1
|
Dhanjal DS, Singh R, Sharma V, Nepovimova E, Adam V, Kuca K, Chopra C. Advances in Genetic Reprogramming: Prospects from Developmental Biology to Regenerative Medicine. Curr Med Chem 2024; 31:1646-1690. [PMID: 37138422 DOI: 10.2174/0929867330666230503144619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 05/05/2023]
Abstract
The foundations of cell reprogramming were laid by Yamanaka and co-workers, who showed that somatic cells can be reprogrammed into pluripotent cells (induced pluripotency). Since this discovery, the field of regenerative medicine has seen advancements. For example, because they can differentiate into multiple cell types, pluripotent stem cells are considered vital components in regenerative medicine aimed at the functional restoration of damaged tissue. Despite years of research, both replacement and restoration of failed organs/ tissues have remained elusive scientific feats. However, with the inception of cell engineering and nuclear reprogramming, useful solutions have been identified to counter the need for compatible and sustainable organs. By combining the science underlying genetic engineering and nuclear reprogramming with regenerative medicine, scientists have engineered cells to make gene and stem cell therapies applicable and effective. These approaches have enabled the targeting of various pathways to reprogramme cells, i.e., make them behave in beneficial ways in a patient-specific manner. Technological advancements have clearly supported the concept and realization of regenerative medicine. Genetic engineering is used for tissue engineering and nuclear reprogramming and has led to advances in regenerative medicine. Targeted therapies and replacement of traumatized , damaged, or aged organs can be realized through genetic engineering. Furthermore, the success of these therapies has been validated through thousands of clinical trials. Scientists are currently evaluating induced tissue-specific stem cells (iTSCs), which may lead to tumour-free applications of pluripotency induction. In this review, we present state-of-the-art genetic engineering that has been used in regenerative medicine. We also focus on ways that genetic engineering and nuclear reprogramming have transformed regenerative medicine and have become unique therapeutic niches.
Collapse
Affiliation(s)
- Daljeet Singh Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Reena Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Varun Sharma
- Head of Bioinformatic Division, NMC Genetics India Pvt. Ltd., Gurugram, India
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 50003, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ 613 00, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, CZ-612 00, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 50003, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, 50005, Czech Republic
| | - Chirag Chopra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
2
|
Yap L, Chong LY, Tan C, Adusumalli S, Seow M, Guo J, Cai Z, Loo SJ, Lim E, Tan RS, Grishina E, Soong PL, Lath N, Ye L, Petretto E, Tryggvason K. Pluripotent stem cell-derived committed cardiac progenitors remuscularize damaged ischemic hearts and improve their function in pigs. NPJ Regen Med 2023; 8:26. [PMID: 37236990 DOI: 10.1038/s41536-023-00302-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Ischemic heart disease, which is often associated with irreversibly damaged heart muscle, is a major global health burden. Here, we report the potential of stem cell-derived committed cardiac progenitors (CCPs) have in regenerative cardiology. Human pluripotent embryonic stem cells were differentiated to CCPs on a laminin 521 + 221 matrix, characterized with bulk and single-cell RNA sequencing, and transplanted into infarcted pig hearts. CCPs differentiated for eleven days expressed a set of genes showing higher expression than cells differentiated for seven days. Functional heart studies revealed significant improvement in left ventricular ejection fraction at four and twelve weeks following transplantation. We also observed significant improvements in ventricular wall thickness and a reduction in infarction size after CCP transplantation (p-value < 0.05). Immunohistology analyses revealed in vivo maturation of the CCPs into cardiomyocytes (CM). We observed temporary episodes of ventricular tachyarrhythmia (VT) in four pigs and persistent VT in one pig, but the remaining five pigs exhibited normal sinus rhythm. Importantly, all pigs survived without the formation of any tumors or VT-related abnormalities. We conclude that pluripotent stem cell-derived CCPs constitute a promising possibility for myocardial infarction treatment and that they may positively impact regenerative cardiology.
Collapse
Affiliation(s)
- Lynn Yap
- Cardiovascular & Metabolic Disorders Program, Duke-NUS Medical School, National University of Singapore, Singapore, 169857, Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Singapore.
