1
|
Bazid HAS, Marae AH, Farag B, Abdallah RA. The value of immunohistochemical expression of SOX9 and CD34 in alopecia areata. J Immunoassay Immunochem 2024; 45:452-466. [PMID: 39041618 DOI: 10.1080/15321819.2024.2383676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
BACKGROUND Alopecia areata (AA), an immune-mediated disorder, is marked by temporary, nonscarring hair loss. The bulge area is protected from immune attacks by immune privilege; however, recent studies demonstrated immune cells infiltrating the bulge area. OBJECTIVE This study aims to investigate the immunohistochemical expression of the sex-determining region Y-box 9 (SOX9) and cluster of differentiation 34 (CD34) in AA patients as markers of hair follicle stem cells (HFSCs) and progenitor cells, respectively. METHODS Immunohistochemical staining of SOX9 and CD34 was applied on skin samples of 20 AA patients and 20 healthy controls. RESULTS SOX9 and CD34 were significantly lower in lesional samples of cases compared to perilesional and control skin biopsies. Furthermore, SOX9 level was negatively correlated with the severity of alopecia tool score (SALT score) among the studied AA patients. Moreover, lowered SOX9 expression was present in patients with recurrent attacks. CONCLUSIONS The significant reduction of stem cell markers (SOX9 and CD34) in our studied AA cases signifies the pathological affection of HFSCs and their progeny in AA. This is thought to cause a loss of competence in generating new hair in some AA cases, which needs to be validated in further research. LIMITATIONS OF THE STUDY This study has a small sample size.
Collapse
Affiliation(s)
- Heba A S Bazid
- Dermatology and Andrology Department, Faculty of Medicine, Menoufia University, Shebeen El-Kom, Egypt
| | - Alaa H Marae
- Dermatology and Andrology Department, Faculty of Medicine, Menoufia University, Shebeen El-Kom, Egypt
| | - Bassant Farag
- Dermatology and Andrology Department, Faculty of Medicine, Menoufia University, Shebeen El-Kom, Egypt
| | | |
Collapse
|
2
|
Shin JM, Kim KM, Choi MS, Park S, Hong D, Jung KE, Seo YJ, Kim CD, Yang H, Lee Y. The crosstalk between PTEN-induced kinase 1-mediated mitophagy and the inflammasome in the pathogenesis of alopecia areata. Exp Dermatol 2024; 33:e14844. [PMID: 37264692 DOI: 10.1111/exd.14844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 06/03/2023]
Abstract
Alopecia areata (AA) is a T-cell-mediated autoimmune disease that causes chronic, relapsing hair loss; however, its precise pathogenesis remains to be elucidated. Recent studies have provided compelling evidence of crosstalk between inflammasomes and mitophagy-a process that contributes to the removal of damaged mitochondria. Our previous studies showed that the NLR family pyrin domain containing 3 (NLRP3) inflammasome is important for eliciting and progressing inflammation in AA. In this study, we detected mitochondrial DNA damage in AA-affected scalp tissues and IFNγ and poly(I:C) treated outer root sheath (ORS) cells. In addition, IFNγ and poly(I:C) treatment increased mitochondrial reactive oxygen species (ROS) levels in ORS cells. Moreover, we showed that mitophagy induction alleviates IFNγ and poly(I:C)-induced NLRP3 inflammasome activation in ORS cells. Lastly, PTEN-induced kinase 1 (PINK1) knockdown increased NLRP3 inflammasome activation, indicating that PINK1-mediated mitophagy plays a critical role in NLRP3 inflammasome activation in ORS cells. This study supports previous studies showing that oxidative stress disrupts immune privilege status and promotes autoimmunity in AA. The results emphasize the significance of crosstalk between mitophagy and inflammasomes in the pathogenesis of AA. Finally, mitophagy factors regulating mitochondrial dysfunction and inhibiting inflammasome activation could be novel therapeutic targets for AA.
