1
|
Mohd Azam NNSFN, Othman S, Choo YM. Antimalarial Drug Discovery from Natural and Synthetic Sources. Curr Med Chem 2025; 32:87-110. [PMID: 38818916 DOI: 10.2174/0109298673312727240527064833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/03/2024] [Accepted: 05/13/2024] [Indexed: 06/01/2024]
Abstract
Malaria remains a significant global health threat despite extensive efforts aimed at its eradication. Numerous challenges persist in eliminating the disease, chief among them being the parasite's ability to mutate, resulting in drug resistance. The discovery of antimalarial drugs has relied on both phenotypic and target-based approaches. While phenotypic screening has identified promising candidates, target-based methods offer a more precise approach by leveraging chemically validated targets and computational tools. Analysis of Plasmodium spp . protein structures reveal druggable targets, offering opportunities for in silico screening. Combining compounds from natural and synthetic sources in a target-based approach accelerates the discovery of new antimalarial agents. This review explores previous breakthroughs in antimalarial drug discovery from natural products and synthetic origins, emphasizing their specific target proteins within Plasmodium species.
Collapse
Affiliation(s)
| | - Shatrah Othman
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Yeun-Mun Choo
- Department of Chemistry, University of Malaya, Kuala Lumpur, 50603, Malaysia
| |
Collapse
|
2
|
Bertran-Cobo C, Dumont E, Noordin NR, Lai MY, Stone W, Tetteh KKA, Drakeley C, Krishna S, Lau YL, Wassmer SC. Plasmodium knowlesi Infection Is Associated With Elevated Circulating Biomarkers of Brain Injury and Endothelial Activation. J Infect Dis 2024:jiae553. [PMID: 39658124 DOI: 10.1093/infdis/jiae553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024] Open
Abstract
BACKGROUND Malaria remains a major public health concern with substantial morbidity and mortality worldwide. In Malaysia, the emergence of Plasmodium knowlesi has led to a surge in zoonotic malaria cases and deaths in recent years. Signs of cerebral involvement have been observed in a noncomatose, fatal case of knowlesi infection, but the potential impact of this malaria species on the brain remains unexplored. To address this gap, we investigated circulating levels of brain injury, inflammation, and vascular biomarkers in a cohort of knowlesi-infected patients and controls. METHODS Archived plasma samples from 19 Malaysian patients with symptomatic knowlesi infection and 19 healthy, age-matched controls were analyzed. Fifty-two biomarkers of brain injury, inflammation, and vascular activation were measured. Wilcoxon tests were used to examine group differences, and biomarker profiles were explored through hierarchical clustering heatmap analysis. RESULTS Bonferroni-corrected analyses revealed significantly elevated brain injury biomarker levels in knowlesi-infected patients, including S100B (P < .0001), Tau (P = .0007), UCH-L1 (P < .0001), αSyn (P < .0001), Park7 (P = .0006), NRGN (P = .0022), and TDP-43 (P = .005). Compared to controls, levels were lower in the infected group for BDNF (P < .0001), CaBD (P < .0001), CNTN1 (P < .0001), NCAM-1 (P < .0001), GFAP (P = .0013), and KLK6 (P = .0126). Hierarchical clustering revealed distinct group profiles for brain injury and vascular activation biomarkers. CONCLUSIONS Our findings highlight for the first time a potential impact of P knowlesi infection on the brain, with specific changes in cerebral injury and endothelial activation biomarker profiles. Further studies are warranted to investigate the pathophysiology and clinical significance of these altered markers, through neuroimaging and long-term neurocognitive assessments.
