1
|
Almeida M, Inácio JM, Vital CM, Rodrigues MR, Araújo BC, Belo JA. Cell Reprogramming, Transdifferentiation, and Dedifferentiation Approaches for Heart Repair. Int J Mol Sci 2025; 26:3063. [PMID: 40243729 PMCID: PMC11988544 DOI: 10.3390/ijms26073063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 03/22/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
Cardiovascular disease (CVD) remains the leading cause of death globally, with myocardial infarction (MI) being a major contributor. The current therapeutic approaches are limited in effectively regenerating damaged cardiac tissue. Up-to-date strategies for heart regeneration/reconstitution aim at cardiac remodeling through repairing the damaged tissue with an external cell source or by stimulating the existing cells to proliferate and repopulate the compromised area. Cell reprogramming is addressed to this challenge as a promising solution, converting fibroblasts and other cell types into functional cardiomyocytes, either by reverting cells to a pluripotent state or by directly switching cell lineage. Several strategies such as gene editing and the application of miRNA and small molecules have been explored for their potential to enhance cardiac regeneration. Those strategies take advantage of cell plasticity by introducing reprogramming factors that regress cell maturity in vitro, allowing for their later differentiation and thus endorsing cell transplantation, or promote in situ cell proliferation, leveraged by scaffolds embedded with pro-regenerative factors promoting efficient heart restoration. Despite notable advancements, important challenges persist, including low reprogramming efficiency, cell maturation limitations, and safety concerns in clinical applications. Nonetheless, integrating these innovative approaches offers a promising alternative for restoring cardiac function and reducing the dependency on full heart transplants.
Collapse
Affiliation(s)
| | - José M. Inácio
- Stem Cells and Development Laboratory, iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal; (M.A.); (C.M.V.); (M.R.R.); (B.C.A.)
| | | | | | | | - José A. Belo
- Stem Cells and Development Laboratory, iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal; (M.A.); (C.M.V.); (M.R.R.); (B.C.A.)
| |
Collapse
|
2
|
Helal MM, Ibrahim AA, Beddor A, Kashbour M. Breaking Barriers in Huntington's Disease Therapy: Focused Ultrasound for Targeted Drug Delivery. Neurochem Res 2025; 50:68. [PMID: 39751928 PMCID: PMC11698766 DOI: 10.1007/s11064-024-04302-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/14/2024] [Accepted: 11/26/2024] [Indexed: 01/04/2025]
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disease resulting from a mutation in the huntingtin (HTT) gene and characterized by progressive motor dysfunction, cognitive decline, and psychiatric disturbances. Currently, no disease-modifying treatments are available. Recent research has developed therapeutic agents that may have the potential to directly target the disease pathology, such as gene silencing or clearing the mutant protein. However, these agents are limited by their inability to cross the blood-brain barrier (BBB), preventing optimal therapeutic effects. Although various techniques have been explored to overcome the BBB, focused ultrasound (FUS) has emerged as a promising non-invasive therapeutic modality offering the potential for targeted intervention in neurodegenerative diseases, including HD. Preclinical studies demonstrated the safety and efficacy of FUS in delivering therapeutic agents, such as siRNAs and AAV vector-based gene therapy, resulting in significant reductions in mutant HTT expression and improvements in motor function in HD mouse models. Furthermore, the safety profile of FUS-induced BBB opening has been established in clinical trials on human patients of neurodegenerative diseases other than HD, showing no adverse effects on brain structure or function. This review provides a comprehensive overview of the current state of FUS research in HD and connects existing evidence from neurodegenerative disease studies with its promise in establishing disease-modifying therapies for HD.
