cell Facility (DBT-Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, New Delhi, India
- Dr. Solomon H. Snyder Department of Neurosciences, Johns Hopkins University, Baltimore, MD, United States
| | - Pranav K. Pandey
- Dr. R.P. Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Ashu Bhasin
- Department of Neurosciences, All India Institute of Medical Sciences, New Delhi, India
| | - M. V. Padma
- Department of Neurosciences, All India Institute of Medical Sciences, New Delhi, India
| | - Sujata Mohanty
- Stem Cell Facility (DBT-Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
24
|
Kang MK, Kim TJ, Kim YJ, Kang L, Kim J, Lee N, Hyeon T, Lim MS, Mo HJ, Shin JH, Ko SB, Yoon BW. Targeted Delivery of Iron Oxide Nanoparticle-Loaded Human Embryonic Stem Cell-Derived Spherical Neural Masses for Treating Intracerebral Hemorrhage. Int J Mol Sci 2020; 21:ijms21103658. [PMID: 32455909 PMCID: PMC7279437 DOI: 10.3390/ijms21103658] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/13/2020] [Accepted: 05/20/2020] [Indexed: 12/16/2022] Open
Abstract
This study evaluated the potential of iron oxide nanoparticle-loaded human embryonic stem cell (ESC)-derived spherical neural masses (SNMs) to improve the transportation of stem cells to the brain, ameliorate brain damage from intracerebral hemorrhage (ICH), and recover the functional status after ICH under an external magnetic field of a magnet attached to a helmet. At 24 h after induction of ICH, rats were randomly separated into three experimental groups: ICH with injection of phosphate-buffered saline (PBS group), ICH with intravenous injection of magnetosome-like ferrimagnetic iron oxide nanocubes (FION)-labeled SNMs (SNMs* group), and ICH with intravenous injection of FION-labeled SNMs followed by three days of external magnetic field exposure for targeted delivery by a magnet-embedded helmet (SNMs*+Helmet group). On day 3 after ICH induction, an increased Prussian blue-stained area and decreased swelling volume were observed in the SNMs*+Helmet group compared with that of the other groups. A significantly decreased recruitment of macrophages and neutrophils and a downregulation of pro-inflammatory cytokines followed by improved neurological function three days after ICH were observed in the SNMs*+Helmet group. Hemispheric atrophy at six weeks after ICH was significantly decreased in the SNMs*+Helmet group compared with that of the PBS group. In conclusion, we have developed a targeted delivery system using FION tagged to stem cells and a magnet-embedded helmet. The targeted delivery of SNMs might have the potential for developing novel therapeutic strategies for ICH.
Collapse
Affiliation(s)
- Min Kyoung Kang
- Department of Neurology, Seoul National University Hospital, Seoul 03080, Korea; (M.K.K.); (T.J.K.); (J.H.S.); (S.-B.K.)
- Department of Neurology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Tae Jung Kim
- Department of Neurology, Seoul National University Hospital, Seoul 03080, Korea; (M.K.K.); (T.J.K.); (J.H.S.); (S.-B.K.)
- Department of Neurology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Young-Ju Kim
- Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Korea; (Y.-J.K.); (L.K.)
| | - Lamie Kang
- Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Korea; (Y.-J.K.); (L.K.)
| | - Jonghoon Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Korea; (J.K.); (T.H.)
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Korea
| | - Nohyun Lee
- School of Advanced Materials Engineering, Kookmin University, Seoul 02707, Korea;
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Korea; (J.K.); (T.H.)
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Korea
| | - Mi-sun Lim
- Research and Development Center, Jeil Pharmaceutical Co. Ltd., Yongin-si, Gyeonggi-do 17172, Korea;
- Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University, Seoul 08826, Korea
| | - Hee Jung Mo
- Department of Neurology, Hallym University Dongtan Sacred Heart Hospital, Gyeonggi-do 14068, Korea;
| | - Jung Hwan Shin
- Department of Neurology, Seoul National University Hospital, Seoul 03080, Korea; (M.K.K.); (T.J.K.); (J.H.S.); (S.-B.K.)
| | - Sang-Bae Ko
- Department of Neurology, Seoul National University Hospital, Seoul 03080, Korea; (M.K.K.); (T.J.K.); (J.H.S.); (S.-B.K.)
- Department of Neurology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Byung-Woo Yoon
- Department of Neurology, Seoul National University Hospital, Seoul 03080, Korea; (M.K.K.); (T.J.K.); (J.H.S.); (S.-B.K.)
- Department of Neurology, Seoul National University College of Medicine, Seoul 03080, Korea
- Correspondence: ; Tel.: +82-2-2072-2875; Fax: +82-2-3673-1990
| |
Collapse
|
25
|
Huang H, Chen L, Mao G, Sharma HS. Clinical neurorestorative cell therapies: Developmental process, current state and future prospective. JOURNAL OF NEURORESTORATOLOGY 2020. [DOI: 10.26599/jnr.2020.9040009] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Clinical cell therapies (CTs) for neurological diseases and cellular damage have been explored for more than 2 decades. According to the United States Food and Drug Administration, there are 2 types of cell categories for therapy, namely stem cell-derived CT products and mature/functionally differentiated cell-derived CT products. However, regardless of the type of CT used, the majority of reports of clinical CTs from either small sample sizes based on single-center phase 1 or 2 unblinded trials or retrospective clinical studies showed effects on neurological improvement and the ability to either partially or temporarily thwart the deteriorating cellular processes of the neurodegenerative diseases. There have been only a few prospective, multicenter, randomized, double- blind placebo-control clinical trials of CTs so far in this developing novel area that have shown negative results, and more clinical trials are needed. This will expand our knowledge in exploring the type of cells that yield promising results and restore damaged neurological structure and functions of the central nervous system based on higher level evidence-based medical data. In this review, we briefly introduce the developmental process, current state, and future prospective for clinical neurorestorative CT.