Collapse
Affiliation(s)
- Cesc Bertran-Cobo
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, United Kingdom
- Department of Psychiatry and Mental Health, University of Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, South Africa
| | - Elin Dumont
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, United Kingdom
| | - Naqib Rafieqin Noordin
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Meng-Yee Lai
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - William Stone
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, United Kingdom
| | - Kevin K A Tetteh
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, United Kingdom
| | - Chris Drakeley
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, United Kingdom
| | - Sanjeev Krishna
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
- Institut Für Tropenmedizin, Eberhard Karls Universität Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné, Gabon
- Clinical Academic Group in Institute for Infection and Immunity, St George's University of London, United Kingdom
| | - Yee-Ling Lau
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Samuel C Wassmer
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, United Kingdom
| |
Collapse
|
3
|
Bian Z, Benjamin MM, Bialousow L, Tian Y, Hobbs GA, Karan D, Choo YM, Hamann MT, Wang X. Targeting sine oculis homeoprotein 1 (SIX1): A review of oncogenic roles and potential natural product therapeutics. Heliyon 2024; 10:e33204. [PMID: 39022099 PMCID: PMC11252760 DOI: 10.1016/j.heliyon.2024.e33204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
Sine oculis homeoprotein 1 (SIX1), a prominent representative of the homeodomain transcription factors within the SIX family, has attracted significant interest owing to its role in tumorigenesis, cancer progression, and prognostic assessments. Initially recognized for its pivotal role in embryonic development, SIX1 has emerged as a resurgent factor across a diverse set of mammalian cancers. Over the past two decades, numerous investigations have emphasized SIX1's dual significance as a developmental regulator and central player in oncogenic processes. A mounting body of evidence links SIX1 to the initiation of diverse cancers, encompassing enhanced cellular metabolism and advancement. This review provides an overview of the multifaceted roles of SIX1 in both normal development and oncogenic processes, emphasizing its importance as a possible therapeutic target and prognostic marker. Additionally, this review discusses the natural product agents that inhibit various pro-oncogenic mechanisms associated with SIX1.
Collapse
Affiliation(s)
- Zhiwei Bian
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Menny M. Benjamin
- Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Lucas Bialousow
- Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Yintai Tian
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - G. Aaron Hobbs
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
| | - Dev Karan
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Yeun-Mun Choo
- Chemistry Department, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Mark T. Hamann
- Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Xiaojuan Wang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, Gansu, China
| |
Collapse
|
4
|
Bertran-Cobo C, Dumont E, Noordin NR, Lai MY, Stone W, Tetteh KK, Drakeley C, Krishna S, Lau YL, Wassmer SC. Plasmodium knowlesi infection is associated with elevated circulating biomarkers of brain injury and endothelial activation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.25.24306382. [PMID: 38712121 PMCID: PMC11071568 DOI: 10.1101/2024.04.25.24306382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Introduction Malaria remains a major public health concern with substantial morbidity and mortality worldwide. In Malaysia, the emergence of Plasmodium knowlesi has led to a surge in zoonotic malaria cases and deaths in recent years. Signs of cerebral involvement have been observed in a non-comatose, fatal case of severe knowlesi infection, but the potential impact of this malaria species on the brain remains underexplored. To address this gap, we investigated circulating levels of brain injury, inflammation, and vascular biomarkers in a cohort of knowlesi-infected patients and controls. Methods Archived plasma samples from 19 patients with confirmed symptomatic knowlesi infection and 19 healthy, age-matched controls from Peninsular Malaysia were analysed. A total of 52 plasma biomarkers of brain injury, inflammation, and vascular activation were measured using Luminex and SIMOA assays. Wilcoxon tests were used to examine group differences, and biomarker profiles were explored through hierarchical clustering heatmap analysis. Results Bonferroni-corrected analyses revealed significantly elevated brain injury biomarker levels in knowlesi-infected patients, including S100B (p<0.0001), Tau (p=0.0007), UCH-L1 (p<0.0001), αSyn (p<0.0001), Park7 (p=0.0006), NRGN (p=0.0022), and TDP-43 (p=0.005). Compared to controls, levels were lower in the infected group for BDNF (p<0.0001), CaBD (p<0.0001), CNTN1 (p<0.0001), NCAM-1 (p<0.0001), GFAP (p=0.0013), and KLK6 (p=0.0126). Hierarchical clustering revealed distinct group profiles for circulating levels of brain injury and vascular activation biomarkers. Conclusions Our findings highlight for the first time the impact of Plasmodium knowlesi infection on the brain, with distinct alterations in cerebral injury and endothelial activation biomarker profiles compared to healthy controls. Further studies are warranted to investigate the pathophysiology and clinical significance of these altered surrogate markers, through both neuroimaging and long-term neurocognitive assessments.
Collapse
|
5
|
Sugiarto SR, Baird JK, Singh B, Elyazar I, Davis TME. The history and current epidemiology of malaria in Kalimantan, Indonesia. Malar J 2022; 21:327. [DOI: 10.1186/s12936-022-04366-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 11/05/2022] [Indexed: 11/15/2022] Open
Abstract
AbstractKalimantan is a part of Indonesia, which occupies the southern three-quarters of the island of Borneo, sharing a border with the Malaysian states of Sabah and Sarawak. Although most areas of Kalimantan have low and stable transmission of Plasmodium falciparum and Plasmodium vivax, there are relatively high case numbers in the province of East Kalimantan. Two aspects of malaria endemicity in Kalimantan differentiate it from the rest of Indonesia, namely recent deforestation and potential exposure to the zoonotic malaria caused by Plasmodium knowlesi that occurs in relatively large numbers in adjacent Malaysian Borneo. In the present review, the history of malaria and its current epidemiology in Kalimantan are examined, including control and eradication efforts over the past two centuries, mosquito vector prevalence, anti-malarial use and parasite resistance, and the available data from case reports of knowlesi malaria and the presence of conditions which would support transmission of this zoonotic infection.