Collapse
Affiliation(s)
| | - Arwa Amer Ibrahim
- Medical Research Group of Egypt, Negida Academy, Arlington, MA, USA
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Ahmad Beddor
- Medical Research Group of Egypt, Negida Academy, Arlington, MA, USA
- Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | - Muataz Kashbour
- Diagnostic Radiology Department, National Cancer Institute, Misrata, Libya
| |
Collapse
|
3
|
Lee CS, Lee M, Na K, Hwang HS. Stem Cell-Derived Extracellular Vesicles for Cancer Therapy and Tissue Engineering Applications. Mol Pharm 2023; 20:5278-5311. [PMID: 37867343 DOI: 10.1021/acs.molpharmaceut.3c00376] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Recently, stem cells and their secretomes have attracted great attention in biomedical applications, particularly extracellular vesicles (EVs). EVs are secretomes of cells for cell-to-cell communication. They play a role as intercellular messengers as they carry proteins, nucleic acids, lipids, and therapeutic agents. They have also been utilized as drug-delivery vehicles due to their biocompatibility, low immunogenicity, stability, targetability, and engineerable properties. The therapeutic potential of EVs can be further enhanced by surface engineering and modification using functional molecules such as aptamers, peptides, and antibodies. As a consequence, EVs hold great promise as effective delivery vehicles for enhancing treatment efficacy while avoiding side effects. Among various cell types that secrete EVs, stem cells are ideal sources of EVs because stem cells have unique properties such as self-renewal and regenerative potential for transplantation into damaged tissues that can facilitate their regeneration. However, challenges such as immune rejection and ethical considerations remain significant hurdles. Stem cell-derived EVs have been extensively explored as a cell-free approach that bypasses many challenges associated with cell-based therapy in cancer therapy and tissue regeneration. In this review, we summarize and discuss the current knowledge of various types of stem cells as a source of EVs, their engineering, and applications of EVs, focusing on cancer therapy and tissue engineering.
Collapse
Affiliation(s)
- Chung-Sung Lee
- Department of Pharmaceutical Engineering, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Min Lee
- Division of Advanced Prosthodontics, University of California, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California, Los Angeles, California 90095, United States
| | - Kun Na
- Department of BioMedical-Chemical Engineering, The Catholic University of Korea, Bucheon 14662, Republic of Korea
- Department of Biotechnology, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Hee Sook Hwang
- Department of Pharmaceutical Engineering, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
4
|
Kidwai FK, Canalis E, Robey PG. Induced pluripotent stem cell technology in bone biology. Bone 2023; 172:116760. [PMID: 37028583 PMCID: PMC10228209 DOI: 10.1016/j.bone.2023.116760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/09/2023]
Abstract
Technologies on the development and differentiation of human induced pluripotent stem cells (hiPSCs) are rapidly improving, and have been applied to create cell types relevant to the bone field. Differentiation protocols to form bona fide bone-forming cells from iPSCs are available, and can be used to probe details of differentiation and function in depth. When applied to iPSCs bearing disease-causing mutations, the pathogenetic mechanisms of diseases of the skeleton can be elucidated, along with the development of novel therapeutics. These cells can also be used for development of cell therapies for cell and tissue replacement.
Collapse
Affiliation(s)
- Fahad K Kidwai
- Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, United States of America
| | - Ernesto Canalis
- Center for Skeletal Research, Orthopedic Surgery and Medicine, UConn Musculoskeletal Institute, UConn Health, Farmington, CT 06030-4037, United States of America
| | - Pamela G Robey
- Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, United States of America.
| |
Collapse
|
5
|
Yan X, Liu X, Zhao C, Chen GQ. Applications of synthetic biology in medical and pharmaceutical fields. Signal Transduct Target Ther 2023; 8:199. [PMID: 37169742 PMCID: PMC10173249 DOI: 10.1038/s41392-023-01440-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 03/15/2023] [Accepted: 03/24/2023] [Indexed: 05/13/2023] Open
Abstract
Synthetic biology aims to design or assemble existing bioparts or bio-components for useful bioproperties. During the past decades, progresses have been made to build delicate biocircuits, standardized biological building blocks and to develop various genomic/metabolic engineering tools and approaches. Medical and pharmaceutical demands have also pushed the development of synthetic biology, including integration of heterologous pathways into designer cells to efficiently produce medical agents, enhanced yields of natural products in cell growth media to equal or higher than that of the extracts from plants or fungi, constructions of novel genetic circuits for tumor targeting, controllable releases of therapeutic agents in response to specific biomarkers to fight diseases such as diabetes and cancers. Besides, new strategies are developed to treat complex immune diseases, infectious diseases and metabolic disorders that are hard to cure via traditional approaches. In general, synthetic biology brings new capabilities to medical and pharmaceutical researches. This review summarizes the timeline of synthetic biology developments, the past and present of synthetic biology for microbial productions of pharmaceutics, engineered cells equipped with synthetic DNA circuits for diagnosis and therapies, live and auto-assemblied biomaterials for medical treatments, cell-free synthetic biology in medical and pharmaceutical fields, and DNA engineering approaches with potentials for biomedical applications.