| | - Li Yen Chong
- Cardiovascular & Metabolic Disorders Program, Duke-NUS Medical School, National University of Singapore, Singapore, 169857, Singapore
| | - Clarissa Tan
- Cardiovascular & Metabolic Disorders Program, Duke-NUS Medical School, National University of Singapore, Singapore, 169857, Singapore
| | - Swarnaseetha Adusumalli
- Cardiovascular & Metabolic Disorders Program, Duke-NUS Medical School, National University of Singapore, Singapore, 169857, Singapore
| | - Millie Seow
- Cardiovascular & Metabolic Disorders Program, Duke-NUS Medical School, National University of Singapore, Singapore, 169857, Singapore
| | - Jing Guo
- Cardiovascular & Metabolic Disorders Program, Duke-NUS Medical School, National University of Singapore, Singapore, 169857, Singapore
| | - Zuhua Cai
- Cardiovascular & Metabolic Disorders Program, Duke-NUS Medical School, National University of Singapore, Singapore, 169857, Singapore
| | - Sze Jie Loo
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, 169609, Singapore
| | - Eric Lim
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, 169609, Singapore
| | - Ru San Tan
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, 169609, Singapore
| | | | - Poh Loong Soong
- Ternion Biosciences, Singapore, 574329, Singapore
- Cardiovascular Disease Translational Research Program, Yong Loo Lin School of Medicine, NUS, Singapore, 169609, Singapore
| | - Narayan Lath
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, 169609, Singapore
| | - Lei Ye
- Department of Biomedical Engineering, University of Alabama, Birmingham, 35233, England
| | - Enrico Petretto
- Cardiovascular & Metabolic Disorders Program, Duke-NUS Medical School, National University of Singapore, Singapore, 169857, Singapore
| | - Karl Tryggvason
- Cardiovascular & Metabolic Disorders Program, Duke-NUS Medical School, National University of Singapore, Singapore, 169857, Singapore.
- Department of Medicine Duke University, Durham, NC, 27710, USA.
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 77, Stockholm, Sweden.
| |
Collapse
|
3
|
Abstract
Defined by its potential for self-renewal, differentiation and tumorigenicity, cancer stem cells (CSCs) are considered responsible for drug resistance and relapse. To understand the behavior of CSC, the effects of the microenvironment in each tissue are a matter of great concerns for scientists in cancer biology. However, there are many complicated obstacles in the mimicking the microenvironment of CSCs even with current advanced technology. In this context, novel biomaterials have widely been assessed as in vitro platforms for their ability to mimic cancer microenvironment. These efforts should be successful to identify and characterize various CSCs specific in each type of cancer. Therefore, extracellular matrix scaffolds made of biomaterial will modulate the interactions and facilitate the investigation of CSC associated with biological phenomena simplifying the complexity of the microenvironment. In this review, we summarize latest advances in biomaterial scaffolds, which are exploited to mimic CSC microenvironment, and their chemical and biological requirements with discussion. The discussion includes the possible effects on both cells in tumors and microenvironment to propose what the critical factors are in controlling the CSC microenvironment focusing the future investigation. Our insights on their availability in drug screening will also follow the discussion.
Collapse
|
4
|
Visentin S, Sedić M, Pavelić SK, Pavelić K. Targeting Tumour Metastasis: The Emerging Role of Nanotechnology. Curr Med Chem 2020; 27:1367-1381. [DOI: 10.2174/0929867326666181220095343] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 02/13/2018] [Accepted: 11/12/2018] [Indexed: 12/29/2022]
Abstract
The metastatic process has still not been completely elucidated, probably due to insufficient knowledge of the underlying mechanisms. Here, we provide an overview of the current findings that shed light on specific molecular alterations associated with metastasis and present novel concepts in the treatment of the metastatic process. In particular, we discuss novel pharmacological approaches in the clinical setting that target metastatic progression. New insights into the process of metastasis allow optimisation and design of new treatment strategies, especially in view of the fact that metastatic cells share common features with stem cells. Nano- and micro-technologies are herein elaborated in details as a promising therapeutic concept in targeted drug delivery for metastatic cancer. Progression in the field could provide a more efficient way to tackle metastasis and thus bring about advancements in the treatment and management of patients with advanced cancer.