Collapse
|
26
|
Guo X, Xue Q, Zhao J, Yang Y, Yu Y, Liu D, Liu J, Yang W, Mu L, Zhang P, Wang T, Han H, Liu S, Zhu Y, Wang T, Qu C, Qu C. Clinical diagnostic and therapeutic guidelines of stroke neurorestoration (2020 China version). JOURNAL OF NEURORESTORATOLOGY 2020. [DOI: 10.26599/jnr.2020.9040026] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Stroke is the main cause of death and disability among Chinese, and neurorestoration is an effective therapeutic strategy for patients with stroke. In recent years, many achievements have been made in stroke neurorestoration, but viewpoints for managing stroke vary per discipline. In order to promote standardization of diagnosis and treatment for stroke neurorestoration, the Chinese Association of Neurorestoratology (CANR; Preparatory) and China Committee of International Association of Neurorestoratology (IANR-China Committee) organized professional experts in the field to integrate fragmented neurorestorative methods and establish clinical diagnostic and therapeutic guidelines for stroke neurorestoration. This guideline includes the diagnosis and staging of stroke and therapeutic recommendations for neurorestoration at different stages of stroke in order to improve survival and quality of life of stroke patients.
Collapse
|
27
|
Tuazon JP, Castelli V, Borlongan CV. Drug-like delivery methods of stem cells as biologics for stroke. Expert Opin Drug Deliv 2019; 16:823-833. [PMID: 31311344 DOI: 10.1080/17425247.2019.1645116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction: Stem cell therapy is an experimental treatment for brain disorders. Although a cellular product, stem cells can be classified as biologics based on the cells' secretion of therapeutic substances. Treatment with stem cell biologics may appeal to stroke because of the secondary cell death mechanisms, especially neuroinflammation, that are rampant from the onset and remain elevated during the progressive phase of the disease requiring multi-pronged biological targets to effectively abrogate the neurodegenerative pathology. However, the optimal delivery methods, among other logistical approaches (i.e. cell doses and timing of intervention), for stem cell therapy will need to be refined before stem cell biologics can be successfully utilized for stroke in large scale clinical trials. Areas covered: In this review, we discuss how the innate qualities of stem cells characterize them as biologics, how stem cell transplantation may be an ideal treatment for stroke, and the various routes of stem cell administration that have been employed in various preclinical and clinical investigations. Expert opinion: There is a need to optimize the delivery of stem cell biologics for stroke in order to guide the safe and effective translation of this therapy from the laboratory to the clinic.
Collapse
Affiliation(s)
- Julian P Tuazon
- a Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine , Tampa , FL , USA
| | - Vanessa Castelli
- a Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine , Tampa , FL , USA
| | - Cesar V Borlongan
- a Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine , Tampa , FL , USA
| |
Collapse
|
28
|
Ouyang Q, Li F, Xie Y, Han J, Zhang Z, Feng Z, Su D, Zou X, Cai Y, Zou Y, Tang Y, Jiang X. Meta-Analysis of the Safety and Efficacy of Stem Cell Therapies for Ischemic Stroke in Preclinical and Clinical Studies. Stem Cells Dev 2019; 28:497-514. [PMID: 30739594 DOI: 10.1089/scd.2018.0218] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Qian Ouyang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Haizhu District, Guangzhou, China
| | - Feng Li
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Haizhu District, Guangzhou, China
| | - Yu Xie
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Haizhu District, Guangzhou, China
| | - Jianbang Han
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Haizhu District, Guangzhou, China
| | - Zhongfei Zhang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Haizhu District, Guangzhou, China
| | - Zhiming Feng
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Haizhu District, Guangzhou, China
| | - Dazhuang Su
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Haizhu District, Guangzhou, China
| | - Xiaoxiong Zou
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Haizhu District, Guangzhou, China
| | - Yingqian Cai
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Haizhu District, Guangzhou, China
| | - Yuxi Zou
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Haizhu District, Guangzhou, China
| | - Yanping Tang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Haizhu District, Guangzhou, China
| | - Xiaodan Jiang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Haizhu District, Guangzhou, China
| |
Collapse
|
29
|
Dabrowski A, Robinson TJ, Felling RJ. Promoting Brain Repair and Regeneration After Stroke: a Plea for Cell-Based Therapies. Curr Neurol Neurosci Rep 2019; 19:5. [PMID: 30712068 DOI: 10.1007/s11910-019-0920-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE OF REVIEW After decades of hype, cell-based therapies are emerging into the clinical arena for the purposes of promoting recovery after stroke. In this review, we discuss the most recent science behind the role of cell-based therapies in ischemic stroke and the efforts to translate these therapies into human clinical trials. RECENT FINDINGS Preclinical data support numerous beneficial effects of cell-based therapies in both small and large animal models of ischemic stroke. These benefits are driven by multifaceted mechanisms promoting brain repair through immunomodulation, trophic support, circuit reorganization, and cell replacement. Cell-based therapies offer tremendous potential for improving outcomes after stroke through multimodal support of brain repair. Based on recent clinical trials, cell-based therapies appear both feasible and safe in all phases of stroke. Ongoing translational research and clinical trials will further refine these therapies and have the potential to transform the approach to stroke recovery and rehabilitation.