Collapse
Affiliation(s)
- Xu Yan
- School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Xu Liu
- PhaBuilder Biotech Co. Ltd., Shunyi District, Zhaoquan Ying, 101309, Beijing, China
| | - Cuihuan Zhao
- School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Guo-Qiang Chen
- School of Life Sciences, Tsinghua University, 100084, Beijing, China.
- Center for Synthetic and Systems Biology, Tsinghua University, 100084, Beijing, China.
- MOE Key Lab for Industrial Biocatalysis, Dept Chemical Engineering, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
6
|
Jimenez-Vazquez EN, Jain A, Jones DK. Enhancing iPSC-CM Maturation Using a Matrigel-Coated Micropatterned PDMS Substrate. Curr Protoc 2022; 2:e601. [PMID: 36383047 PMCID: PMC9710304 DOI: 10.1002/cpz1.601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cardiac myocytes isolated from adult heart tissue have a rod-like shape with highly organized intracellular structures. Cardiomyocytes derived from human pluripotent stem cells (iPSC-CMs), on the other hand, exhibit disorganized structure and contractile mechanics, reflecting their pronounced immaturity. These characteristics hamper research using iPSC-CMs. The protocol described here enhances iPSC-CM maturity and function by controlling the cellular shape and environment of the cultured cells. Microstructured silicone membranes function as a cell culture substrate that promotes cellular alignment. iPSC-CMs cultured on micropatterned membranes display an in-vivo-like rod-shaped morphology. This physiological cellular morphology along with the soft biocompatible silicone substrate, which has similar stiffness to the native cardiac matrix, promotes maturation of contractile function, calcium handling, and electrophysiology. Incorporating this technique for enhanced iPSC-CM maturation will help bridge the gap between animal models and clinical care, and ultimately improve personalized medicine for cardiovascular diseases. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Cardiomyocyte differentiation of iPSCs Basic Protocol 2: Purification of differentiated iPSC-CMs using MACS negative selection Basic Protocol 3: Micropatterning on PDMS.
Collapse
Affiliation(s)
| | - Abhilasha Jain
- Department of Pharmacology, University of Michigan Medical School
| | - David K. Jones
- Department of Pharmacology, University of Michigan Medical School
- Department of Internal Medicine, University of Michigan Medical School
| |
Collapse
|
7
|
Moazamiyanfar R, Halabian R, Ghollasi M, Poormoghadam D, Entezari M, Endorami SE. Neural Differentiation of Human-Induced Pluripotent Stem Cells (hiPSc) on Surface-Modified Nanofibrous Scaffolds Coated with Platelet-Rich Plasma. Neurochem Res 2022; 47:1991-2001. [PMID: 35359243 DOI: 10.1007/s11064-022-03584-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 02/19/2022] [Accepted: 03/17/2022] [Indexed: 10/18/2022]
Abstract
The field of tissue engineering exploits living cells in a variety of ways to restore, maintain, or enhance tissues and organs. Between stem cells, human induced pluripotent stem cells (hiPSCs), are very important due to their wide abilities. Growth factors can support proliferation, differentiation, and migration of hiPSCs. Platelet-rich plasma (PRP) could be used as the source of growth factors for hiPSCs. In the present study, proliferation and neural differentiation of hiPSCs on surface-modified nanofibrous Poly-L-lactic acid (PLLA) coated with platelet-rich plasma was investigated. The results of in vitro analysis showed that on the surface, which was modified nanofibrous scaffolds coated with platelet-rich plasma, significantly enhanced hiPSCs proliferation and neural differentiation were observed. Whereas the MTT ([3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide]) results showed biocompatibility of surface-modified nanofibrous scaffolds coated with platelet-rich plasma and the usage of these modified nanoscaffolds in neural tissue engineering in vivo is promising for the future.
