1
|
Li JW, Zhou P, Hu ZH, Xiong AS, Li XH, Chen X, Zhuang J. The transcription factor CsPAT1 from tea plant (Camellia sinensis) is involved in drought tolerance by modulating phenylpropanoid biosynthesis. JOURNAL OF PLANT PHYSIOLOGY 2025; 308:154474. [PMID: 40154189 DOI: 10.1016/j.jplph.2025.154474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/12/2025] [Accepted: 03/12/2025] [Indexed: 04/01/2025]
Abstract
Tea plants, in particular, leafy cash crops, prefer warm and humid climates. Our previous work identified CsPAT1 as a facilitator of lignin biosynthesis in tea plants. The specific role of CsPAT1 in tea plants' abiotic stress response remains unclear. In this study, we found that the expression of CsPAT1 in tea plants was induced under drought, cold, heat, and ABA treatments. CsPAT1 transgenic Arabidopsis lines displayed enhanced drought tolerance compared with wild-type (WT) controls. The SOD and POD activities, proline content, and expression levels of drought-responsive genes were significantly increased in transgenic Arabidopsis under drought stress treatment. Transcriptome analysis revealed a significant enrichment of differentially expressed genes (DEGs) in the flavonoid biosynthesis pathway. Correspondingly, total flavonoid contents were significantly higher in the CsPAT1 transgenic lines. Through UPLC-MS/MS-based flavonoid metabolome analysis, we identified and quantified 24 flavonoid metabolites. Notably, CsPAT1 transgenic lines exhibited significantly lower levels of phenylpropanoids and hydroxycinnamic acids, key precursors in phenylpropanoid biosynthesis. Conversely, nine flavonoid compounds were significantly elevated in the transgenic lines, including apigenin, luteolin 7-O-glucoside, kaempferide, naringenin, butin, catechin, biochanin A, daidzin, and genistein. These findings suggest that CsPAT1 may enhance drought resistance by regulating the phenylpropanoid metabolic pathway. Our results provide insights for future breeding strategies to enhance drought tolerance in tea plants.
Collapse
Affiliation(s)
- Jing-Wen Li
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ping Zhou
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zhi-Hang Hu
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Xing-Hui Li
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Xuan Chen
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jing Zhuang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
2
|
Luo B, Sun H, Zhang L, Chen F, Wu K. Advances in the tea plants phenotyping using hyperspectral imaging technology. FRONTIERS IN PLANT SCIENCE 2024; 15:1442225. [PMID: 39148615 PMCID: PMC11324491 DOI: 10.3389/fpls.2024.1442225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024]
Abstract
Rapid detection of plant phenotypic traits is crucial for plant breeding and cultivation. Traditional measurement methods are carried out by rich-experienced agronomists, which are time-consuming and labor-intensive. However, with the increasing demand for rapid and high-throughput testing in tea plants traits, digital breeding and smart cultivation of tea plants rely heavily on precise plant phenotypic trait measurement techniques, among which hyperspectral imaging (HSI) technology stands out for its ability to provide real-time and rich-information. In this paper, we provide a comprehensive overview of the principles of hyperspectral imaging technology, the processing methods of cubic data, and relevant algorithms in tea plant phenomics, reviewing the progress of applying hyperspectral imaging technology to obtain information on tea plant phenotypes, growth conditions, and quality indicators under environmental stress. Lastly, we discuss the challenges faced by HSI technology in the detection of tea plant phenotypic traits from different perspectives, propose possible solutions, and envision the potential development prospects of HSI technology in the digital breeding and smart cultivation of tea plants. This review aims to provide theoretical and technical support for the application of HSI technology in detecting tea plant phenotypic information, further promoting the trend of developing high quality and high yield tea leaves.