Collapse
Affiliation(s)
- Jung-Min Shin
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Kyung Min Kim
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Mi Soo Choi
- Department of Dermatology, Dankook University Hospital, Cheonan, Korea
| | - Sanghyun Park
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Dongkyun Hong
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Kyung-Eun Jung
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Young-Joon Seo
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Chang Deok Kim
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Hanseul Yang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Young Lee
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Korea
| |
Collapse
|
3
|
Shin JM, Lee YY, Kim KM, Won KS, Suh SB, Hong D, Jung KE, Kim CD, Seo YJ, Cho SB, Lee Y. The potential role of fibroblast-derived multi-peptide factors in activation of growth factors and β-Catenin in hair follicle cells. J Cosmet Dermatol 2022; 21:6184-6190. [PMID: 35765799 DOI: 10.1111/jocd.15188] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/15/2022] [Accepted: 06/26/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND Dermal fibroblasts play a pivotal role in hair follicle regeneration during wound repair. Recently, dermal fibroblast-conditioned medium (DFCM), which contains multi-peptide factors (MPFs), has been used to promote wound repair. AIM This study aimed to investigate the stimulatory effects of MPF-containing DFCM on hair growth. METHODS MPF-containing DFCM was prepared using human neonatal dermal fibroblasts. Outer root sheath (ORS) and dermal papilla (DP) cells were cultured in MPF-containing DFCM. We examined the expression and secretion of growth factors and cytokines using quantitative polymerase chain reaction and a growth factor array. In addition, the effect of MPFs on β-catenin activity was determined using the TOPflash assay. All experiments were repeated at least three times with separate batches of cells. RESULTS MPF-containing DFCM increased keratinocyte growth factor (KGF), vascular endothelial growth factor (VEGF), and epidermal growth factor (EGF) mRNA expression in ORS cells and KGF and VEGF mRNA expression in DP cells. When ORS cells were treated with MPF-containing DFCM, the secretion of several growth factors, including EGF, VEGF, insulin-like growth factor-binding protein (IGFBP)-4, IGFBP-6, and fibroblast growth factor-7, was increased in the cell-cultured medium compared with that in control. Additionally, MPF-containing DFCM increased the transcriptional activation of β-catenin in DP cells. CONCLUSIONS These results suggest that MPF-containing DFCM might stimulate hair growth by inducing growth factors in ORS and DP cells and regulating β-catenin in DP cells.
Collapse
Affiliation(s)
- Jung-Min Shin
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, South Korea
| | - Young-Yoon Lee
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, South Korea
| | - Kyung Min Kim
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, South Korea
| | | | | | - Dongkyun Hong
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, South Korea
| | - Kyung Eun Jung
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, South Korea
| | - Chang-Deok Kim
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, South Korea
| | - Young-Joon Seo
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, South Korea
| | - Sung Bin Cho
- Yonsei Seran Dermatology and Laser Clinic, Seoul, South Korea
| | - Young Lee
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, South Korea
| |
Collapse
|
4
|
Ahmed NS, Foote JB, Singh KK. Impaired Mitochondria Promote Aging-Associated Sebaceous Gland Dysfunction and Pathology. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:1546-1558. [PMID: 35948081 PMCID: PMC9667715 DOI: 10.1016/j.ajpath.2022.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/30/2022] [Accepted: 07/14/2022] [Indexed: 06/05/2023]
Abstract
Mitochondrial dysfunction is one of the hallmarks of aging. Changes in sebaceous gland (SG) function and sebum production have been reported during aging. This study shows the direct effects of mitochondrial dysfunction on SG morphology and function. A mitochondrial DNA (mtDNA) depleter mouse was used as a model for introducing mitochondrial dysfunction in the whole animal. The effects on skin SGs and modified SGs of the eyelid, lip, clitoral, and preputial glands were characterized. The mtDNA depleter mice showed gross morphologic and histopathologic changes in SGs associated with increased infiltration by mast cells, neutrophils, and polarized macrophages. Consistently, there was increased expression of proinflammatory cytokines. The inflammatory changes were associated with abnormal sebocyte accumulation of lipid, defective sebum delivery at the skin surface, and the up-regulation of key lipogenesis-regulating genes and androgen receptor. The mtDNA depleter mice expressed aging-associated senescent marker. Increased sebocyte proliferation and aberrant expression of stem cell markers were observed. These studies provide, for the first time, a causal link between mitochondrial dysfunction and abnormal sebocyte function within sebaceous and modified SGs throughout the whole body of the animal. They suggest that mtDNA depleter mouse may serve as a novel tool to develop targeted therapeutics to address SG disorders in aging humans.