Collapse
Affiliation(s)
- Ania Dabrowski
- Department of Neurology, Johns Hopkins School of Medicine, 200 N. Wolfe Street, Suite 2158, Baltimore, MD, 21287, USA
| | - Thomas J Robinson
- Department of Neurology, Johns Hopkins School of Medicine, 200 N. Wolfe Street, Suite 2158, Baltimore, MD, 21287, USA
| | - Ryan J Felling
- Department of Neurology, Johns Hopkins School of Medicine, 200 N. Wolfe Street, Suite 2158, Baltimore, MD, 21287, USA.
| |
Collapse
|
30
|
Hu X, Leak RK, Thomson AW, Yu F, Xia Y, Wechsler LR, Chen J. Promises and limitations of immune cell-based therapies in neurological disorders. Nat Rev Neurol 2018; 14:559-568. [PMID: 29925925 PMCID: PMC6237550 DOI: 10.1038/s41582-018-0028-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The healthy immune system has natural checkpoints that temper pernicious inflammation. Cells mediating these checkpoints include regulatory T cells, regulatory B cells, regulatory dendritic cells, microglia, macrophages and monocytes. Here, we highlight discoveries on the beneficial functions of regulatory immune cells and their mechanisms of action and evaluate their potential use as novel cell-based therapies for brain disorders. Regulatory immune cell therapies have the potential not only to mitigate the exacerbation of brain injury by inflammation but also to promote an active post-injury brain repair programme. By harnessing the reparative properties of these cells, we can reduce over-reliance on medications that mask clinical symptoms but fail to impede or reverse the progression of brain disorders. Although these discoveries encourage further testing and genetic engineering of regulatory immune cells for the clinical management of neurological disorders, a number of challenges must be surmounted to improve their safety and efficacy in humans.
Collapse
Affiliation(s)
- Xiaoming Hu
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Rehana K Leak
- Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Angus W Thomson
- Starzl Transplantation Institute, Department of Surgery and Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Fang Yu
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yuguo Xia
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lawrence R Wechsler
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jun Chen
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
31
|
Diabetic Ephrin-B2-Stimulated Peripheral Blood Mononuclear Cells Enhance Poststroke Recovery in Mice. Stem Cells Int 2018; 2018:2431567. [PMID: 29736174 PMCID: PMC5875038 DOI: 10.1155/2018/2431567] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/21/2017] [Accepted: 01/11/2018] [Indexed: 11/18/2022] Open
Abstract
Clinical trials of cell therapy in stroke favor autologous cell transplantation. To date, feasibility studies have used bone marrow-derived mononuclear cells, but harvesting bone marrow cells is invasive thus complicating bedside treatment. We investigated the therapeutic potential of peripheral blood-derived mononuclear cells (PB-MNC) harvested from diabetic patients and stimulated by ephrin-B2 (PB-MNC+) (500,000 cells), injected intravenously 18–24 hours after induced cerebral ischemia in mice. Infarct volume, neurological deficit, neurogenesis, angiogenesis, and inflammation were investigated as were the potential mechanisms of PB-MNC+ cells in poststroke neurorepair. At D3, infarct volume was reduced by 60% and 49% compared to unstimulated PB-MNC and PBS-treated mice, respectively. Compared to PBS, injection of PB-MNC+ increased cell proliferation in the peri-infarct area and the subventricular zone, decreased microglia/macrophage cell density, and upregulated TGF-β expression. At D14, microvessel density was decreased and functional recovery was enhanced compared to PBS-treated mice, whereas plasma levels of BDNF, a major regulator of neuroplasticity, were increased in mice treated with PB-MNC+ compared to the other two groups. Cell transcriptional analysis showed that ephrin-B2 induced phenotype switching of PB-MNC by upregulating genes controlling cell proliferation, inflammation, and angiogenesis, as confirmed by adhesion and Matrigel assays. Conclusions. This feasibility study suggests that PB-MNC+ transplantation poststroke could be a promising approach but warrants further investigation. If confirmed, this rapid, noninvasive bedside cell therapy strategy could be applied to stroke patients at the acute phase.
Collapse
|
32
|
Stem Cell Therapies in Peripheral Vascular Diseases — Current Status. JOURNAL OF INTERDISCIPLINARY MEDICINE 2017. [DOI: 10.1515/jim-2017-0093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Abstract
Peripheral artery diseases include all arterial diseases with the exception of coronary and aortic involvement, more specifically diseases of the extracranial carotids, upper limb arteries, mesenteric and renal vessels, and last but not least, lower limb arteries. Mononuclear stem cells, harvested from various sites (bone marrow, peripheral blood, mesenchymal cells, adipose-derived stem cells) have been studied as a treatment option for alleviating symptoms in peripheral artery disease, as potential stimulators for therapeutic angiogenesis, thus improving vascularization of the ischemic tissue. The aim of this manuscript was to review current medical literature on a novel treatment method — cell therapy, in patients with various peripheral vascular diseases, including carotid, renal, mesenteric artery disease, thromboangiitis obliterans, as well as upper and lower limb artery disease.