Collapse
Affiliation(s)
- Baidong Luo
- College of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou, China
| | - Hongwei Sun
- College of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou, China
| | - Leilei Zhang
- Key Laboratory of Specialty Agri-Products Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Fengnong Chen
- College of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou, China
| | - Kaihua Wu
- College of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou, China
| |
Collapse
|
3
|
Maritim TK, Korir RK, Nyabundi KW, Wachira FN, Kamunya SM, Muoki RC. Molecular regulation of anthocyanin discoloration under water stress and high solar irradiance in pluckable shoots of purple tea cultivar. PLANTA 2021; 254:85. [PMID: 34581909 DOI: 10.1007/s00425-021-03736-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
During water-deficit stress, antioxidant enzymes use anthocyanin molecules as co-substrates to scavenge for reactive oxygen species leading to reduced anthocyanin content and ultimately loss of purple leaf pigmentation in tea. Anthocyanins are an important class of flavonoids responsible for liquor color and market acceptability of processed tea from the anthocyanin-rich purple tea cultivar 'TRFK 306'. However, the color in pluckable shoots fade and turn green during the dry and hot season, before rapidly reverting back to purple when weather is favorably wet and cool/cold. Our study revealed that loss of purple leaf pigmentation correlated well with reduced precipitation, high soil water-deficit, increased intensity and duration of sunlight and temperature. Richly purple pigmented leaves harvested during the cool, wet conditions recorded significantly higher anthocyanin content compared to faded samples harvested during the dry season. Similarly, individual anthocyanins were affected by seasonal changes with malvidin being the most abundant. Comparative transcriptomics of two RNA-seq libraries, dry/discolored and wet/colored seasons, revealed depression of most metabolic processes related to anthocyanin accumulation in dry conditions. Specifically, transcripts encoding pathway regulators, MYB-bHLH-WD40 (MBW) complex, were repressed possibly contributing to the suppression of late biosynthetic genes of the pathway. Further, suppression of anthocyanin transport genes could be linked to reduced accumulation of anthocyanin in the vacuole during the dry season. However, slight increase in expression of some transporter and reactive oxygen species (ROS) antioxidant genes in the discolored leaf suggests non-enzymatic degradation of anthocyanin, ultimately leading to loss of purple color during the dry season. Based on increased expression of ROS antioxidant genes (especially catalase and superoxide dismutase) in the discolored leaf, we speculate that anthocyanins are used as co-substrates by antioxidant enzymes to scavenge for ROS (especially hydrogen peroxide) that escape from organelles, leading to reduced anthocyanins and loss of pigmentation during the dry season.
Collapse
Affiliation(s)
- Tony Kipkoech Maritim
- Tea Breeding and Genetic Improvement Division, Crop Improvement and Management Programme, Kenya Agricultural and Livestock Research Organization, Tea Research Institute, P.O. Box 820-20200, Kericho, Kenya
| | - Robert Kiplangat Korir
- Tea Breeding and Genetic Improvement Division, Crop Improvement and Management Programme, Kenya Agricultural and Livestock Research Organization, Tea Research Institute, P.O. Box 820-20200, Kericho, Kenya
| | - Karl Wilson Nyabundi
- Sustainable Ecosystems, Management and Conservation Programme, Kenya Agricultural and Livestock Research Organization, Tea Research Institute, P.O. Box 820-20200, Kericho, Kenya
| | - Francis Nyamu Wachira
- Department of Life Sciences, South Eastern Kenya University, P.O Box 170-90200, Kitui, Kenya
| | - Samson Machohi Kamunya
- Tea Breeding and Genetic Improvement Division, Crop Improvement and Management Programme, Kenya Agricultural and Livestock Research Organization, Tea Research Institute, P.O. Box 820-20200, Kericho, Kenya
| | - Richard Chalo Muoki
- Tea Breeding and Genetic Improvement Division, Crop Improvement and Management Programme, Kenya Agricultural and Livestock Research Organization, Tea Research Institute, P.O. Box 820-20200, Kericho, Kenya.