Collapse
Affiliation(s)
- Sarah Visentin
- Department of Biotechnology, University of Rijeka, Centre for High-Throughput Technologies, Radmile Matejcic 2, 51 000 Rijeka, Croatia
| | - Mirela Sedić
- Department of Biotechnology, University of Rijeka, Centre for High-Throughput Technologies, Radmile Matejcic 2, 51 000 Rijeka, Croatia
| | - Sandra Kraljević Pavelić
- Department of Biotechnology, University of Rijeka, Centre for High-Throughput Technologies, Radmile Matejcic 2, 51 000 Rijeka, Croatia
| | - Krešimir Pavelić
- Faculty of Medicine, Juraj Dobrila University of Pula, Zagrebacka 30, 52 100 Pula, Croatia
| |
Collapse
|
5
|
Choi C, Thi Thao Tran N, Van Ngu T, Park SW, Song MS, Kim SH, Bae YU, Ayudthaya PDN, Munir J, Kim E, Baek MJ, Song S, Ryu S, Nam KH. Promotion of tumor progression and cancer stemness by MUC15 in thyroid cancer via the GPCR/ERK and integrin-FAK signaling pathways. Oncogenesis 2018; 7:85. [PMID: 30420637 PMCID: PMC6232104 DOI: 10.1038/s41389-018-0094-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 09/10/2018] [Accepted: 10/03/2018] [Indexed: 12/21/2022] Open
Abstract
Thyroid cancer is the fifth most common cancer diagnosed in women worldwide. Notwithstanding advancements in the prognosis and treatment of thyroid cancer, 10–20% of thyroid cancer patients develops chemotherapeutic resistance and experience relapse. According to previous reports and TCGA database, MUC15 (MUCIN 15) upregulation is highly correlated with thyroid cancer progression. However, the role of MUC15 in tumor progression and metastasis is unclear. This study aimed to investigate factors mediating cancer stemness in thyroid cancer. MUC15 plays an important role in sphere formation, as an evident from the expression of stemness markers including SOX2, KLF4, ALDH1A3, and IL6. Furthermore, ectopic expression of MUC15 activated extracellular signal-regulated kinase (ERK) signaling via G-protein–coupled receptor (GPCR)/cyclic AMP (cAMP) and integrin/focal adhesion kinase pathways. Interestingly, ectopic expression of MUC15 did not affect RAF/mitogen-activated protein kinase kinase (MEK)-mediated ERK activation. The present findings may provide novel insights into the development of diagnostic, prognostic, and therapeutic applications of MUC15 in thyroid cancer.
Collapse
Affiliation(s)
- Cheolwon Choi
- Soonchunhyang Institute of Med-bioscience (SIMS), Soonchunhyang University, Cheonan, Korea
| | - Nguyen Thi Thao Tran
- Soonchunhyang Institute of Med-bioscience (SIMS), Soonchunhyang University, Cheonan, Korea
| | - Trinh Van Ngu
- Soonchunhyang Institute of Med-bioscience (SIMS), Soonchunhyang University, Cheonan, Korea
| | - Sae Woong Park
- Department of Microbiology & Immunology, Weill Cornell Medical College, New York, USA
| | - Min Suk Song
- Department of Life Sciences, Yeungnam University, Gyeongsan, Korea
| | - Sung Hyun Kim
- Department of Physiology, Kyung Hee University, School of Medicine, Seoul, Korea
| | - Yun-Ui Bae
- Soonchunhyang Institute of Med-bioscience (SIMS), Soonchunhyang University, Cheonan, Korea
| | | | - Javaria Munir
- Soonchunhyang Institute of Med-bioscience (SIMS), Soonchunhyang University, Cheonan, Korea
| | - Eunbit Kim
- Soonchunhyang Institute of Med-bioscience (SIMS), Soonchunhyang University, Cheonan, Korea
| | - Moo-Jun Baek
- Department of Surgery, College of Medicine, Soonchunhyang University, Chonan, Korea
| | - Sujung Song
- Soonchunhyang Institute of Med-bioscience (SIMS), Soonchunhyang University, Cheonan, Korea
| | - Seongho Ryu
- Soonchunhyang Institute of Med-bioscience (SIMS), Soonchunhyang University, Cheonan, Korea.
| | - Kee-Hyun Nam
- Department of Surgery, College of Medicine, Yonsei University, Seoul, Korea.
| |
Collapse
|
6
|
Xu N, Li X, Watanabe M, Ueki H, Hu H, Li N, Araki M, Wada K, Xu A, Liu C, Nasu Y, Huang P. Induction of cells with prostate cancer stem-like properties from mouse induced pluripotent stem cells via conditioned medium. Am J Cancer Res 2018; 8:1624-1632. [PMID: 30210930 PMCID: PMC6129491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 07/30/2018] [Indexed: 06/08/2023] Open
Abstract
Cancer stem cells (CSCs) that closely correlated with tumor growth, metastasis, provide a plausible explanation for chemoresistance and cancer relapse. CSCs are usually isolated and enriched from carcinoma cells, which is inconvenient, low-efficient, and even unreliable. Here, we converted mouse induced pluripotent stem cells (miPSCs) into prostate cancer stem-like cells with carcinoma microenvironment following exposure to conditioned medium (CM) derived from RM9, a mouse prostate cancer cell line. These transformed cells, termed as miPS-RM9CM, displayed CSCs properties, including spheroids morphology and expression of both stemness genes and cancer stem cells surface markers, such as Oct3/4, Sox2, Nanog, Klf-4, c-Myc, CD44, and CD133. In addition, in vivo transplantation experiment was performed to confirm the tumorigenicity. Furthermore, we used the model to assess conventional chemotherapeutic agent, docetaxel. The results showed that miPS-RM9CM cells exhibited increased resistance to docetaxel, however, high susceptibility to the cancer cell stemness inhibitor I (BBI-608). Our current study demonstrates that CM from cultured RM9 cells play a crucial role in the determination of cell fate from miPSCs to cancer stem-like cells and provide a potentially valuable system for the study of CSCs.