Collapse
Affiliation(s)
- Reza Moazamiyanfar
- Department of Medical Nanotechnology, Faculty of Advanced Sciences and Technology, Pharmaceutical Sciences Branch, Islamic Azad University (IAUPS), Tehran, Iran
| | - Raheleh Halabian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Marzieh Ghollasi
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| | - Delaram Poormoghadam
- Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Seyed Ehsan Endorami
- Immunogenetics Research Center, Department of Medical Biotechnology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
8
|
Narkar A, Willard JM, Blinova K. Chronic Cardiotoxicity Assays Using Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes (hiPSC-CMs). Int J Mol Sci 2022; 23:ijms23063199. [PMID: 35328619 PMCID: PMC8953833 DOI: 10.3390/ijms23063199] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/11/2022] [Accepted: 03/13/2022] [Indexed: 12/18/2022] Open
Abstract
Cardiomyocytes (CMs) differentiated from human induced pluripotent stem cells (hiPSCs) are increasingly used in cardiac safety assessment, disease modeling and regenerative medicine. A vast majority of cardiotoxicity studies in the past have tested acute effects of compounds and drugs; however, these studies lack information on the morphological or physiological responses that may occur after prolonged exposure to a cardiotoxic compound. In this review, we focus on recent advances in chronic cardiotoxicity assays using hiPSC-CMs. We summarize recently published literature on hiPSC-CMs assays applied to chronic cardiotoxicity induced by anticancer agents, as well as non-cancer classes of drugs, including antibiotics, anti-hepatitis C virus (HCV) and antidiabetic drugs. We then review publications on the implementation of hiPSC-CMs-based assays to investigate the effects of non-pharmaceutical cardiotoxicants, such as environmental chemicals or chronic alcohol consumption. We also highlight studies demonstrating the chronic effects of smoking and implementation of hiPSC-CMs to perform genomic screens and metabolomics-based biomarker assay development. The acceptance and wide implementation of hiPSC-CMs-based assays for chronic cardiotoxicity assessment will require multi-site standardization of assay protocols, chronic cardiac maturity marker reproducibility, time points optimization, minimal cellular variation (commercial vs. lab reprogrammed), stringent and matched controls and close clinical setting resemblance. A comprehensive investigation of long-term repeated exposure-induced effects on both the structure and function of cardiomyocytes can provide mechanistic insights and recapitulate drug and environmental cardiotoxicity.
Collapse
Affiliation(s)
- Akshay Narkar
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA;
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA;
| | - James M. Willard
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA;
| | - Ksenia Blinova
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA;
- Correspondence:
| |
Collapse
|
9
|
Chaudhary S, Chakraborty E. Hydrogel based tissue engineering and its future applications in personalized disease modeling and regenerative therapy. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022; 11:3. [PMID: 35005036 PMCID: PMC8725962 DOI: 10.1186/s43088-021-00172-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/09/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Evolution in the in vitro cell culture from conventional 2D to 3D technique has been a significant accomplishment. The 3D culture models have provided a close and better insight into the physiological study of the human body. The increasing demand for organs like liver, kidney, and pancreas for transplantation, rapid anti-cancer drug screening, and the limitations associated with the use of animal models have attracted the interest of researchers to explore 3D organ culture. MAIN BODY Natural, synthetic, and hybrid material-based hydrogels are being used as scaffolds in 3D culture and provide 'close-to-in vivo' structures. Organoids: the stem cell-derived small size 3D culture systems are now favored due to their ability to mimic the in-vivo conditions of organ or tissue and this characteristic has made it eligible for a variety of clinical applications, drug discovery and regenerative medicine are a few of the many areas of application. The use of animal models for clinical applications has been a long-time ethical and biological challenge to get accurate outcomes. 3D bioprinting has resolved the issue of vascularization in organoid culture to a great extent by its layer-by-layer construction approach. The 3D bioprinted organoids have a popular application in personalized disease modeling and rapid drug development and therapeutics. SHORT CONCLUSIONS This review paper, focuses on discussing the novel organoid culture approach, its advantages and limitations, and potential applications in a variety of life science areas namely cancer research, cell therapy, tissue engineering, and personalized medicine and drug discovery. GRAPHICAL ABSTRACT
Collapse
Affiliation(s)
- Shikha Chaudhary
- SRM Institute of Science & Technology, Chennai, Tamil Nadu 603203 India
| | - Eliza Chakraborty
- Medical Translational Biotechnology Lab, Prof of Department of Biotechnology, Head of the Department of DST-Fist Center (Sponsored By Ministry of Science & Technology, Government of India), Meerut Institute of Engineering and Technology (MIET), Meerut, Uttar Pradesh 250002 India
| |
Collapse
|
10
|
Dou Y, Sun X, Ma X, Zhao X, Yang Q. Intervertebral Disk Degeneration: The Microenvironment and Tissue Engineering Strategies. Front Bioeng Biotechnol 2021; 9:592118. [PMID: 34354983 PMCID: PMC8329559 DOI: 10.3389/fbioe.2021.592118] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 05/18/2021] [Indexed: 12/16/2022] Open
Abstract
Intervertebral disk degeneration (IVDD) is a leading cause of disability. The degeneration is inevitable, and the mechanisms are complex. Current therapeutic strategies mainly focus on the relief of symptoms, not the intrinsic regeneration of the intervertebral disk (IVD). Tissue engineering is a promising strategy for IVDD due to its ability to restore a healthy microenvironment and promote IVD regeneration. This review briefly summarizes the IVD anatomy and composition and then sets out elements of the microenvironment and the interactions. We rationalized different scaffolds based on tissue engineering strategies used recently. To fulfill the complete restoration of a healthy IVD microenvironment, we propose that various tissue engineering strategies should be combined and customized to create personalized therapeutic strategies for each individual.