Collapse
|
33
|
Dabrowska S, Sypecka J, Jablonska A, Strojek L, Wielgos M, Domanska-Janik K, Sarnowska A. Neuroprotective Potential and Paracrine Activity of Stromal Vs. Culture-Expanded hMSC Derived from Wharton Jelly under Co-Cultured with Hippocampal Organotypic Slices. Mol Neurobiol 2017; 55:6021-6036. [PMID: 29134515 PMCID: PMC5994221 DOI: 10.1007/s12035-017-0802-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/12/2017] [Indexed: 01/01/2023]
Abstract
Regardless of enormous translational progress in stem cell clinical application, our knowledge about biological determinants of transplantation-related protection is still limited. In addition to adequate selection of the cell source well dedicated to a specific disease and optimal standardization of all other pre-transplant procedures, we have decided to focus more attention to the impact of culture time and environment itself on molecular properties and regenerative capacity of cell cultured in vitro. The aim of this investigation was to determine neuroprotection-linked cell phenotypic and functional changes that could spontaneously take place when freshly isolated Wharton’s jelly mesenchymal stem cell (WJ-MSC) undergo standard selection, growth, and spontaneous differentiation throughout passaging in vitro. For determining their neuroprotective potential, we used experimental model of human WJ-MSC co-culture with intact or oxygen-glucose-deprived (OGD) rat organotypic hippocampal culture (OHC). It has been shown that putative molecular mechanisms mediating regenerative interactions between WJ-MSC and OHC slices relies mainly on mesenchymal cell paracrine activity. Interestingly, it has been also found that the strongest protective effect is exerted by the co-culture with freshly isolated umbilical cord tissue fragments and by the first cohort of human mesenchymal stem cells (hMSCs) migrating out of these fragments (passage 0). Culturing of WJ-derived hMSC in well-controlled standard conditions under air atmosphere up to fourth passage caused unexpected decline of neuroprotective cell effectiveness toward OGD-OHC in the co-culture model. This further correlated with substantial changes in the WJ-MSC phenotype, profile of their paracrine activities as well as with the recipient tissue reaction evaluated by changes in the rat-specific neuroprotection-linked gene expression.
Collapse
Affiliation(s)
- Sylwia Dabrowska
- Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego Street, Warsaw, Poland
| | - Joanna Sypecka
- Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego Street, Warsaw, Poland
| | - Anna Jablonska
- Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego Street, Warsaw, Poland
| | - Lukasz Strojek
- Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego Street, Warsaw, Poland
| | - Miroslaw Wielgos
- 1st Department of Obstetrics and Gynecology, Medical University of Warsaw, Warsaw, Poland
| | - Krystyna Domanska-Janik
- Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego Street, Warsaw, Poland
| | - Anna Sarnowska
- Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego Street, Warsaw, Poland.
| |
Collapse
|
34
|
Nagpal A, Choy FC, Howell S, Hillier S, Chan F, Hamilton-Bruce MA, Koblar SA. Safety and effectiveness of stem cell therapies in early-phase clinical trials in stroke: a systematic review and meta-analysis. Stem Cell Res Ther 2017; 8:191. [PMID: 28854961 PMCID: PMC5577822 DOI: 10.1186/s13287-017-0643-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Stem cells have demonstrated encouraging potential as reparative therapy for patients suffering from post-stroke disability. Reperfusion interventions in the acute phase of stroke have shown significant benefit but are limited by a narrow window of opportunity in which they are beneficial. Thereafter, rehabilitation is the only intervention available. The current review summarises the current evidence for use of stem cell therapies in stroke from early-phase clinical trials. The safety and feasibility of administering different types of stem cell therapies in stroke seem to be reasonably proven. However, the effectiveness needs still to be established through bigger clinical trials with more pragmatic clinical trial designs that address the challenges raised by the heterogeneous nature of stroke per se, as well those due to unique characteristics of stem cells as therapeutic agents.