Collapse
Affiliation(s)
- Naijin Xu
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama, Japan
| | - Xiezhao Li
- Department of Urology, Zhujiang Hospital, Southern Medical UniversityGuangzhou, China
| | - Masami Watanabe
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama, Japan
- Center for Innovative Clinical Medicine, Okayama University HospitalOkayama, Japan
| | - Hideo Ueki
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama, Japan
| | - Hao Hu
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical CenterGuangzhou, China
| | - Na Li
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical CenterGuangzhou, China
| | - Motoo Araki
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama, Japan
| | - Koichiro Wada
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama, Japan
| | - Abai Xu
- Department of Urology, Zhujiang Hospital, Southern Medical UniversityGuangzhou, China
| | - Chunxiao Liu
- Department of Urology, Zhujiang Hospital, Southern Medical UniversityGuangzhou, China
| | - Yasutomo Nasu
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama, Japan
- Center for Innovative Clinical Medicine, Okayama University HospitalOkayama, Japan
- Okayama Medical Innovation Center, Okayama UniversityOkayama, Japan
| | - Peng Huang
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama, Japan
- Department of Urology, Zhujiang Hospital, Southern Medical UniversityGuangzhou, China
- Okayama Medical Innovation Center, Okayama UniversityOkayama, Japan
| |
Collapse
|
7
|
Câmara DAD, Porcacchia AS, Costa AS, Azevedo RA, Kerkis I. Murine melanoma cells incomplete reprogramming using non-viral vector. Cell Prolif 2017; 50. [PMID: 28618452 DOI: 10.1111/cpr.12352] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 04/25/2017] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES The reprogramming of cancer cells into induced pluripotent stem cells or less aggressive cancer cells can provide a modern platform to study cancer-related genes and their interactions with cell environment before and after reprogramming. Herein, we aimed to investigate the reprogramming capacity of murine melanoma B16F10 cells. MATERIALS AND METHODS The B16F10 was transfected using non-viral circular DNA plasmid containing the genes Sox-2, Oct4, Nanog, Lin28 and green fluorescent protein (GFP). These cells were characterized by immunofluorescence, analysis RT-PCR and cell cycle. RESULTS Our results demonstrated for the first time that reprogramming of B16F10 may be induced using non-viral minicircle DNA containing the four reprogramming factors Oct4, Sox2, Lin 28, Nanog (OSLN) and the GFP reporter gene. The resulting clones are composed by epithelioid cells. These cells display characteristics of cancer stem cells, thus expressing pluripotent stem cell markers and dividing asymmetrically and symmetrically. Reprogrammed B16F10 cells did not form teratomas; however, they showed the suppression of tumourigenic abilities characterized by a reduced tumour size, when compared with parental B16F10 cell line. In contrast to parental cell line that showed accumulation of the cells in S phase of cell cycle, the cells of reprogrammed clones are accumulated in G1 phase. Long-term cultivation of reprogrammed B16F10 cells induces regression of their reprogramming. CONCLUSIONS Our data imply that in result of reprogramming of B16F10 cells less aggressive Murine Melanoma Reprogrammed Cancer Cells may be obtained. These cells represent an interesting model to study mechanism of cells malignancy as well as provide a novel tool for anti-cancer drugs screening.
Collapse
Affiliation(s)
- D A D Câmara
- Laboratory of Genetics, Butantan Institute, Sao Paulo, SP, Brazil.,Department of Morphology and Genetics, Universidade Federal de Sao Paulo, Sao Paulo, SP, Brazil
| | - A S Porcacchia
- Laboratory of Genetics, Butantan Institute, Sao Paulo, SP, Brazil
| | - A S Costa
- Laboratory of Genetics, Butantan Institute, Sao Paulo, SP, Brazil
| | - R A Azevedo
- Departament of Immunology, Laboratory of Tumor Immunology, Institute of Biomedical Science, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - I Kerkis
- Laboratory of Genetics, Butantan Institute, Sao Paulo, SP, Brazil
| |
Collapse
|
8
|
Wuputra K, Lin CS, Tsai MH, Ku CC, Lin WH, Yang YH, Kuo KK, Yokoyama KK. Cancer cell reprogramming to identify the genes competent for generating liver cancer stem cells. Inflamm Regen 2017; 37:15. [PMID: 29259714 PMCID: PMC5725927 DOI: 10.1186/s41232-017-0041-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 04/25/2017] [Indexed: 02/06/2023] Open
Abstract
The cancer stem cell (CSC) hypothesis postulates that cancer originates from the malignant transformation of stem/progenitor cells and is considered to apply to many cancers, including liver cancer. Identification that CSCs are responsible for drug resistance, metastasis, and secondary tumor appearance suggests that these populations are novel obligatory targets for the treatment of cancer. Here, we describe our new method for identifying potential CSC candidates. The reprogramming of cancer cells via induced pluripotent stem cell (iPSC) technology is a novel therapy for the treatment and for the study of CSC-related genes. This technology has advantages for studying the interactions between CSC-related genes and the cancer niche microenvironment. This technology may also provide a useful platform for studying the genes involved in the generation of CSCs before and after reprogramming, and for elucidating the mechanisms underlying cancer initiation and progression. The present review summarizes the current understanding of transcription factors involved in the generation of liver CSCs from liver cancer cell-derived iPSCs and how these contribute to oncogenesis, and discusses the modeling of liver cancer development.