Collapse
Affiliation(s)
- Yiming Dou
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
| | - Xun Sun
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
| | - Xinlong Ma
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
| | - Xin Zhao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Qiang Yang
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
| |
Collapse
|
11
|
Wu YC, Sonninen TM, Peltonen S, Koistinaho J, Lehtonen Š. Blood-Brain Barrier and Neurodegenerative Diseases-Modeling with iPSC-Derived Brain Cells. Int J Mol Sci 2021; 22:7710. [PMID: 34299328 PMCID: PMC8307585 DOI: 10.3390/ijms22147710] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/11/2021] [Accepted: 07/12/2021] [Indexed: 12/12/2022] Open
Abstract
The blood-brain barrier (BBB) regulates the delivery of oxygen and important nutrients to the brain through active and passive transport and prevents neurotoxins from entering the brain. It also has a clearance function and removes carbon dioxide and toxic metabolites from the central nervous system (CNS). Several drugs are unable to cross the BBB and enter the CNS, adding complexity to drug screens targeting brain disorders. A well-functioning BBB is essential for maintaining healthy brain tissue, and a malfunction of the BBB, linked to its permeability, results in toxins and immune cells entering the CNS. This impairment is associated with a variety of neurological diseases, including Alzheimer's disease and Parkinson's disease. Here, we summarize current knowledge about the BBB in neurodegenerative diseases. Furthermore, we focus on recent progress of using human-induced pluripotent stem cell (iPSC)-derived models to study the BBB. We review the potential of novel stem cell-based platforms in modeling the BBB and address advances and key challenges of using stem cell technology in modeling the human BBB. Finally, we highlight future directions in this area.
Collapse
Affiliation(s)
- Ying-Chieh Wu
- Neuroscience Center, University of Helsinki, 00014 Helsinki, Finland; (Y.-C.W.); (T.-M.S.); (S.P.); (J.K.)
| | - Tuuli-Maria Sonninen
- Neuroscience Center, University of Helsinki, 00014 Helsinki, Finland; (Y.-C.W.); (T.-M.S.); (S.P.); (J.K.)
| | - Sanni Peltonen
- Neuroscience Center, University of Helsinki, 00014 Helsinki, Finland; (Y.-C.W.); (T.-M.S.); (S.P.); (J.K.)
| | - Jari Koistinaho
- Neuroscience Center, University of Helsinki, 00014 Helsinki, Finland; (Y.-C.W.); (T.-M.S.); (S.P.); (J.K.)
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Šárka Lehtonen
- Neuroscience Center, University of Helsinki, 00014 Helsinki, Finland; (Y.-C.W.); (T.-M.S.); (S.P.); (J.K.)