Collapse
Affiliation(s)
- Noha S Ahmed
- Department of Genetics, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Dermatology, Zagazig University, Zagazig, Egypt
| | - Jeremy B Foote
- Department of Microbiology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama; Animal Resources Program, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Keshav K Singh
- Department of Genetics, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Pathology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Dermatology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama.
| |
Collapse
|
5
|
Ievlev V, Jensen-Cody CC, Lynch TJ, Pai AC, Park S, Shahin W, Wang K, Parekh KR, Engelhardt JF. Sox9 and Lef1 Regulate the Fate and Behavior of Airway Glandular Progenitors in Response to Injury. Stem Cells 2022; 40:778-790. [PMID: 35639980 PMCID: PMC9406614 DOI: 10.1093/stmcls/sxac038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/12/2022] [Indexed: 11/12/2022]
Abstract
Cartilaginous airways of larger mammals and the mouse trachea contain at least 3 well-established stem cell compartments, including basal cells of the surface airway epithelium (SAE) and ductal and myoepithelial cells of the submucosal glands (SMG). Here we demonstrate that glandular Sox9-expressing progenitors capable of SAE repair decline with age in mice. Notably, Sox9-lineage glandular progenitors produced basal and ciliated cells in the SAE, but failed to produce secretory cells. Lef1 was required for glandular Sox9 lineage contribution to SAE repair, and its deletion significantly reduced proliferation following injury. By contrast, in vivo deletion of Sox9 enhanced proliferation of progenitors in both the SAE and SMG shortly following injury, but these progenitors failed to proliferate in vitro in the absence of Sox9, similar to that previously shown for Lef1 deletion. In cystic fibrosis ferret airways, Sox9 expression inversely correlated with Ki67 proliferative marker expression in SMG and the SAE. Using in vitro and ex vivo models, we demonstrate that Sox9 is extinguished as glandular progenitors exit ducts and proliferate on the airway surface and that Sox9 is required for migration and proper differentiation of SMG, but not surface airway, progenitors. We propose a model whereby Wnt/Lef1 and Sox9 signals differentially regulate the proliferative and migratory behavior of glandular progenitors, respectively.