| |
Collapse
|
4
|
Samarina LS, Bobrovskikh AV, Doroshkov AV, Malyukova LS, Matskiv AO, Rakhmangulov RS, Koninskaya NG, Malyarovskaya VI, Tong W, Xia E, Manakhova KA, Ryndin AV, Orlov YL. Comparative Expression Analysis of Stress-Inducible Candidate Genes in Response to Cold and Drought in Tea Plant [ Camellia sinensis (L.) Kuntze]. Front Genet 2020; 11:611283. [PMID: 33424935 PMCID: PMC7786056 DOI: 10.3389/fgene.2020.611283] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/23/2020] [Indexed: 12/15/2022] Open
Abstract
Cold and drought are two of the most severe threats affecting the growth and productivity of the tea plant, limiting its global spread. Both stresses cause osmotic changes in the cells of the tea plant by decreasing their water potential. To develop cultivars that are tolerant to both stresses, it is essential to understand the genetic responses of tea plant to these two stresses, particularly in terms of the genes involved. In this study, we combined literature data with interspecific transcriptomic analyses (using Arabidopsis thaliana and Solanum lycopersicum) to choose genes related to cold tolerance. We identified 45 stress-inducible candidate genes associated with cold and drought responses in tea plants based on a comprehensive homologous detection method. Of these, nine were newly characterized by us, and 36 had previously been reported. The gene network analysis revealed upregulated expression in ICE1-related cluster of bHLH factors, HSP70/BAM5 connected genes (hexokinases, galactinol synthases, SnRK complex, etc.) indicating their possible co-expression. Using qRT-PCR we revealed that 10 genes were significantly upregulated in response to both cold and drought in tea plant: HSP70, GST, SUS1, DHN1, BMY5, bHLH102, GR-RBP3, ICE1, GOLS1, and GOLS3. SnRK1.2, HXK1/2, bHLH7/43/79/93 were specifically upregulated in cold, while RHL41, CAU1, Hydrolase22 were specifically upregulated in drought. Interestingly, the expression of CIP was higher in the recovery stage of both stresses, indicating its potentially important role in plant recovery after stress. In addition, some genes, such as DHN3, bHLH79, PEI54, SnRK1.2, SnRK1.3, and Hydrolase22, were significantly positively correlated between the cold and drought responses. CBF1, GOLS1, HXK2, and HXK3, by contrast, showed significantly negative correlations between the cold and drought responses. Our results provide valuable information and robust candidate genes for future functional analyses intended to improve the stress tolerance of the tea plant and other species.
Collapse
Affiliation(s)
- Lidiia S Samarina
- Biotechnology Department, Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Sochi, Russia
| | - Alexandr V Bobrovskikh
- Biotechnology Department, Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Sochi, Russia.,Institute Cytology and Genetics Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Alexey V Doroshkov
- Biotechnology Department, Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Sochi, Russia.,Institute Cytology and Genetics Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Lyudmila S Malyukova
- Biotechnology Department, Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Sochi, Russia
| | - Alexandra O Matskiv
- Biotechnology Department, Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Sochi, Russia
| | - Ruslan S Rakhmangulov
- Biotechnology Department, Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Sochi, Russia
| | - Natalia G Koninskaya
- Biotechnology Department, Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Sochi, Russia
| | - Valentina I Malyarovskaya
- Biotechnology Department, Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Sochi, Russia
| | - Wei Tong
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Enhua Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Karina A Manakhova
- Biotechnology Department, Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Sochi, Russia
| | - Alexey V Ryndin
- Biotechnology Department, Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Sochi, Russia
| | - Yuriy L Orlov
- Biotechnology Department, Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Sochi, Russia.,Agrarian and Technological Institute, Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
| |
Collapse
|
5
|
Muoki CR, Maritim TK, Oluoch WA, Kamunya SM, Bore JK. Combating Climate Change in the Kenyan Tea Industry. FRONTIERS IN PLANT SCIENCE 2020; 11:339. [PMID: 32269583 PMCID: PMC7109314 DOI: 10.3389/fpls.2020.00339] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 03/06/2020] [Indexed: 05/23/2023]
Abstract