Collapse
Affiliation(s)
- Anjali Nagpal
- Stroke Research Programme, The University of Adelaide School of Medicine, Level 6 South, SAHMRI, North Terrace, Adelaide, South Australia Australia
| | - Fong Chan Choy
- Stroke Research Programme, The University of Adelaide School of Medicine, Level 6 South, SAHMRI, North Terrace, Adelaide, South Australia Australia
| | - Stuart Howell
- Data, Design and Statistics Service, Adelaide Health Technology Assessment (AHTA), School of Public Health, The University of Adelaide, Adelaide, South Australia Australia
| | - Susan Hillier
- Research, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia Australia
| | - Fiona Chan
- Neurology Department, The Queen Elizabeth Hospital, Central Adelaide Local Health Network (CALHN), Adelaide, South Australia Australia
| | - Monica A. Hamilton-Bruce
- Stroke Research Programme, The University of Adelaide School of Medicine, Level 6 South, SAHMRI, North Terrace, Adelaide, South Australia Australia
- Department of Neurology, Royal Adelaide Hospital, CALHN, Adelaide, South Australia Australia
| | - Simon A. Koblar
- Stroke Research Programme, The University of Adelaide School of Medicine, Level 6 South, SAHMRI, North Terrace, Adelaide, South Australia Australia
- Department of Neurology, Royal Adelaide Hospital, CALHN, Adelaide, South Australia Australia
| |
Collapse
|
35
|
Machfoed MH, Kurniawan M, Usman FS. Review article: DOES INTRA-ARTERIAL HEPARIN FLUSHING (IAHF) CAN ACTUALLY INCREASE MANUAL MUSCLE TEST (MMT) SCORE IN CHRONIC ISCHEMIC STROKE PATIENTS? FOLIA MEDICA INDONESIANA 2017. [DOI: 10.20473/fmi.v52i2.5232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Stroke is still a major health problem in the world. Ischemic stroke accounts for 87% of all acute stroke occurrences. In 2013, the American Heart Association (AHA)/American Stroke Association (ASA), published a Guideline for the Early Management of Patients with Acute Ischemic Stroke. The managements consist of the use of recombinant tissue plasminogen activator (rtPA), endovascular treatment, etc. Unlike acute ischemic stroke, until now, no guidelines have been provided about the management of chronic ischemic stroke that approved universally. The result of the study with the title of “Intra Arterial Heparin Flushing Increases Manual Muscle Test – Medical Research Councils (MMT-MRC) Score in Chronic Ischemic Stroke Patient” is very interesting, because it is a new attempt to treat patients with chronic ischemic stroke. The purpose of this article is to review the study mentioned above, in accordance with the applied scientific principles and is based on the standard literatures and guidelines. Our review is limited only to the discussion of the study results. From this discussion can be proved the existing references that support and/or refuse the study results. Based on the discussions and conclusions of this study, there were no references to support that IAHF can improve motor functions (muscles) in patients with chronic ischemic stroke.
Collapse
|
36
|
Kumar A, Prasad M, Jali VP, Pandit AK, Misra S, Kumar P, Chakravarty K, Kathuria P, Gulati A. Bone marrow mononuclear cell therapy in ischaemic stroke: a systematic review. Acta Neurol Scand 2017; 135:496-506. [PMID: 27558274 DOI: 10.1111/ane.12666] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2016] [Indexed: 12/20/2022]
Abstract
Bone marrow mononuclear cell (BM-MNC) therapy has emerged as a potential therapy for the treatment of stroke. We performed a systematic review of published studies using BM-MNC therapy in patients with ischaemic stroke (IS). Literature was searched using MEDLINE, PubMed, EMBASE, Trip Database, Cochrane library and clinicaltrial.gov to identify studies on BM-MNC therapy in IS till June, 2016. Data were extracted independently by two reviewers. STATA version 13 was used for carrying out meta-analysis. We included non-randomized open-label, single-arm and non-randomized comparative studies or randomized controlled trials (RCTs) if BM-MNCs were used to treat patients with IS in any phase after the index stroke. One randomized trial, two non-randomized comparative trials and four single-arm open-label trials (total seven studies) involving 227 subjects (137 patients and 90 controls) were included in the systematic review and meta-analysis. The pooled proportion for favourable clinical outcome (modified Rankin Scale score ≤2) in six studies involving 122 subjects was 29% (95% CI 0.16-0.43) who were exposed to BM-MNCs and pooled proportion for favourable clinical outcome of 69 subjects (taken from two trials) who did not receive BM-MNCs was 20% (95% CI 0.12-0.32). The pooled difference in the safety outcomes was not significant between both the groups. Our systematic review suggests that BM-MNC therapy is safe up to 1 year post-intervention and is feasible; however, its efficacy in the case of IS patients is debatable. Well-designed randomized controlled trials are required to provide more information on the efficacy of BM-MNC transplantation in patients with IS.
Collapse
Affiliation(s)
- A. Kumar
- Department of Neurology; All India Institute of Medical Sciences; New Delhi India
| | - M. Prasad
- Department of Neurology; All India Institute of Medical Sciences; New Delhi India
| | - V. P. Jali
- Department of Neurology; All India Institute of Medical Sciences; New Delhi India
| | - A. K. Pandit
- Department of Neurology; All India Institute of Medical Sciences; New Delhi India
| | - S. Misra
- Department of Neurology; All India Institute of Medical Sciences; New Delhi India
| | - P. Kumar
- Department of Neurology; All India Institute of Medical Sciences; New Delhi India
| | - K. Chakravarty
- Department of Neurology; All India Institute of Medical Sciences; New Delhi India
| | - P. Kathuria
- Department of Neurology; All India Institute of Medical Sciences; New Delhi India
| | - A. Gulati
- Department of Neurology; All India Institute of Medical Sciences; New Delhi India
| |
Collapse
|
37
|
Gonzalez-Garza MT, Cruz-Vega DE. Regenerative capacity of autologous stem cell transplantation in elderly: a report of biomedical outcomes. Regen Med 2017; 12:169-178. [DOI: 10.2217/rme-2016-0038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The occurrence of chronic diseases such as neurological, metabolic and cardiovascular degenerative disorders increases with age. Cell therapy is an emerging approach to the treatment of these conditions. Of particular interest is the application of autologous stem cells because it eliminates post-transplantation immune rejection and there are less ethical concerns associated with their use. The regenerative capacity of stem cells harvested from elderly people is however controversial. In this review, we analyze if self-renewal potential, differentiation capability and expression of stemness genes in stem cells collected from elderly patients validate their application in clinical trials and examine the results.