Collapse
Affiliation(s)
- Vitaly Ievlev
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA, USA
| | | | - Thomas J Lynch
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA, USA
| | - Albert C Pai
- Department of Cardiothoracic Surgery, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Soo Park
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA, USA
| | - Weam Shahin
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA, USA
| | - Kai Wang
- Department of Biostatistics, University of Iowa College of Public Health, Iowa City, IA, USA
| | - Kalpaj R Parekh
- Department of Cardiothoracic Surgery, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - John F Engelhardt
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
6
|
Shin JY, Kim J, Choi YH, Kang NG, Lee S. Dexpanthenol Promotes Cell Growth by Preventing Cell Senescence and Apoptosis in Cultured Human Hair Follicle Cells. Curr Issues Mol Biol 2021; 43:1361-1373. [PMID: 34698060 PMCID: PMC8929036 DOI: 10.3390/cimb43030097] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 12/13/2022] Open
Abstract
Dexpanthenol (D-panthenol) is a precursor of vitamin B5 (pantothenic acid) and is widely used for dietary supplements and topical applications. D-panthenol has long been used in hair care products for the purpose of anti-hair loss, its effects and the underlying mechanisms, however, were barely reported. In this study, the effects of D-panthenol on human hair follicle cells, including dermal papilla cells (hDPCs) and outer root sheath cells (hORSCs), were investigated. D-panthenol enhanced the cell viability, increasing the cellular proliferation marker Ki67 in cultured hDPCs. The markers for apoptosis (Caspase3/9) and cell senescence (p21/p16), reported to be expressed in aged or resting phase follicles, were significantly reduced by D-panthenol. Anagen-inducing factors (ALP; β-catenin; versican), which trigger or elongate the anagen phase, were stimulated by D-panthenol. On the other hand, D-panthenol reduced TGF-β1 expressions in both mRNA and protein levels. The expression of VEGF, which is important for peripheral blood vessel activation; was up-regulated by D-panthenol treatment. In cultured hORSCs, cell proliferation and viability were enhanced, while the mRNA expression of cell senescence markers (p21/p16) was significantly down-regulated. The expressions of both VEGF and its receptor (VEGFR) were up-regulated by D-panthenol. In conclusion, our data suggest that the hair growth stimulating activity of D-panthenol was exerted by increasing the cell viability, suppressing the apoptotic markers, and elongating the anagen phase in hair follicles.
Collapse
Affiliation(s)
| | | | | | - Nae-Gyu Kang
- Correspondence: (N.-G.K.); (S.L.); Tel.: +82-2-6980-1533 (N.-G.K.); +82-2-6980-1210 (S.L.)
| | - Sanghwa Lee
- Correspondence: (N.-G.K.); (S.L.); Tel.: +82-2-6980-1533 (N.-G.K.); +82-2-6980-1210 (S.L.)
| |
Collapse
|
7
|
Wang C, Liu Y, Ma W. Nerve growth factor regulates the proliferation of cashmere goat outer root sheath cells through the activation of cAMP-binding protein. Small Rumin Res 2019. [DOI: 10.1016/j.smallrumres.2019.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Choi MR, Shin JM, Shin YA, Chang YH, Chang MY, Lim CA, Sohn KC, Seo YJ, Kim CD, Lee JH, Lee Y. Possible Role of Single Stranded DNA Binding Protein 3 on Skin Hydration by Regulating Epidermal Differentiation. Ann Dermatol 2018; 30:432-440. [PMID: 30065583 PMCID: PMC6029969 DOI: 10.5021/ad.2018.30.4.432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 03/22/2018] [Accepted: 03/26/2018] [Indexed: 11/08/2022] Open
Abstract
Background Skin hydration is a common problem both in elderly and young people as dry skin may cause irritation, dermatological disorders, and wrinkles. While both genetic and environmental factors seem to influence skin hydration, thorough genetic studies on skin hydration have not yet been conducted. Objective We used a genome-wide association study (GWAS) to explore the genetic elements underlying skin hydration by regulating epidermal differentiation and skin barrier function. Methods A GWAS was conducted to investigate the genetic factors influencing skin hydration in 100 Korean females along with molecular studies of genes in human epidermal keratinocytes for functional study in vitro. Results Among several single nucleotide polymorphisms identified in GWAS, we focused on Single Stranded DNA Binding Protein 3 (SSBP3) which is associated with DNA replication and DNA damage repair. To better understand the role of SSBP3 in skin cells, we introduced a calcium-induced differentiation keratinocyte culture system model and found that SSBP3 was upregulated in keratinocytes in a differentiation dependent manner. When SSBP3 was overexpressed using a recombinant adenovirus, the expression of differentiation-related genes such as loricrin and involucrin was markedly increased. Conclusion Taken together, our results suggest that genetic variants in the intronic region of SSBP3 could be determinants in skin hydration of Korean females. SSBP3 represents a new candidate gene to evaluate the molecular basis of the hydration ability in individuals.