Climate change triggered by global warming poses a major threat to agricultural systems globally. This phenomenon is characterized by emergence of pests and diseases, extreme weather events, such as prolonged drought, high intensity rains, hailstones and frosts, which are becoming more frequent ultimately impacting negatively to agricultural production including rain-fed tea cultivation. Kenya is predominantly an agricultural based economy, with the tea sector generating about 26% of the total export earnings and about 4% gross domestic product (GDP). In the recent years, however, the country has witnessed unstable trends in tea production associated with climate driven stresses. Toward mitigation and adaptation of climate change, multiple approaches for impact assessment, intensity prediction and adaptation have been advanced in the Kenyan tea sub-sector. Further, pressure on tea breeders to release improved climate-compatible cultivars for the rapidly deteriorating environment has resulted in the adoption of a multi-targeted approach seeking to understand the complex molecular regulatory networks associated with biotic and abiotic stresses adaptation and tolerance in tea. Genetic modeling, a powerful tool that assists in breeding process, has also been adopted for selection of tea cultivars for optimal performance under varying climatic conditions. A range of physiological and biochemical responses known to counteract the effects of environmental stresses in most plants that include lowering the rates of cellular growth and net photosynthesis, stomatal closure, and the accumulation of organic solutes such as sugar alcohols, or osmolytes have been used to support breeding programs through screening of new tea cultivars suitable for changing environment. This review describes simulation models combined with high resolution climate change scenarios required to quantify the relative importance of climate change on tea production. In addition, both biodiversity and ecosystem based approaches are described as a part of an overall adaptation strategy to mitigate adverse effects of climate change on tea in Kenya and gaps highlighted for urgent investigations.
Collapse
Affiliation(s)
- Chalo Richard Muoki
- Crop Improvement and Management Programme, Kenya Agricultural and Livestock Research Organization, Tea Research Institute, Kericho, Kenya
| | - Tony Kipkoech Maritim
- Crop Improvement and Management Programme, Kenya Agricultural and Livestock Research Organization, Tea Research Institute, Kericho, Kenya
| | - Wyclife Agumba Oluoch
- Sustainable Ecosystem Management and Conservation Programme, Kenya Agricultural and Livestock Research Organization, Tea Research Institute, Kericho, Kenya
| | - Samson Machohi Kamunya
- Crop Improvement and Management Programme, Kenya Agricultural and Livestock Research Organization, Tea Research Institute, Kericho, Kenya
| | - John Kipkoech Bore
- Sustainable Ecosystem Management and Conservation Programme, Kenya Agricultural and Livestock Research Organization, Tea Research Institute, Kericho, Kenya
| |
Collapse
|
6
|
Parmar R, Seth R, Singh P, Singh G, Kumar S, Sharma RK. Transcriptional profiling of contrasting genotypes revealed key candidates and nucleotide variations for drought dissection in Camellia sinensis (L.) O. Kuntze. Sci Rep 2019; 9:7487. [PMID: 31097754 PMCID: PMC6522520 DOI: 10.1038/s41598-019-43925-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 05/01/2019] [Indexed: 12/20/2022] Open
Abstract
Tea is popular health beverage consumed by millions of people worldwide. Drought is among the acute abiotic stress severely affecting tea cultivation, globally. In current study, transcriptome sequencing of four diverse tea genotypes with inherent contrasting genetic response to drought (tolerant & sensitive) generated more than 140 million reads. De novo and reference-based assembly and functional annotation of 67,093 transcripts with multifarious public protein databases yielded 54,484 (78.2%) transcripts with significant enrichment of GO and KEGG drought responsive pathways in tolerant genotypes. Comparative DGE and qRT analysis revealed key role of ABA dependent & independent pathways, potassium & ABC membrane transporters (AtABCG22, AtABCG11, AtABCC5 & AtABCC4) and antioxidant defence system against oxidative stress in tolerant genotypes, while seems to be failed in sensitive genotypes. Additionally, highly expressed UPL3HECT E3 ligases and RING E3 ligases possibly enhance drought tolerance by actively regulating functional modification of stress related genes. Further, ascertainment of, 80803 high quality putative SNPs with functional validation of key non-synonymous SNPs suggested their implications for developing high-throughput genotyping platform in tea. Futuristically, functionally relevant genomic resources can be potentially utilized for gene discovery, genetic engineering and marker-assisted genetic improvement for better yield and quality in tea under drought conditions.