Collapse
Affiliation(s)
- Kenly Wuputra
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, 807 Taiwan
| | - Chang-Shen Lin
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, 807 Taiwan
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, 805 Taiwan
| | - Ming-Ho Tsai
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, 807 Taiwan
| | - Chia-Chen Ku
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, 807 Taiwan
| | - Wen-Hsin Lin
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, 807 Taiwan
| | - Ya-Han Yang
- Center of Stem Cell Research, Kaohsiung Medical University, Kaohsiung, 807 Taiwan
- Department of Surgery, Department of Medicine, Kaohsiung Medical University, Kaohsiung, 807 Taiwan
| | - Kung-Kai Kuo
- Center of Stem Cell Research, Kaohsiung Medical University, Kaohsiung, 807 Taiwan
- Department of Surgery, Department of Medicine, Kaohsiung Medical University, Kaohsiung, 807 Taiwan
| | - Kazunari K. Yokoyama
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, 807 Taiwan
- Center of Stem Cell Research, Kaohsiung Medical University, Kaohsiung, 807 Taiwan
- Center of Infectious Diseases and Cancer Research, Kaohsiung Medical University, Kaohsiung, 807 Taiwan
- Research Center for Environmental Medicine, Department of Medicine, Kaohsiung Medical University, Kaohsiung, 807 Taiwan
- Faculty of Molecular Preventive Medicine, Graduate School of Medicine, the University of Tokyo, Tokyo, 113-0033 Japan
- Faculty of Science and Engineering, Tokushima Bunri University, Sanuki, 763-2193 Japan
| |
Collapse
|
9
|
Zhen Z, Yang K, Ye L, You Z, Chen R, Liu Y, He Y. HLA-E inhibitor enhances the killing of neuroblastoma stem cells by co-cultured dendritic cells and cytokine-induced killer cells loaded with membrane-based microparticles. Am J Cancer Res 2017; 7:334-345. [PMID: 28337381 PMCID: PMC5336506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 12/15/2016] [Indexed: 06/06/2023] Open
Abstract
Neuroblastoma stem cells (NSCs) can cause drug resistance and tumor recurrence. This study aimed to enhance the lytic effect of dendritic cells (DCs) co-cultured with cytokine-induced killer (CIK) cells. NSCs were obtained by suspension culture, and DC-CIK cells were loaded with extracted NSC membrane-based microparticles (MMPs) before evaluating the lytic effect of DC-CIK cells on NSCs. After inhibiting the function or expression of human leukocyte antigen-E (HLA-E) in NSCs by anti-HLA-E monoclonal antibody or siRNA, the DC-CIK cell lytic effect on NSCs was re-assessed. NSC nestin expression was high, but glial fibrillary acid protein expression and class IIIβ-tubulin-1 expression were low. Moreover, NSCs exhibited strong tumorigenic ability in nude mice. Loading DCs with NSC-derived MMPs induced the differentiation of DCs and CIK cells and enhanced the killing of NSCs by DC-CIK cells. Inhibiting the function or expression of HLA-E in NSCs further enhanced the cytolytic capability of DC-CIK cells loaded with NSC-derived MMPs. HLA-E inhibitor can enhance the killing of NSC by DC-CIK cells loaded with NSC-derived MMPs.