Collapse
Affiliation(s)
- Mi-Ra Choi
- Department of Dermatology, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Jung-Min Shin
- Department of Dermatology, College of Medicine, Chungnam National University, Daejeon, Korea
| | | | | | - Min-Youl Chang
- Department of Bio-Cosmetic Science, Seowon University, Cheongju, Korea
| | - Cho-Ah Lim
- Department of Dermatology, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Kyung-Cheol Sohn
- Department of Dermatology, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Young-Joon Seo
- Department of Dermatology, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Chang-Deok Kim
- Department of Dermatology, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Jeung-Hoon Lee
- Department of Dermatology, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Young Lee
- Department of Dermatology, College of Medicine, Chungnam National University, Daejeon, Korea
| |
Collapse
|
9
|
Kim JE, Woo YJ, Sohn KM, Jeong KH, Kang H. Wnt/β-catenin and ERK pathway activation: A possible mechanism of photobiomodulation therapy with light-emitting diodes that regulate the proliferation of human outer root sheath cells. Lasers Surg Med 2017; 49:940-947. [PMID: 28944964 DOI: 10.1002/lsm.22736] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND Outer root sheath cells (ORSCs) play important roles in maintaining hair follicle structure and provide support for the bulge area. The hair growth promoting effects of photobiomodulation therapy (PBMT) have been reported, but the mechanisms for this in human ORCs (hORSCs) have rarely been studied. OBJECTIVE The aim of this study was to investigate the effect of various wavelengths of light-emitting diode (LED) irradiation on human ORSCs (hORSCs). METHODS LED irradiation effects on hORSC proliferation and migration were examined with MTT assay, BrdU incorporation assay and migration assays. hORSCs were irradiated using four LED wavelengths (415, 525, 660, and 830 nm) with different low energy levels. LED irradiation effects on the expression of molecules associated with the Wnt/β-catenin signaling and ERK pathway, hair stem cell markers, and various growth factors and cytokines in hORSCs were examined with real-time PCR and Western blot assay. The effect of the LED-irradiated hORSCs on cell proliferation of human dermal papilla cells (hDPCs) was examined with co-culture and MTT assay. RESULTS PBMT with LED light variably promoted hORSC proliferation and suppressed cell apoptosis depending on energy level. LED irradiation induced Wnt5a, Axin2, and Lef1 mRNA expression and β-catenin protein expression in hORSCs. Phosphorylation of ERK, c-Jun, and p38 in hORSCs was observed after LED light irradiation, and ERK inhibitor treatment before irradiation reduced ERK and c-Jun phosphorylation. Red light-treated hORSCs showed substantial increase in IL-6, IL-8, TNF-a, IGF-1, TGF-β1, and VEGF mRNA. Light irradiation at 660 and 830 nm projected onto hORSCs accelerated in vitro migration. LED-irradiated hORSCs increased hDPCs proliferation when they were co-cultured. The conditioned medium from LED-irradiated hORSCs was sufficient to stimulate hDPCs proliferation. CONCLUSION These results demonstrate that LED light irradiation induced hORSC proliferation and migration and inhibited apoptosis in vitro. The growth-promoting effects of LEDs on hORSCs appear to be associated with direct stimulation of the Wnt5a/β-catenin and ERK signaling pathway. Lasers Surg. Med. 49:940-947, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jung E Kim