Collapse
|
6
|
A survey of simian Plasmodium infections in humans in West Kalimantan, Indonesia. Sci Rep 2022; 12:18546. [PMID: 36329096 PMCID: PMC9633791 DOI: 10.1038/s41598-022-21570-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022] Open
Abstract
The simian parasite Plasmodium knowlesi is the predominant species causing human malaria infection, including hospitalisations for severe disease and death, in Malaysian Borneo. By contrast, there have been only a few case reports of knowlesi malaria from Indonesian Borneo. This situation seems paradoxical since both regions share the same natural macaque hosts and Anopheles mosquito vectors, and therefore have a similar epidemiologically estimated risk of infection. To determine whether there is a true cross-border disparity in P. knowlesi prevalence, we conducted a community-based malaria screening study using PCR in Kapuas Hulu District, West Kalimantan. Blood samples were taken between April and September 2019 from 1000 people aged 6 months to 85 years attending health care facilities at 27 study sites within or close to jungle areas. There were 16 Plasmodium positive samples by PCR, five human malarias (two Plasmodium vivax, two Plasmodium ovale and one Plasmodium malariae) and 11 in which no species could be definitively identified. These data suggest that, if present, simian malarias including P. knowlesi are rare in the Kapuas Hulu District of West Kalimantan, Indonesian Borneo compared to geographically adjacent areas of Malaysian Borneo. The reason for this discrepancy, if confirmed in other epidemiologically similar regions of Indonesian Borneo, warrants further studies targeting possible cross-border differences in human activities in forested areas, together with more detailed surveys to complement the limited data relating to monkey hosts and Anopheles mosquito vectors in Indonesian Borneo.
Collapse
|
7
|
Non-Human Primate Malaria Infections: A Review on the Epidemiology in Malaysia. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19137888. [PMID: 35805545 PMCID: PMC9265734 DOI: 10.3390/ijerph19137888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 02/01/2023]
Abstract
Malaria remains a public health problem in many parts of the world, including Malaysia. Although Malaysia has been recognized as one of the countries free from indigenous human malaria since 2018, the rising trend of zoonotic malaria, particularly Plasmodium knowlesi cases, poses a threat to public health and is of great concern to the country’s healthcare system. We reviewed previously scattered information on zoonotic malaria infections in both Peninsular Malaysia and Malaysian Borneo to determine the epidemiology and distribution of emerging zoonotic malaria infections. Given the high prevalence of zoonotic malaria in Malaysia, efforts should be made to detect zoonotic malaria in humans, mosquito vectors, and natural hosts to ensure the success of the National Malaria Elimination Strategic Plan.
Collapse
|
8
|
Su XZ, Wu J. Zoonotic Transmissions and Host Switches of Malaria Parasites. ZOONOSES (BURLINGTON, MASS.) 2021; 1. [PMID: 35282332 DOI: 10.15212/zoonoses-2021-0015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Malaria is a deadly disease that affects the health of hundreds of millions of people annually. There are five Plasmodium parasite species that can naturally infect humans, including Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae, Plasmodium ovale and Plasmodium knowlesi. Some of the parasites can also infect various non-human primates. Parasites mainly infecting monkeys such as Plasmodium cynomolgi (in fact P. knowlesi was considered as a parasite of monkeys for years) can also be transmitted to human hosts. Recently, many new Plasmodium species were discovered in African apes, and it is possible that some of the parasites can be transmitted to humans in the future. Here, we searched PubMed and the internet via Google and selected articles concerning zoonotic transmission and evolution of selected malaria parasite species. We reviewed the current advances in the relevant topics emphasizing on transmissions of malaria parasites between humans and non-human primates. We also briefly discuss the transmissions of some avian malaria parasites between wild birds and domestic fowls. Zoonotic malaria transmissions are widespread, which poses a threat to public health. More studies on parasite species identification in non-human primates, transmission, and evolution are needed to reduce or prevent transmission of malaria parasites from non-human primates to humans.
Collapse
Affiliation(s)
- Xin-Zhuan Su
- Malaria Functional Genomics Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892-8132, USA
| | - Jian Wu
- Malaria Functional Genomics Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892-8132, USA
| |
Collapse
|