1
|
Khan M, Verma L. Crosstalk between signaling pathways (Rho/ROCK, TGF-β and Wnt/β-Catenin Pathways/ PI3K-AKT-mTOR) in Cataract: A Mechanistic Exploration and therapeutic strategy. Gene 2025; 947:149338. [PMID: 39965745 DOI: 10.1016/j.gene.2025.149338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/04/2025] [Accepted: 02/14/2025] [Indexed: 02/20/2025]
Abstract
Cataract are a leading cause of visual impairment that is characterized by clouding or lens opacification of the healthy clear lens of the eye or its capsule. It can be classified based on their etiology and clinical presentation such as congenital, age-related, and secondary cataracts. Clinically, it may be further classified as a cortical or nuclear cataract. Cortical cataracts are responsible for opacification of the lens cortex, while nuclear cataracts cause age-related degeneration of the lens nucleus. This review aims to explore the molecular mechanism associated with various signaling pathways underlying cataract formation. Additionally, explore the potential therapeutic strategies for the management of cataracts. A comprehensive literature search was performed utilizing different keywords such as cataract, pathogenesis, signaling pathways, therapeutic approaches, RNA therapeutics, and surgery. Electronic databases such as PubMed, Google Scholar, Springer Link, and Web of Science were used for the literature search. The cataract formation is responsible for protein aggregation, primarily of γ-crystallin, and causes disruptions in signaling pathways. Key pathways include Rho/ROCK, TGF-β, Wnt/β-catenin, NF-κB, and PI3K-AKT-mTOR. Signaling pathways governing lens epithelial cell differentiation and epithelial-to-mesenchymal transition (EMT) are essential for maintaining lens transparency. Disruptions in these pathways, often caused by genetic mutations in genes like MIP, TDRD7, PAX6, FOXE3, HSF4, MAF, and PITX3 lead to cataract formation. While surgical intervention remains the primary treatment, pharmacological therapies and emerging RNA-based strategies offer promising strategies for the prevention and management of cataracts. A deeper understanding of the underlying molecular mechanisms is essential to develop innovative therapeutic strategies and improve the quality of life for individuals affected by cataracts.
Collapse
Affiliation(s)
- Meraj Khan
- Faculty of Pharmaceutical Sciences, Sagar Institute of Research & Technology-Pharmacy, Sanjeev Agrawal Global Educational University, Bhopal, Madhya.Pradesh 462022, India.
| | - Lokesh Verma
- Faculty of Pharmaceutical Sciences, Sagar Institute of Research & Technology-Pharmacy, Sanjeev Agrawal Global Educational University, Bhopal, Madhya.Pradesh 462022, India.
| |
Collapse
|
2
|
Amankwa CE, DebNath B, Pham JH, Johnson GA, Zhang W, Ranjan A, Stankowska DL, Acharya S. Optimized PLGA encapsulated SA-2 nanosuspension exhibits sustained intraocular pressure reduction in the mouse microbead occlusion model of ocular hypertension. Eur J Pharm Sci 2025; 206:107016. [PMID: 39827971 DOI: 10.1016/j.ejps.2025.107016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/19/2024] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
Elevated intraocular pressure (IOP) is implicated in the structural and functional damage to the retinal ganglion cells (RGCs) in primary open-angle glaucoma (POAG). Topical IOP lowering agents provide short-term relief, necessitating frequent dosing. Moreover, non-adherence to frequent eyedrops administration contributes significantly to visual field loss and worsens the disease outcome. We optimized the poly (lactic-co-glycolic acid) (PLGA) nanoparticles encapsulation of hybrid antioxidant-nitric oxide donor SA-2 (SA-2NP), investigated its bioavailability, duration of IOP lowering efficacy, and effects on retinal function in the microbead model of ocular hypertension (OHT). SA-2 was bioavailable in the anterior and posterior segments after 1, 8, and 24 h post-single topical eyedrop administration. SA-2NP significantly lowered IOP (∼25-34%) and preserved the RGC function after weekly eyedrop administration for 3 weeks in C57BL/6J mice. In conclusion, the optimized SA-2NP formulation demonstrated optimal bioavailability, ocular safety, and prolonged IOP-lowering efficacy in the mouse microbead occlusion model of OHT.