- Department of Dermatology, St. Paul's Hospital, College of Medicine, The Catholic University of Korea, 180, Wangsan-ro, Dongdaemun-gu, Seoul, Korea
| | - Young J Woo
- Department of Dermatology, St. Paul's Hospital, College of Medicine, The Catholic University of Korea, 180, Wangsan-ro, Dongdaemun-gu, Seoul, Korea
| | - Ki M Sohn
- Department of Dermatology, St. Paul's Hospital, College of Medicine, The Catholic University of Korea, 180, Wangsan-ro, Dongdaemun-gu, Seoul, Korea
| | - Kwan H Jeong
- Department of Dermatology, St. Paul's Hospital, College of Medicine, The Catholic University of Korea, 180, Wangsan-ro, Dongdaemun-gu, Seoul, Korea
| | - Hoon Kang
- Department of Dermatology, St. Paul's Hospital, College of Medicine, The Catholic University of Korea, 180, Wangsan-ro, Dongdaemun-gu, Seoul, Korea
| |
Collapse
|
10
|
Shi G, Wang TT, Quan JH, Li SJ, Zhang MF, Liao PY, Fan YM. Sox9 facilitates proliferation, differentiation and lipogenesis in primary cultured human sebocytes. J Dermatol Sci 2017; 85:44-50. [DOI: 10.1016/j.jdermsci.2016.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/09/2016] [Accepted: 10/12/2016] [Indexed: 12/11/2022]
|
11
|
Purba TS, Haslam IS, Shahmalak A, Bhogal RK, Paus R. Mapping the expression of epithelial hair follicle stem cell-related transcription factors LHX2 and SOX9 in the human hair follicle. Exp Dermatol 2016; 24:462-7. [PMID: 25808706 DOI: 10.1111/exd.12700] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2015] [Indexed: 01/02/2023]
Abstract
In the murine hair follicle (HF), the transcription factors LHX2 and SOX9 are implicated in epithelial hair follicle stem cell (eHFSC) self-renewal and the maintenance of eHFSC niche characteristics. However, the exact expression patterns of LHX2 and SOX9 in the human HF are unclear. Therefore, we have quantitatively mapped the localisation of known human eHFSC markers keratin 15 (K15) and keratin 19 (K19) in the outer root sheath (ORS) of male occipital scalp anagen HFs and related this to the localisation of LHX2 and SOX9 protein expression. As expected, K15(+) and K19(+) cells represented two distinct progenitor cell populations in the bulge and in the proximal bulb ORS (pbORS). Interestingly, cell fluorescence for K19 was significantly stronger within the pbORS versus the bulge, and vice versa for K15, describing a hitherto unrecognised differential expression pattern. LHX2 and SOX9 expressing cells were distributed throughout the ORS, including the bulge, but were not restricted to it. SOX9 expression was most prominent in the ORS immediately below the human bulge, whereas LHX2(+) cells were similarly distributed between the sub-bulge and pbORS, that is compartments not enriched with quiescent eHFSCs. During catagen development, the intensity of LHX2 and SOX9 protein expression increased in the proximal HF epithelium. Double immunostaining showed that the majority of SOX9(+) cells in the human anagen HF epithelium did not co-express K15, K19 or LHX2. This expression profile suggests that LHX2 and SOX9 highlight distinct epithelial progenitor cell populations, in addition to K15(+) or K19(+) cells, that could play an important role in the maintenance of the human HF epithelium.