Collapse
Affiliation(s)
- Zijun Zhen
- State Key Laboratory of Oncology in South ChinaGuangzhou, China
- Department of Pediatric Oncology, Sun Yat-sen University Cancer CenterGuangzhou, China
- Collaborative Innovation Center of Cancer MedicineGuangzhou, China
| | - Kaibin Yang
- State Key Laboratory of Oncology in South ChinaGuangzhou, China
- Sun Yat-sen University Zhongshan School of MedicineGuangzhou, China
| | - Litong Ye
- State Key Laboratory of Oncology in South ChinaGuangzhou, China
- Sun Yat-sen University Zhongshan School of MedicineGuangzhou, China
| | - Zhiyao You
- State Key Laboratory of Oncology in South ChinaGuangzhou, China
- Sun Yat-sen University Zhongshan School of MedicineGuangzhou, China
| | - Rirong Chen
- State Key Laboratory of Oncology in South ChinaGuangzhou, China
- Sun Yat-sen University Zhongshan School of MedicineGuangzhou, China
| | - Ying Liu
- State Key Laboratory of Oncology in South ChinaGuangzhou, China
- Sun Yat-sen University Zhongshan School of MedicineGuangzhou, China
| | - Youjian He
- State Key Laboratory of Oncology in South ChinaGuangzhou, China
- Collaborative Innovation Center of Cancer MedicineGuangzhou, China
- Department of Medical Oncology, Sun Yat-sen University Cancer CenterGuangzhou, China
| |
Collapse
|
10
|
Calle AS, Nair N, Oo AK, Prieto-Vila M, Koga M, Khayrani AC, Hussein M, Hurley L, Vaidyanath A, Seno A, Iwasaki Y, Calle M, Kasai T, Seno M. A new PDAC mouse model originated from iPSCs-converted pancreatic cancer stem cells (CSCcm). Am J Cancer Res 2016; 6:2799-2815. [PMID: 28042501 PMCID: PMC5199755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 11/06/2016] [Indexed: 06/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most representative form of pancreatic cancers. PDAC solid tumours are constituted of heterogeneous populations of cells including cancer stem cells (CSCs), differentiated cancer cells, desmoplastic stroma and immune cells. The identification and consequent isolation of pancreatic CSCs facilitated the generation of genetically engineered murine models. Nonetheless, the current models may not be representative for the spontaneous tumour occurrence. In the present study, we show the generation of a novel pancreatic iPSC-converted cancer stem cell lines (CSCcm) as a cutting-edge model for the study of PDAC. The CSCcm lines were achieved only by the influence of pancreatic cancer cell lines conditioned medium and were not subjected to any genetic manipulation. The xenografts tumours from CSCcm lines displayed histopathological features of ADM, PanIN and PDAC lesions. Further molecular characterization from RNA-sequencing analysis highlighted primary culture cell lines (1st CSCcm) as potential candidates to represent the pancreatic CSCs and indicated the establishment of the pancreatic cancer molecular pattern in their subsequent progenies 2nd CSCcm and 3rd CSCcm. In addition, preliminary RNA-seq SNPs analysis showed that the distinct CSCcm lines did not harbour single point mutations for the oncogene Kras codon 12 or 13. Therefore, PDAC-CSCcm model may provide new insights about the actual occurrence of the pancreatic cancer leading to develop different approaches to target CSCs and abrogate the progression of this fatidic disease.
Collapse
Affiliation(s)
- Anna Sanchez Calle
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University3.1.1 Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| | - Neha Nair
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University3.1.1 Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| | - Aung KoKo Oo
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University3.1.1 Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| | - Marta Prieto-Vila
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University3.1.1 Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| | - Megumi Koga
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University3.1.1 Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| | - Apriliana Cahya Khayrani
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University3.1.1 Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| | - Maram Hussein
- Department of Chemistry, Faculty of Science, Menoufia UniversityShebin El-Koam 32511, Egypt
| | - Laura Hurley
- Cancer Biology Graduate Program, School of Medicine, Wayne State University10 E Warren, Avenue, Suite 2215, Detroit, Michigan 48201, USA
| | - Arun Vaidyanath
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University3.1.1 Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| | - Akimasa Seno
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University3.1.1 Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| | - Yoshiaki Iwasaki
- Department of Gastroenterology and Hepatology, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama 700-8558, Japan
| | - Malu Calle
- Department of Systems Biology, University of VicVic, Barcelona 08500, Spain
| | - Tomonari Kasai
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University3.1.1 Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| | - Masaharu Seno
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University3.1.1 Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
11
|
Nguyen CB, Houchen CW, Ali N. APSA Awardee Submission: Tumor/cancer stem cell marker doublecortin-like kinase 1 in liver diseases. Exp Biol Med (Maywood) 2016; 242:242-249. [PMID: 27694285 DOI: 10.1177/1535370216672746] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Liver diseases are the fourth leading cause of mortality among adults in the United States. Patients with chronic liver diseases such as viral hepatitis, fibrosis, and cirrhosis have significantly higher risks of developing hepatocellular carcinoma (HCC). With a dismal five-year survival rate of 11%, HCC is the third most common cause of cancer-related deaths worldwide. Regardless of the underlying cause, late presentation and a lack of effective therapy are the major impediments for successful treatment of HCC. Therefore, there is a considerable interest in developing new strategies for the prevention and treatment of chronic liver diseases at the early stages. Cancer stem cells (CSCs), a small cell subpopulation in a tumor, exhibit unlimited self-renewal and differentiation capacity. These cells are believed to play pivotal roles in the initiation, growth, metastasis, and drug-resistance of tumors. In this review, we will briefly discuss pivotal roles of the CSC marker doublecortin-like kinase 1 (DCLK1) in hepatic tumorigenesis. Recent evidence suggests that anti-DCLK1 strategies hold promising clinical potential for the treatment of cancers of the liver, pancreas, and colon.