Collapse
Affiliation(s)
- Charles E Amankwa
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Biddut DebNath
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Jennifer H Pham
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Gretchen A Johnson
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Wei Zhang
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Amalendu Ranjan
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Dorota L Stankowska
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA.
| | - Suchismita Acharya
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA.
| |
Collapse
|
3
|
Cummings OW, Meléndez-Montañez JM, Naraine L, Yavuz Saricay L, El Helwe H, Solá-Del Valle D. Crystalline keratopathy following long-term netarsudil therapy. Am J Ophthalmol Case Rep 2024; 35:102069. [PMID: 38799226 PMCID: PMC11126778 DOI: 10.1016/j.ajoc.2024.102069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/09/2024] [Accepted: 04/17/2024] [Indexed: 05/29/2024] Open
Abstract
Purpose This case report highlights a possible association between netarsudil use and crystalline keratopathy. Observations Presented here is the case of a 72-year-old woman with primary open-angle glaucoma (POAG) who developed corneal crystalline keratopathy after taking netarsudil for 24 months. The patient's medical history was significant for dry eye syndrome, bilateral ptosis with surgical repair, and atopy (including asthma and various ocular and systemic allergies). The patient had previously undergone surgical repair for bilateral ptosis as well. During the interval between two routine visits, this patient experienced worsening vision with associated eye irritation. Further examination revealed crystal deposits on the anterior corneal surface in the left eye, the only eye undergoing netarsudil treatment. Conclusions and importance Long-term netarsudil use may be associated with crystalline keratopathy in the anterior stroma, with the potential to cause sight-threatening vision loss if located in the visual axis.
Collapse
Affiliation(s)
| | | | - Leah Naraine
- Glaucoma Service, Massachusetts Eye, and Ear, Harvard Medical School, Department of Ophthalmology, Boston, MA, USA
| | - Leyla Yavuz Saricay
- Cornea Service, Massachusetts Eye, and Ear, Harvard Medical School, Department of Ophthalmology, Boston, MA, USA
| | - Hani El Helwe
- Glaucoma Service, Massachusetts Eye, and Ear, Harvard Medical School, Department of Ophthalmology, Boston, MA, USA
| | - David Solá-Del Valle
- Glaucoma Service, Massachusetts Eye, and Ear, Harvard Medical School, Department of Ophthalmology, Boston, MA, USA
| |
Collapse
|
4
|
Jing L, Liu K, Wang F, Su Y. Role of mechanically-sensitive cation channels Piezo1 and TRPV4 in trabecular meshwork cell mechanotransduction. Hum Cell 2024; 37:394-407. [PMID: 38316716 DOI: 10.1007/s13577-024-01035-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/17/2024] [Indexed: 02/07/2024]
Abstract
Glaucoma is one of the leading causes of irreversible blindness in developed countries, and intraocular pressure (IOP) is primary and only treatable risk factor, suggesting that to a significant extent, glaucoma is a disease of IOP disorder and pathological mechanotransduction. IOP-lowering ways are limited to decreaseing aqueous humour (AH) production or increasing the uveoscleral outflow pathway. Still, therapeutic approaches have been lacking to control IOP by enhancing the trabecular meshwork (TM) pathway. Trabecular meshwork cells (TMCs) have endothelial and myofibroblast properties and are responsible for the renewal of the extracellular matrix (ECM). Mechanosensitive cation channels, including Piezo1 and TRPV4, are abundantly expressed in primary TMCs and trigger mechanostress-dependent ECM and cytoskeletal remodelling. However, prolonged mechanical stimulation severely affects cellular biosynthesis through TMC mechanotransduction, including signaling, gene expression, ECM remodelling, and cytoskeletal structural changes, involving outflow facilities and elevating IOP. As for the functional coupling relationship between Piezo1 and TRPV4 channels, inspired by VECs and osteoblasts, we hypothesized that Piezo1 may also act upstream of TRPV4 in glaucomatous TM tissue, mediating the activation of TRPV4 via Ca2+ inflow or Ca2+ binding to phospholipase A2(PLA2), and thus be involved in increasing TM outflow resistance and elevated IOP. Therefore, this review aims to help identify new potential targets for IOP stabilization in ocular hypertension and primary open-angle glaucoma by understanding the mechanical transduction mechanisms associated with the development of glaucoma and may provide ideas into novel treatments for preventing the progression of glaucoma by targeting mechanotransduction.