Collapse
Affiliation(s)
- Talveen S Purba
- Centre for Dermatology Research, Institute of Inflammation and Repair, University of Manchester, Manchester, UK
| | - Iain S Haslam
- Centre for Dermatology Research, Institute of Inflammation and Repair, University of Manchester, Manchester, UK
| | | | | | - Ralf Paus
- Centre for Dermatology Research, Institute of Inflammation and Repair, University of Manchester, Manchester, UK.,Department of Dermatology, University of Münster, Münster, Germany
| |
Collapse
|
12
|
Bak SS, Sung YK, Kim SK. 7-Phloroeckol promotes hair growth on human follicles in vitro. Naunyn Schmiedebergs Arch Pharmacol 2014; 387:789-93. [DOI: 10.1007/s00210-014-0986-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 04/28/2014] [Indexed: 12/22/2022]
|
13
|
Clinicopathological roles of S100A8 and S100A9 in cutaneous squamous cell carcinoma in vivo and in vitro. Arch Dermatol Res 2014; 306:489-96. [PMID: 24550082 DOI: 10.1007/s00403-014-1453-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 01/20/2014] [Accepted: 01/30/2014] [Indexed: 10/25/2022]
Abstract
S100A8 and S100A9 are members of the S100 protein family and exist in neutrophils, monocytes, and macrophages. Recent studies have shown that S100A8 and S100A9 are associated with various neoplastic disorders; however, their roles in cutaneous squamous cell carcinoma (SCC) are not well defined. To investigate the expression and function of S100A8 and S100A9 in skin tumors, we examined the expression levels of S100A8 and S100A9 between premalignant and malignant skin tumors and investigated the functional roles of S100A8 and S100A9 in vitro and in vivo using recombinant adenovirus expressing S100A8 or S100A9. The immunopositive staining rates and intensities of S100A8 and S100A9 were higher in SCC than in premalignant skin tumors. When S100A8 and/or S100A9 were overexpressed in SCC12 cells using a recombinant adenovirus, cell growth and motility were increased. Similarly, when mouse skin was intradermally injected with SCC12 cells overexpressing S100A8 and/or S100A9, there were remarkable increases in tumor growth and volume. Both S100A8 and S100A9 are highly expressed in cutaneous SCC and play important roles in tumorigenesis. We suggest that S100A8 and S100A9 may be potential therapeutic targets for the prevention or treatment of SCC in skin.
Collapse
|
14
|
Shi G, Sohn KC, Li Z, Choi DK, Park YM, Kim JH, Fan YM, Nam YH, Kim S, Im M, Lee Y, Seo YJ, Kim CD, Lee JH. Expression and functional role of Sox9 in human epidermal keratinocytes. PLoS One 2013; 8:e54355. [PMID: 23349860 PMCID: PMC3548846 DOI: 10.1371/journal.pone.0054355] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 12/11/2012] [Indexed: 01/13/2023] Open
Abstract
In this study, we investigated the expression and putative role of Sox9 in epidermal keratinocyte. Immunohistochemical staining showed that Sox9 is predominantly expressed in the basal layer of normal human skin epidermis, and highly expressed in several skin diseases including psoriasis, basal cell carcinoma, keratoacanthoma and squamous cell carcinoma. In calcium-induced keratinocyte differentiation model, the expression of Sox9 was decreased in a time dependent manner. When Sox9 was overexpressed using a recombinant adenovirus, cell growth was enhanced, while the expression of differentiation-related genes such as loricrin and involucrin was markedly decreased. Similarly, when rat skin was intradermally injected with the adenovirus expressing Sox9, the epidermis was thickened with increase of PCNA positive cells, while the epidermal differentiation was decreased. Finally, UVB irradiation induced Sox9 expression in cultured human epidermal keratinocytes, and keratinocytes are protected from UVB-induced apoptosis by Sox9 overexpression. Together, these results suggest that Sox9 is an important regulator of epidermal keratinocytes with putative pro-proliferation and/or pro-survival functions, and may be related to several cutaneous diseases that are characterized by abnormal differentiation and hyperproliferation.