Collapse
Affiliation(s)
- Charles B Nguyen
- 1 College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Courtney W Houchen
- 2 Section of Digestive Diseases and Nutrition, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.,3 Peggy and Charles Stephenson Cancer Center, Oklahoma City, OK 73104, USA.,4 Department of Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
| | - Naushad Ali
- 2 Section of Digestive Diseases and Nutrition, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.,3 Peggy and Charles Stephenson Cancer Center, Oklahoma City, OK 73104, USA.,4 Department of Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
12
|
Nguyen CB, Kotturi H, Waris G, Mohammed A, Chandrakesan P, May R, Sureban S, Weygant N, Qu D, Rao CV, Dhanasekaran DN, Bronze MS, Houchen CW, Ali N. (Z)-3,5,4'-Trimethoxystilbene Limits Hepatitis C and Cancer Pathophysiology by Blocking Microtubule Dynamics and Cell-Cycle Progression. Cancer Res 2016; 76:4887-96. [PMID: 27287718 DOI: 10.1158/0008-5472.can-15-2722] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 06/05/2016] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is the third most common cause of cancer-related deaths worldwide. Chronic hepatitis C virus (HCV) infection causes induction of several tumors/cancer stem cell (CSC) markers and is known to be a major risk factor for development of HCC. Therefore, drugs that simultaneously target viral replication and CSC properties are needed for a risk-free treatment of advanced stage liver diseases, including HCC. Here, we demonstrated that (Z)-3,5,4'-trimethoxystilbene (Z-TMS) exhibits potent antitumor and anti-HCV activities without exhibiting cytotoxicity to human hepatocytes in vitro or in mice livers. Diethylnitrosamine (DEN)/carbon tetrachloride (CCl4) extensively induced expression of DCLK1 (a CSC marker) in the livers of C57BL/6 mice following hepatic injury. Z-TMS exhibited hepatoprotective effects against DEN/CCl4-induced injury by reducing DCLK1 expression and improving histologic outcomes. The drug caused bundling of DCLK1 with microtubules and blocked cell-cycle progression at G2-M phase in hepatoma cells via downregulation of CDK1, induction of p21(cip1/waf1) expression, and inhibition of Akt (Ser(473)) phosphorylation. Z-TMS also inhibited proliferation of erlotinib-resistant lung adenocarcinoma cells (H1975) bearing the T790M EGFR mutation, most likely by promoting autophagy and nuclear fragmentation. In conclusion, Z-TMS appears to be a unique therapeutic agent targeting HCV and concurrently eliminating cells with neoplastic potential during chronic liver diseases, including HCC. It may also be a valuable drug for targeting drug-resistant carcinomas and cancers of the lungs, pancreas, colon, and intestine, in which DCLK1 is involved in tumorigenesis. Cancer Res; 76(16); 4887-96. ©2016 AACR.
Collapse
Affiliation(s)
- Charles B Nguyen
- College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Hari Kotturi
- Department of Biology, University of Central Oklahoma, Edmond, Oklahoma
| | - Gulam Waris
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| | - Altaf Mohammed
- College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma. Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma. Center for Cancer Prevention and Drug Development, Hematology-Oncology Section, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Parthasarathy Chandrakesan
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma. Department of Medicine, Section of Digestive Diseases and Nutrition, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma. Department of Veterans Affairs Medical Center, Oklahoma City, Oklahoma
| | - Randal May
- Department of Medicine, Section of Digestive Diseases and Nutrition, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma. Department of Veterans Affairs Medical Center, Oklahoma City, Oklahoma
| | - Sripathi Sureban
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma. Department of Medicine, Section of Digestive Diseases and Nutrition, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma. Department of Veterans Affairs Medical Center, Oklahoma City, Oklahoma
| | - Nathaniel Weygant
- Department of Medicine, Section of Digestive Diseases and Nutrition, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Dongfeng Qu
- Department of Medicine, Section of Digestive Diseases and Nutrition, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma. Department of Veterans Affairs Medical Center, Oklahoma City, Oklahoma
| | - Chinthalapally V Rao
- College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma. Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma. Center for Cancer Prevention and Drug Development, Hematology-Oncology Section, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Danny N Dhanasekaran
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma. Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Michael S Bronze
- Department of Medicine, Section of Digestive Diseases and Nutrition, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Courtney W Houchen
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma. Department of Medicine, Section of Digestive Diseases and Nutrition, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma. Department of Veterans Affairs Medical Center, Oklahoma City, Oklahoma.
| | - Naushad Ali
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma. Department of Medicine, Section of Digestive Diseases and Nutrition, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma. Department of Veterans Affairs Medical Center, Oklahoma City, Oklahoma.