Collapse
Affiliation(s)
| | - Delia Elva Cruz-Vega
- Tecnologico de Monterrey, Escuela Nacional de Medicina, Morones Prieto 3000 Pte, CP64710, Monterrey, Mexico
| |
Collapse
|
38
|
Unsworth DJ, Mathias JL, Dorstyn DS. Cell therapies administered in the chronic phase after stroke: a meta-analysis examining safety and efficacy. Regen Med 2017; 12:91-108. [DOI: 10.2217/rme-2016-0082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Aim: To assess the safety and efficacy of cell therapies for chronic stroke. Methodology: Five databases were searched for treatments administered >90 days post-stroke. Reporting quality, adherence to research guidelines, treatment safety (risk ratios/pooled incidence rates) and neurological/functional efficacy (Hedge’s g) were all evaluated. Results: Twenty-three studies examined 17 treatments. Reporting quality scores were medium to high, but adherence to recommended guidelines was lower. Three treatments resulted in serious adverse events; four improved outcomes more than standard care. However, many studies were under-powered and individual patients varied in their response to some treatments. Conclusion: Preliminary findings suggest that some cell therapies may be relatively safe and effective, but larger double-blinded placebo-controlled studies are needed to establish the long-term risks and benefits.
Collapse
Affiliation(s)
- David J Unsworth
- Faculty of Health & Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Jane L Mathias
- Faculty of Health & Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Diana S Dorstyn
- Faculty of Health & Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
39
|
Gaining Mechanistic Insights into Cell Therapy Using Magnetic Resonance Imaging. CURRENT STEM CELL REPORTS 2016. [DOI: 10.1007/s40778-016-0059-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
40
|
Clinical Efficacy and Meta-Analysis of Stem Cell Therapies for Patients with Brain Ischemia. Stem Cells Int 2016; 2016:6129579. [PMID: 27656217 PMCID: PMC5021879 DOI: 10.1155/2016/6129579] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 07/14/2016] [Accepted: 07/28/2016] [Indexed: 12/27/2022] Open
Abstract
Objective. Systematic review and meta-analysis to observe the efficacy and safety of stem cell transplantation therapy in patients with brain ischemia. Methods. We searched Cochrane Library, PubMed, Ovid, CBM, CNKI, WanFang, and VIP Data from its inception to December 2015, to collect randomized controlled trials (RCT) of stem cell transplantation for the ischemic stroke. Two authors independently screened the literature according to the inclusion and exclusion criteria, extracted data, and assessed the risk of bias. Thereafter, meta-analysis was performed. Results. Sixteen studies and eighteen independent treatments were included in the current meta-analysis. The results based upon the pooled mean difference from baseline to follow-up points showed that the stem cell transplantation group was superior to the control group with statistical significance in the neurologic deficits score (NIHSS, MD = 1.57; 95% CI, 0.64–2.51; I2 = 57%; p = 0.001), motor function (FMA, MD = 4.23; 95% CI, 3.08–5.38; I2 = 0%; p < 0.00001), daily life ability (Barthel, MD = 8.37; 95% CI, 4.83–11.91; I2 = 63%; p < 0.00001), and functional independence (FIM, MD = 8.89; 95% CI, 4.70–13.08; I2 = 79%; p < 0.0001). Conclusions. It is suggested that the stem cell transplantation therapy for patients with brain ischemic stroke can significantly improve the neurological deficits and daily life quality, with no serious adverse events. However, higher quality and larger data studies are required for further investigation to support clinical application of stem cell transplantation.
Collapse
|
41
|
Rodríguez-Frutos B, Otero-Ortega L, Gutiérrez-Fernández M, Fuentes B, Ramos-Cejudo J, Díez-Tejedor E. Stem Cell Therapy and Administration Routes After Stroke. Transl Stroke Res 2016; 7:378-87. [PMID: 27384771 DOI: 10.1007/s12975-016-0482-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 06/21/2016] [Accepted: 06/27/2016] [Indexed: 12/23/2022]
Abstract
Cell-based therapy has demonstrated safety and efficacy in experimental animal models of stroke, as well as safety in stroke patients. However, various questions remain regarding the therapeutic window, dosage, route of administration, and the most appropriate cell type and source, as well as mechanisms of action and immune-modulation to optimize treatment based on stem cell therapy. Various delivery routes have been used in experimental stroke models, including intracerebral, intraventricular, subarachnoid, intra-arterial, intraperitoneal, intravenous, and intranasal routes. From a clinical point of view, it is necessary to demonstrate which is the most feasible, safest, and most effective for use with stroke patients. Therefore, further experimental studies concerning the safety, efficacy, and mechanisms of action involved in these therapeutic effects are required to determine their optimal clinical use.