Collapse
Affiliation(s)
- Lingling Jing
- Department of Ophthalmology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Kexin Liu
- Department of Ophthalmology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Feng Wang
- Department of Ophthalmology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China.
| | - Ying Su
- Eye Hospital, The First Affiliated Hospital, Harbin Medical University, Harbin, China.
| |
Collapse
|
5
|
Debele TA, Mount ZF, Yuan Y, Kao WWY, Park YC. The Effects of ROCK Inhibitor on Prevention of Dexamethasone-Induced Glaucoma Phenotype in Human Trabecular Meshwork Cells. Transl Vis Sci Technol 2023; 12:4. [PMID: 38051267 PMCID: PMC10702786 DOI: 10.1167/tvst.12.12.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 11/07/2023] [Indexed: 12/07/2023] Open
Abstract
Purpose This study investigated the effects of dexamethasone (Dex) on human trabecular meshwork (TM) cells, a model of glucocorticoid-induced glaucoma, and evaluated the impact of ripasudil (Rip) as a co-delivery or sequential dosing strategy. Methods In vitro experiments were conducted to assess the effects of Dex and Rip on TM cells. Confocal microscopy was used to evaluate the impact of Dex and Rip on F-actin staining signals. Contractility of the TM cells upon Dex and Rip treatment mimicking co-delivery and sequential delivery was quantified using collagen gel contraction assay. Transepithelial electrical resistance (TEER) values and fluorescein isothiocyanate (FITC)-dextran permeability were also measured to assess the impact of Dex and Rip on TM cells. Results Dex and Rip did not exhibit cytotoxicity at the maximum tested concentration (20 µM). Dex-treated TM cells exhibited higher F-actin staining signals compared to controls, which were reduced when co-treated with Rip. Rip inhibited Dex-induced collagen gel contraction activity in both co-delivery and sequential treatments. Dex resulted in increased TEER values as the dose increased, whereas TEER values were maintained when co-treated with Rip. Conclusions Co-delivery of Rip has the potential to prevent glaucoma symptoms when patients are treated with Dex. This study highlights the importance of identifying strategies to reduce the side effects of prolonged use of glucocorticoids, such as Dex, in the treatment of various diseases. Translational Relevance This study demonstrates the potential of co-delivering ripasudil with dexamethasone to mitigate glucocorticoid-induced ocular hypertension and a secondary glaucoma that resembles primary open-angle glaucoma, providing insights for the development of novel preventive strategies in clinical care.
Collapse
Affiliation(s)
- Tilahun Ayane Debele
- Department of Chemical and Environmental Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH, USA
| | - Zachary F. Mount
- Department of Chemical and Environmental Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH, USA
| | - Yong Yuan
- Department of Ophthalmology, College of Medicine, University of Cincinnati, OH, USA
| | - Winston W.-Y. Kao
- Department of Ophthalmology, College of Medicine, University of Cincinnati, OH, USA
| | - Yoonjee C. Park
- Department of Chemical and Environmental Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH, USA
- Department of Ophthalmology, College of Medicine, University of Cincinnati, OH, USA
| |
Collapse
|
6
|
Polopalli S, Saha A, Niri P, Kumar M, Das P, Kamboj DV, Chattopadhyay P. ROCK Inhibitors as an Alternative Therapy for Corneal Grafting: A Systematic Review. J Ocul Pharmacol Ther 2023; 39:585-599. [PMID: 37738326 DOI: 10.1089/jop.2023.0040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023] Open
Abstract
Currently, corneal blindness is affecting >10 million individuals worldwide, and there is a significant unmet medical need because only 1.5% of transplantation needs are met globally due to a lack of high-quality grafts. In light of this global health disaster, researchers are developing corneal substitutes that can resemble the human cornea in vivo and replace human donor tissue. Thus, this review examines ROCK (Rho-associated coiled-coil containing protein kinases) inhibitors as a potential corneal wound-healing (CWH) therapy by reviewing the existing clinical and nonclinical findings. The systematic review was done from PubMed, Scopus, Web of Science, and Google Scholar for CWH, corneal injury, corneal endothelial wound healing, ROCK inhibitors, Fasudil, Netarsudil, Ripasudil, Y-27632, clinical trial, clinical study, case series, case reports, preclinical study, in vivo, and in vitro studies. After removing duplicates, all downloaded articles were examined. The literature search included the data till January 2023. This review summarized the results of ROCK inhibitors in clinical and preclinical trials. In a clinical trial, various ROCK inhibitors improved CWH in individuals with open-angle glaucoma, cataract, iris cyst, ocular hypertension, and other ocular diseases. ROCK inhibitors also improved ocular wound healing by increasing cell adhesion, migration, and proliferation in vitro and in vivo. ROCK inhibitors have antifibrotic, antiangiogenic, anti-inflammatory, and antiapoptotic characteristics in CWH, according to the existing research. ROCK inhibitors were effective topical treatments for corneal infections. Ripasudil, Y-27632, H-1152, Y-39983, and AMA0526 are a few new ROCK inhibitors that may help CWH and replace human donor tissue.