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| |
Collapse
|
12
|
Induced Pluripotency: A Powerful Tool for In Vitro Modeling. Int J Mol Sci 2020; 21:ijms21238910. [PMID: 33255453 PMCID: PMC7727808 DOI: 10.3390/ijms21238910] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022] Open
Abstract
One of the greatest breakthroughs of regenerative medicine in this century was the discovery of induced pluripotent stem cell (iPSC) technology in 2006 by Shinya Yamanaka. iPSCs originate from terminally differentiated somatic cells that have newly acquired the developmental capacity of self-renewal and differentiation into any cells of three germ layers. Before iPSCs can be used routinely in clinical practice, their efficacy and safety need to be rigorously tested; however, iPSCs have already become effective and fully-fledged tools for application under in vitro conditions. They are currently routinely used for disease modeling, preparation of difficult-to-access cell lines, monitoring of cellular mechanisms in micro- or macroscopic scales, drug testing and screening, genetic engineering, and many other applications. This review is a brief summary of the reprogramming process and subsequent differentiation and culture of reprogrammed cells into neural precursor cells (NPCs) in two-dimensional (2D) and three-dimensional (3D) conditions. NPCs can be used as biomedical models for neurodegenerative diseases (NDs), which are currently considered to be one of the major health problems in the human population.
Collapse
|
13
|
Mishra P, Cohen RI, Zhao N, Moghe PV. Fluorescence-based actin turnover dynamics of stem cells as a profiling method for stem cell functional evolution, heterogeneity and phenotypic lineage parsing. Methods 2020; 190:44-54. [PMID: 32473293 DOI: 10.1016/j.ymeth.2020.05.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 05/24/2020] [Accepted: 05/26/2020] [Indexed: 02/07/2023] Open
Abstract
Stem cells are widely explored in regenerative medicine as a source to produce diverse cell types. Despite the wide usage of stem cells like mesenchymal stem cells (MSCs) and induced pluripotent stem cells (iPSCs), there is a lack of robust methods to rapidly discern the phenotypic and functional heterogeneity of stem cells. The organization of actin cytoskeleton has been previously used to discern divergent stem cell differentiation pathways. In this paper, we highlight the versatility of a cell profiling method for actin turnover dynamics. Actin filaments in live stem cells are labeled using SiR-actin, a cell permeable fluorogenic probe, to determine the endogenous actin turnover. Live MSC imaging after days of induction successfully demonstrated lineage specific change in actin turnover. Next, we highlighted the differences in the cellular heterogeneity of actin dynamics during adipogenic or osteogenic MSC differentiation. Next, we applied the method to differentiating iPSCs in culture, and detected a progressive slowdown in actin turnover during differentiation upon stimulation with neural or cardiac media. Finally, as a proof of concept, the actin dynamic profiling was used to isolate MSCs via flow cytometry prior to sorting into three distinct sub-populations with low, intermediate or high actin dynamics. A greater fraction of MSCs with more rapid actin dynamics demonstrated increased inclination for adipogenesis, whereas, slower actin dynamics correlated with increased osteogenesis. Together, these results show that actin turnover can serve as a versatile biomarker to not only track cellular phenotypic heterogeneity but also harvest live cells with potential for differential phenotypic fates.
Collapse
Affiliation(s)
- Prakhar Mishra
- Molecular Biosciences Graduate Program in Cell and Developmental Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Ricky I Cohen
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA
| | - Nanxia Zhao
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, NJ 08854, USA
| | - Prabhas V Moghe
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
14
|
Atchison L, Abutaleb NO, Snyder-Mounts E, Gete Y, Ladha A, Ribar T, Cao K, Truskey GA. iPSC-Derived Endothelial Cells Affect Vascular Function in a Tissue-Engineered Blood Vessel Model of Hutchinson-Gilford Progeria Syndrome. Stem Cell Reports 2020; 14:325-337. [PMID: 32032552 PMCID: PMC7013250 DOI: 10.1016/j.stemcr.2020.01.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 12/11/2022] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a rare disorder caused by a point mutation in the Lamin A gene that produces the protein progerin. Progerin toxicity leads to accelerated aging and death from cardiovascular disease. To elucidate the effects of progerin on endothelial cells, we prepared tissue-engineered blood vessels (viTEBVs) using induced pluripotent stem cell-derived smooth muscle cells (viSMCs) and endothelial cells (viECs) from HGPS patients. HGPS viECs aligned with flow but exhibited reduced flow-responsive gene expression and altered NOS3 levels. Relative to viTEBVs with healthy cells, HGPS viTEBVs showed reduced function and exhibited markers of cardiovascular disease associated with endothelium. HGPS viTEBVs exhibited a reduction in both vasoconstriction and vasodilation. Preparing viTEBVs with HGPS viECs and healthy viSMCs only reduced vasodilation. Furthermore, HGPS viECs produced VCAM1 and E-selectin protein in TEBVs with healthy or HGPS viSMCs. In summary, the viTEBV model has identified a role of the endothelium in HGPS.