| |
Collapse
|
13
|
YANG ZHUANGQING, CHEN DEDIAN, NIE JIANYUN, ZHOU SHAOQIANG, WANG JIANKUI, TANG QI, YANG XIAOJUAN. MicroRNA-143 targets CD44 to inhibit breast cancer progression and stem cell-like properties. Mol Med Rep 2016; 13:5193-9. [DOI: 10.3892/mmr.2016.5194] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 09/16/2015] [Indexed: 11/06/2022] Open
|
14
|
Lu L, Zeng H, Gu X, Ma W. Circulating tumor cell clusters-associated gene plakoglobin and breast cancer survival. Breast Cancer Res Treat 2015; 151:491-500. [PMID: 25957595 DOI: 10.1007/s10549-015-3416-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 05/04/2015] [Indexed: 10/23/2022]
Abstract
Breast cancer recurrence is a major cause of the disease-specific death. Circulating tumor cells (CTCs) are negatively associated with breast cancer survival. Plakoglobin, a cell adhesion protein, was recently reported as a determinant of CTCs types, single or clustered ones. Here, we aim to summarize the studies on the roles of plakoglobin and evaluate the association of plakoglobin and breast cancer survival. Plakoglobin as a key component in both cell adhesion and the signaling pathways was briefly reviewed first. Then the double-edge functions of plakoglobin in tumors and its association with CTCs and breast cancer metastasis were introduced. Finally, based on an open-access database, the association between plakoglobin and breast cancer survival was investigated using univariate and multivariate survival analyses. Plakoglobin may be a molecule functioning as a double-edge sword. Loss of plakoglobin expression leads to increased motility of epithelial cells, thereby promoting epithelial-mesenchymal transition and further metastasis of cancer. However, studies also show that plakoglobin can function as an oncogene. High expression of plakoglobin results in clustered tumor cells in circulation with high metastatic potential in breast cancer and shortened patient survival. Plakoglobin may be a potential prognostic biomarker that can be exploited to develop as a therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Lingeng Lu
- Department of Chronic Disease Epidemiology, School of Public Health, School of Medicine, Yale Cancer Center, Yale University, 60 College Street, New Haven, CT, 06520-8034, USA,
| | | | | | | |
Collapse
|
15
|
Assumpção CB, Calcagno DQ, Araújo TMT, Santos SEBD, Santos ÂKCRD, Riggins GJ, Burbano RR, Assumpção PP. The role of piRNA and its potential clinical implications in cancer. Epigenomics 2015; 7:975-84. [PMID: 25929784 PMCID: PMC4750480 DOI: 10.2217/epi.15.37] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Epigenetic mechanisms work in an orchestrated fashion to control gene expression in both homeostasis and diseases. Among small noncoding RNAs, piRNAs seem to meet the necessary requirements to be included in this epigenetic network due to their role in both transcriptional and post-transcriptional regulation. piRNAs and PIWI proteins might play important roles in cancer occurrence, prognosis and treatment as reported previously. Nevertheless, the potential clinical relevance of these molecules has yet been elucidated. A brief overview of piRNA biogenesis and their potential roles as part of an epigenetic network that is possibly involved in cancer is provided. Moreover, potential strategies based on the use of piRNAs and PIWI proteins as diagnostic and prognostic biomarkers as well as for cancer therapeutics are discussed.
Collapse
Affiliation(s)
- Carolina Baraúna Assumpção
- Laboratório de Citogenética Humana, Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Corrêa, 01, Guamá, CEP: 66075-110, Belém-PA, Brazil
| | - Danielle Queiroz Calcagno
- Núcleo de Pesquisas em Oncologia, Hospital Universitário João de Barros Barreto, Av. Mundurucus, 4487, Guamá, CEP: 66073-000, Belém-PA, Brazil
| | - Taíssa Maíra Thomaz Araújo
- Núcleo de Pesquisas em Oncologia, Hospital Universitário João de Barros Barreto, Av. Mundurucus, 4487, Guamá, CEP: 66073-000, Belém-PA, Brazil
| | - Sidney Emmanuel Batista dos Santos
- Núcleo de Pesquisas em Oncologia, Hospital Universitário João de Barros Barreto, Av. Mundurucus, 4487, Guamá, CEP: 66073-000, Belém-PA, Brazil
| | | | - Gregory Joseph Riggins
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, 1550 Orleans Street, Room 257 CRB2, Baltimore, MD 21231, USA
| | - Rommel Rodriguez Burbano
- Laboratório de Citogenética Humana, Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Corrêa, 01, Guamá, CEP: 66075-110, Belém-PA, Brazil
| | - Paulo Pimentel Assumpção
- Núcleo de Pesquisas em Oncologia, Hospital Universitário João de Barros Barreto, Av. Mundurucus, 4487, Guamá, CEP: 66073-000, Belém-PA, Brazil
| |
Collapse
|
16
|
|