Collapse
Affiliation(s)
- Subramanyam Polopalli
- Division of Pharmaceutical Technology, Defence Research Laboratory (DRL), Defence Research and Development Organisation (DRDO), Tezpur, India
- Department of Chemical Technology, University of Calcutta, Kolkata, India
| | - Achintya Saha
- Department of Chemical Technology, University of Calcutta, Kolkata, India
| | - Pakter Niri
- Division of Pharmaceutical Technology, Defence Research Laboratory (DRL), Defence Research and Development Organisation (DRDO), Tezpur, India
- Department of Chemical Technology, University of Calcutta, Kolkata, India
| | - Mohit Kumar
- Division of Pharmaceutical Technology, Defence Research Laboratory (DRL), Defence Research and Development Organisation (DRDO), Tezpur, India
| | - Parikshit Das
- Division of Pharmaceutical Technology, Defence Research Laboratory (DRL), Defence Research and Development Organisation (DRDO), Tezpur, India
| | - Dev Vrat Kamboj
- Division of Pharmaceutical Technology, Defence Research Laboratory (DRL), Defence Research and Development Organisation (DRDO), Tezpur, India
| | - Pronobesh Chattopadhyay
- Division of Pharmaceutical Technology, Defence Research Laboratory (DRL), Defence Research and Development Organisation (DRDO), Tezpur, India
| |
Collapse
|
7
|
Pagano L, Lee JW, Posarelli M, Giannaccare G, Kaye S, Borgia A. ROCK Inhibitors in Corneal Diseases and Glaucoma-A Comprehensive Review of These Emerging Drugs. J Clin Med 2023; 12:6736. [PMID: 37959203 PMCID: PMC10648286 DOI: 10.3390/jcm12216736] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Rho kinase (ROCK) inhibitors have gained significant attention as emerging novel treatment options in the field of ophthalmology in recent years. The evidence supporting their efficacy in glaucoma and corneal pathology includes both in vitro and clinical studies. Among the available options, ripasudil and netarsudil have emerged as the leading ROCK inhibitors, and some countries have approved these therapeutic options as treatments for glaucoma. Various dosing regimens have been studied, including monotherapy and combination therapy, especially for patients with secondary glaucoma who are already on multiple medications. Another rising application of ROCK inhibitors includes their use as an adjunct in surgical procedures such as Descemetorhexis Without Endothelial Keratoplasty (DWEK), Descemet Stripping Only (DSO) to accelerate visual recovery, glaucoma surgeries to reduce scarring process and allow better intraocular pressure (IOP) control, or after complicated anterior segment surgery to treat corneal oedema. This article provides a comprehensive overview of the existing literature in the field, offering recommendations for prescribing ROCK inhibitors and also discussing patient selection, drug efficacy, and possible adverse effects.
Collapse
Affiliation(s)
- Luca Pagano
- Department of Biomedical Sciences, Humanitas University, 20072 Milano, Italy;
| | - Jason William Lee
- Clinical Eye Research Centre, St Paul’s Eye Unit, Royal Liverpool University Hospital, Liverpool L7 8YE, UK;
| | - Matteo Posarelli
- Department of Corneal Diseases, St. Paul’s Eye Unit, Royal Liverpool University Hospital, Liverpool L7 8YE, UK; (M.P.); (S.K.); (A.B.)
- Ophthalmology Unit of the Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| | - Giuseppe Giannaccare
- Eye Clinic, Department of Surgical Sciences, University of Cagliari, 09124 Cagliari, Italy
| | - Stephen Kaye
- Department of Corneal Diseases, St. Paul’s Eye Unit, Royal Liverpool University Hospital, Liverpool L7 8YE, UK; (M.P.); (S.K.); (A.B.)
| | - Alfredo Borgia
- Department of Corneal Diseases, St. Paul’s Eye Unit, Royal Liverpool University Hospital, Liverpool L7 8YE, UK; (M.P.); (S.K.); (A.B.)
- Eye Unit, Humanitas-Gradenigo Hospital, 10122 Turin, Italy
| |
Collapse
|