Collapse
Affiliation(s)
- Ge Shi
- Department of Dermatology, The First Affiliated Hospital of Guangdong Medical College, Zhanjiang, China
- Department of Dermatology and Research Institute for Medical Sciences, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Kyung-Cheol Sohn
- Department of Dermatology and Research Institute for Medical Sciences, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Zhengjun Li
- Department of Dermatology and Research Institute for Medical Sciences, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Dae-Kyoung Choi
- Department of Dermatology and Research Institute for Medical Sciences, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Young Min Park
- Department of Dermatology, College of Medicine, Catholic University of Korea, Seoul, Korea
| | | | - Yi-Ming Fan
- Department of Dermatology, The First Affiliated Hospital of Guangdong Medical College, Zhanjiang, China
| | - Yong Hee Nam
- Department of Dermatology and Research Institute for Medical Sciences, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Sooyeon Kim
- Department of Dermatology and Research Institute for Medical Sciences, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Myung Im
- Department of Dermatology and Research Institute for Medical Sciences, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Young Lee
- Department of Dermatology and Research Institute for Medical Sciences, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Young-Joon Seo
- Department of Dermatology and Research Institute for Medical Sciences, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Chang Deok Kim
- Department of Dermatology and Research Institute for Medical Sciences, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Jeung-Hoon Lee
- Department of Dermatology and Research Institute for Medical Sciences, School of Medicine, Chungnam National University, Daejeon, Korea
- * E-mail:
| |
Collapse
|
15
|
Xia L, Liu Q, Zhang W, Zhou G, Cao Y, Liu W. Enhanced proliferation and functions of in vitro expanded human hair follicle outer root sheath cells by low oxygen tension culture. Tissue Eng Part C Methods 2012; 18:603-13. [PMID: 22380865 DOI: 10.1089/ten.tec.2011.0489] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
INTRODUCTION Human hair follicle outer root sheath (hORS) cells are known to contain hair follicle stem cells and play an important role in healing large size wounds, and thus can serve as the cell source for skin engineering. This study investigated the effect of low oxygen tension culture on hORS cell proliferation potential and functional maintenance during in vitro expansion. MATERIALS AND METHODS Spared postsurgery scalp tissues were donated by 15 patients aged 20-45 (13 men and 2 women) and were randomly divided into three groups, and isolated hORS cells were combined into three pooled cell samples. They were cultured either in 4% O(2) or 21% O(2) and were analyzed for cell proliferation, colony forming efficiency (CFE), and their ability in forming engineered skin in vitro. RESULTS The results showed that freshly isolated hORS cells expressed CD200 (22.88±8.76), cytokeratin 15 (CK15) (62.57±4.72), CD29 (22.53±2.49/strong and 29.80±4.09/dim), and CD49f (28.07±15.76/strong and 49.73±5.65/dim). When exposed in 4% O(2), hORS cells proliferated significantly faster than the cells in 21% O(2) for the first three passages (p<0.05), could better maintain cobblestone morphology, respectively, generate 3.63-folds more and 23.26-folds more cell yields after one and three passages. Additionally, enhanced CFE with significantly higher total and holoclone colony numbers were found in the 4% O(2) group than in the 21% O(2) group (p<0.05) for the first three passages along with better maintained CK15 expression. Furthermore, hORS cells expanded in 4% O(2) could form better epidermal structure of in vitro engineered skin comparing to the skin engineered by the control cells. CONCLUSION The low oxygen culture method of hORS cells is simple, low cost, less labor intensive, and less biosafety concern, which may potentially be applied in skin engineering and clinical application.
Collapse
Affiliation(s)
- Lingling Xia
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering Research, Shanghai, P R China
| | | | | | | | | | | |
Collapse
|
16
|
Abstract
Recently, we suggested that Dickkopf 1 (DKK-1) is a pathogenic mediator involved in male pattern baldness. As premature catagen onset is a key characteristic of male pattern baldness, in this study, we evaluated whether DKK-1 has a role as a catagen inducer in hair cycling. Herein, we report that recombinant human DKK-1 (rhDKK-1) injection into the hypodermis of mice during anagen caused premature onset of catagen, whereas neutralizing DKK-1 antibody delayed anagen-to-catagen transition in mice. Moreover, treatment with rhDKK-1 led to a decrease in final hair follicle length, whereas DKK-1 antibody led to an increase compared with control animals. In addition, DKK-1 and DKK-1 messenger RNA expression is most upregulated in follicular keratinocytes of late anagen in depilation-induced hair cycle progression. Moreover, we observed that rhDKK-1 blocks canonical Wnt-mediated activation of β-catenin signaling and induces the proapoptotic protein Bax, resulting in apoptosis in outer root sheath keratinocytes. Taken together, our data strongly suggest that DKK-1 is involved in anagen-to-catagen transition in the hair cycle by regulating the activity of follicular keratinocytes.
Collapse
|