Collapse
Affiliation(s)
- Rajni Parmar
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, 176061, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-IHBT, Palampur, Himachal Pradesh, 176061, India
| | - Romit Seth
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, 176061, India.,Department of Biotechnology, Guru Nanak Dev University, Amritsar, 143005, India
| | - Pradeep Singh
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, 176061, India.,Department of Biotechnology, Guru Nanak Dev University, Amritsar, 143005, India
| | - Gopal Singh
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, 176061, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-IHBT, Palampur, Himachal Pradesh, 176061, India
| | - Sanjay Kumar
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, 176061, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-IHBT, Palampur, Himachal Pradesh, 176061, India
| | - Ram Kumar Sharma
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, 176061, India. .,Academy of Scientific and Innovative Research (AcSIR), CSIR-IHBT, Palampur, Himachal Pradesh, 176061, India.
| |
Collapse
|
7
|
Koech RK, Malebe PM, Nyarukowa C, Mose R, Kamunya SM, Joubert F, Apostolides Z. Functional annotation of putative QTL associated with black tea quality and drought tolerance traits. Sci Rep 2019; 9:1465. [PMID: 30728388 PMCID: PMC6365519 DOI: 10.1038/s41598-018-37688-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 12/12/2018] [Indexed: 12/12/2022] Open
Abstract
The understanding of black tea quality and percent relative water content (%RWC) traits in tea (Camellia sinensis) by a quantitative trait loci (QTL) approach can be useful in elucidation and identification of candidate genes underlying the QTL which has remained to be difficult. The objective of the study was to identify putative QTL controlling black tea quality and percent relative water traits in two tea populations and their F1 progeny. A total of 1,421 DArTseq markers derived from the linkage map identified 53 DArTseq markers to be linked to black tea quality and %RWC. All 53 DArTseq markers with unique best hits were identified in the tea genome. A total of 5,592 unigenes were assigned gene ontology (GO) terms, 56% comprised biological processes, cellular component (29%) and molecular functions (15%), respectively. A total of 84 unigenes in 15 LGs were assigned to 25 different Kyoto Encyclopedia of Genes and Genomes (KEGG) database pathways based on categories of secondary metabolite biosynthesis. The three major enzymes identified were transferases (38.9%), hydrolases (29%) and oxidoreductases (18.3%). The putative candidate proteins identified were involved in flavonoid biosynthesis, alkaloid biosynthesis, ATPase family proteins related to abiotic/biotic stress response. The functional annotation of putative QTL identified in this current study will shed more light on the proteins associated with caffeine and catechins biosynthesis and % RWC. This study may help breeders in selection of parents with desirable DArTseq markers for development of new tea cultivars with desirable traits.
Collapse
Affiliation(s)
- Robert K Koech
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0002, South Africa.,Kenya Agriculture and Livestock Research Organization, Tea Research Institute, P.O. Box 820, Kericho, 20200, Kenya
| | - Pelly M Malebe
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0002, South Africa
| | - Christopher Nyarukowa
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0002, South Africa
| | - Richard Mose
- James Finlay (Kenya) Limited, P.O. Box 223, Kericho, 20200, Kenya
| | - Samson M Kamunya
- Kenya Agriculture and Livestock Research Organization, Tea Research Institute, P.O. Box 820, Kericho, 20200, Kenya
| | - Fourie Joubert
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0002, South Africa
| | - Zeno Apostolides
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0002, South Africa.
| |
Collapse
|
8
|
Maintenance of mesophyll potassium and regulation of plasma membrane H+-ATPase are associated with physiological responses of tea plants to drought and subsequent rehydration. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.cj.2018.06.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|