Collapse
Affiliation(s)
- Berta Rodríguez-Frutos
- Department of Neurology and Stroke Center, Neuroscience and Cerebrovascular Research Laboratory, Neuroscience Area of IdiPAZ (Health Research Institute), Autonomous University of Madrid, La Paz University Hospital, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Laura Otero-Ortega
- Department of Neurology and Stroke Center, Neuroscience and Cerebrovascular Research Laboratory, Neuroscience Area of IdiPAZ (Health Research Institute), Autonomous University of Madrid, La Paz University Hospital, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - María Gutiérrez-Fernández
- Department of Neurology and Stroke Center, Neuroscience and Cerebrovascular Research Laboratory, Neuroscience Area of IdiPAZ (Health Research Institute), Autonomous University of Madrid, La Paz University Hospital, Paseo de la Castellana 261, 28046, Madrid, Spain.
| | - Blanca Fuentes
- Department of Neurology and Stroke Center, Neuroscience and Cerebrovascular Research Laboratory, Neuroscience Area of IdiPAZ (Health Research Institute), Autonomous University of Madrid, La Paz University Hospital, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Jaime Ramos-Cejudo
- Department of Neurology and Stroke Center, Neuroscience and Cerebrovascular Research Laboratory, Neuroscience Area of IdiPAZ (Health Research Institute), Autonomous University of Madrid, La Paz University Hospital, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Exuperio Díez-Tejedor
- Department of Neurology and Stroke Center, Neuroscience and Cerebrovascular Research Laboratory, Neuroscience Area of IdiPAZ (Health Research Institute), Autonomous University of Madrid, La Paz University Hospital, Paseo de la Castellana 261, 28046, Madrid, Spain.
| |
Collapse
|
42
|
Wang Q, Duan F, Wang MX, Wang XD, Liu P, Ma LZ. Effect of stem cell-based therapy for ischemic stroke treatment: A meta-analysis. Clin Neurol Neurosurg 2016; 146:1-11. [DOI: 10.1016/j.clineuro.2016.04.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 04/08/2016] [Accepted: 04/10/2016] [Indexed: 01/01/2023]
|
43
|
Nagpal A, Kremer KL, Hamilton-Bruce MA, Kaidonis X, Milton AG, Levi C, Shi S, Carey L, Hillier S, Rose M, Zacest A, Takhar P, Koblar SA. TOOTH (The Open study Of dental pulp stem cell Therapy in Humans): Study protocol for evaluating safety and feasibility of autologous human adult dental pulp stem cell therapy in patients with chronic disability after stroke. Int J Stroke 2016; 11:575-85. [PMID: 27030504 DOI: 10.1177/1747493016641111] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 12/11/2015] [Indexed: 12/24/2022]
Abstract
RATIONALE Stroke represents a significant global disease burden. As of 2015, there is no chemical or biological therapy proven to actively enhance neurological recovery during the chronic phase post-stroke. Globally, cell-based therapy in stroke is at the stage of clinical translation and may improve neurological function through various mechanisms such as neural replacement, neuroprotection, angiogenesis, immuno-modulation, and neuroplasticity. Preclinical evidence in a rodent model of middle cerebral artery ischemic stroke as reported in four independent studies indicates improvement in neurobehavioral function with adult human dental pulp stem cell therapy. Human adult dental pulp stem cells present an exciting potential therapeutic option for improving post-stroke disability. AIMS TOOTH (The Open study Of dental pulp stem cell Therapy in Humans) will investigate the use of autologous stem cell therapy for stroke survivors with chronic disability, with the following objectives: (a) determine the maximum tolerable dose of autologous dental pulp stem cell therapy; (b) define that dental pulp stem cell therapy at the maximum tolerable dose is safe and feasible in chronic stroke; and (c) estimate the parameters of efficacy required to design a future Phase 2/3 clinical trial. METHODS AND DESIGN TOOTH is a Phase 1, open-label, single-blinded clinical trial with a pragmatic design that comprises three stages: Stage 1 will involve the selection of 27 participants with middle cerebral artery ischemic stroke and the commencement of autologous dental pulp stem cell isolation, growth, and testing in sequential cohorts (n = 3). Stage 2 will involve the transplantation of dental pulp stem cell in each cohort of participants with an ascending dose and subsequent observation for a 6-month period for any dental pulp stem cell-related adverse events. Stage 3 will investigate the neurosurgical intervention of the maximum tolerable dose of autologous dental pulp stem cell followed by 9 weeks of intensive task-specific rehabilitation. Advanced magnetic resonance and positron emission tomography neuro-imaging, and clinical assessment will be employed to probe any change afforded by stem cell therapy in combination with rehabilitation. SAMPLE SIZE ESTIMATES Nine participants will step-wise progress in Stage 2 to a dose of up to 10 million dental pulp stem cell, employing a cumulative 3 + 3 statistical design with low starting stem cell dose and subsequent dose escalation, assuming that an acceptable probability of dose-limiting complications is between 1 in 6 (17%) and 1 in 3 (33%) of patients. In Stage 3, another 18 participants will receive an intracranial injection with the maximum tolerable dose of dental pulp stem cell. OUTCOMES The primary outcomes to be measured are safety and feasibility of intracranial administration of autologous human adult DPSC in patients with chronic stroke and determination of the maximum tolerable dose in human subjects. Secondary outcomes include estimation of the measures of effectiveness required to design a future Phase 2/3 clinical trial.
Collapse
Affiliation(s)
- Anjali Nagpal
- School of Medicine, The University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia
| | - Karlea L Kremer
- School of Medicine, The University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia
| | - Monica A Hamilton-Bruce
- Neurology Department, The Queen Elizabeth Hospital, Woodville, South Australia School of Medicine, University of Adelaide, Adelaide, South Australia
| | - Xenia Kaidonis
- School of Medicine, The University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia
| | - Austin G Milton
- Neurology Department, The Queen Elizabeth Hospital, Woodville, South Australia
| | - Christopher Levi
- Hunter Medical Research Institute, University of Newcastle, New South Wales, Australia
| | - Songtao Shi
- School of Dental Medicine, University of Pennsylvania, Philadelphia, USA
| | - Leeanne Carey
- Neurorehabilitation and Recovery research group, Stroke Division, Florey Institute of Neuroscience and Mental Health La Trobe University, Melbourne, Victoria, Australia School of Allied Health, La Trobe University, Melbourne, Australia
| | - Susan Hillier
- Health Sciences Divisional Office School of Health Sciences, University of South Australia, Adelaide, South Australia
| | - Miranda Rose
- School of Allied Health, La Trobe University, Melbourne, Australia
| | - Andrew Zacest
- Department of Neurosurgery, Royal Adelaide Hospital, Adelaide, South Australia
| | - Parabjit Takhar
- Molecular Imaging and Therapy Research Unit, South Australian Health and Medical Research Institute, Adelaide, South Australia
| | - Simon A Koblar
- School of Medicine, University of Adelaide, Adelaide, South Australia SAHMRI & Basil Hetzel Institute, The Queen Elizabeth Hospital, Woodville, South Australia
| |
Collapse
|
44
|
Savitz SI, Parsha K. Enhancing Stroke Recovery with Cellular Therapies. Stroke 2016. [DOI: 10.1016/b978-0-323-29544-4.00060-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
45
|
Cao W, Li P. Effectiveness and Safety of Autologous Bone Marrow Stromal Cells Transplantation After Ischemic Stroke: A Meta-Analysis. Med Sci Monit 2015. [PMID: 26215395 PMCID: PMC4523068 DOI: 10.12659/msm.895081] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Autologous bone marrow stromal cells (BM-SCs) transplantation might be a potential therapy for stroke. Although a series of clinical trials were performed to assess the effectiveness and safety of BM-SCs transplantation after ischemic stroke, the results are still conflicting. This study aimed to pool previous controlled trials to assess the effectiveness of BM-SCs-based cell therapy after ischemic stroke. MATERIAL AND METHODS Relevant studies were searched among online databases. Barthel index (BI) or modified Barthel index (mBI), National Institutes of Health Stroke Scale (NIHSS), and Rankin Score (mRS) were used to assess therapeutic effects. The frequencies of adverse events were extracted for assessing safety of stem cell therapy. Data analysis was performed by using Review Manager 5.3. RESULTS Patients who received cell therapy had significantly lower NIHSS score (-1.85) than the controls. In addition, there might be some benefits in daily activity measured by mBI, but this meta-analysis failed to demonstrate significant benefits of BM-SCs-based cell therapy in increasing the proportion of mRS ≤2 patients. We did not find any severe adverse events associated with BM-SCs-based cell therapy. CONCLUSIONS Although BM-MNCs/MSCs transplantation might generate some benefits in lowering the grade of impairment caused by ischemic stroke, large RCTs are required to further confirm the effectiveness of BM-MSCs/MNCs-based cell therapy and to optimize the conditions require for best therapeutic effects.
Collapse
Affiliation(s)
- Wenying Cao
- Department of Neurology, The Ninth People's Hospital of Chongqing, Chongqing, China (mainland)
| | - Pan Li
- Department of Neurology, The Ninth People's Hospital of Chongqing, Chongqing, China (mainland)
| |
Collapse
|
46
|
Rosado-de-Castro PH, Pimentel-Coelho PM, da Fonseca LMB, de Freitas GR, Mendez-Otero R. The rise of cell therapy trials for stroke: review of published and registered studies. Stem Cells Dev 2013; 22:2095-111. [PMID: 23509917 DOI: 10.1089/scd.2013.0089] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Stroke is the second leading cause of death and the third leading cause of disability worldwide. Approximately 16 million first-ever strokes occur each year, leading to nearly 6 million deaths. Nevertheless, currently, very few therapeutic options are available. Cell therapies have been applied successfully in different hematological diseases, and are currently being investigated for treating ischemic heart disease, with promising results. Recent preclinical studies have indicated that cell therapies may provide structural and functional benefits after stroke. However, the effects of these treatments are not yet fully understood and are the subject of continuing investigation. Meanwhile, different clinical trials for stroke, the majority of them small, nonrandomized, and uncontrolled, have been reported, and their results indicate that cell therapy seems safe and feasible in these conditions. In the last 2 years, the number of published and registered trials has dramatically increased. Here, we review the main findings available in the field, with emphasis on the clinical results. Moreover, we address some of the questions that have been raised to date, to improve future studies.
Collapse
|