Collapse
Affiliation(s)
- Leigh Atchison
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Nadia O Abutaleb
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | | | - Yantenew Gete
- Department of Cell Biology and Molecular Genetics at University of Maryland, College Park, MD, USA
| | - Alim Ladha
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Thomas Ribar
- Duke iPSC Shared Resource Facility at Duke University, Durham, NC, USA
| | - Kan Cao
- Department of Cell Biology and Molecular Genetics at University of Maryland, College Park, MD, USA
| | - George A Truskey
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
| |
Collapse
|
15
|
Huang Y, Wan J, Guo Y, Zhu S, Wang Y, Wang L, Guo Q, Lu Y, Wang Z. Transcriptome Analysis of Induced Pluripotent Stem Cell (iPSC)-derived Pancreatic β-like Cell Differentiation. Cell Transplant 2018; 26:1380-1391. [PMID: 28901190 PMCID: PMC5680972 DOI: 10.1177/0963689717720281] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Diabetes affects millions of people worldwide, and β-cell replacement is one of the promising new strategies for treatment. Induced pluripotent stem cells (iPSCs) can differentiate into any cell type, including pancreatic β cells, providing a potential treatment for diabetes. However, the molecular mechanisms underlying the differentiation of iPSC-derived β cells have not yet been fully elucidated. Here, we generated pancreatic β-like cells from mouse iPSCs using a 3-step protocol and performed deep RNA sequencing to get a transcriptional landscape of iPSC-derived pancreatic β-like cells during the selective differentiation period. We then focused on the differentially expressed genes (DEGs) during the time course of the differentiation period, and these genes underwent Gene Ontology annotation and Kyoto Encyclopedia of Genes and Genomes pathway analysis. In addition, gene-act networks were constructed for these DEGs, and the expression of pivotal genes detected by quantitative real-time polymerase chain reaction was well correlated with RNA sequence (RNA-seq). Overall, our study provides valuable information regarding the transcriptome changes in β cells derived from iPSCs during differentiation, elucidates the biological process and pathways underlying β-cell differentiation, and promotes the identification and functional analysis of potential genes that could be used for improving functional β-cell generation from iPSCs.
Collapse
Affiliation(s)
- Yan Huang
- 1 Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Jian Wan
- 1 Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Yibing Guo
- 2 Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Shajun Zhu
- 1 Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Yao Wang
- 1 Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Lei Wang
- 1 Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Qingsong Guo
- 1 Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Yuhua Lu
- 1 Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Zhiwei Wang
- 1 Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
16
|
Levinson Y, Beri RG, Holderness K, Ben-Nun IF, Shi Y, Abraham E. Bespoke cell therapy manufacturing platforms. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.01.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
17
|
Atchison L, Zhang H, Cao K, Truskey GA. A Tissue Engineered Blood Vessel Model of Hutchinson-Gilford Progeria Syndrome Using Human iPSC-derived Smooth Muscle Cells. Sci Rep 2017; 7:8168. [PMID: 28811655 PMCID: PMC5557922 DOI: 10.1038/s41598-017-08632-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 07/12/2017] [Indexed: 01/30/2023] Open
Abstract
Hutchison-Gilford Progeria Syndrome (HGPS) is a rare, accelerated aging disorder caused by nuclear accumulation of progerin, an altered form of the Lamin A gene. The primary cause of death is cardiovascular disease at about 14 years. Loss and dysfunction of smooth muscle cells (SMCs) in the vasculature may cause defects associated with HGPS. Due to limitations of 2D cell culture and mouse models, there is a need to develop improved models to discover novel therapeutics. To address this need, we produced a functional three-dimensional model of HGPS that replicates an arteriole-scale tissue engineered blood vessel (TEBV) using induced pluripotent stem cell (iPSC)-derived SMCs from an HGPS patient. To isolate the effect of the HGPS iSMCs, the endothelial layer consisted of human cord blood-derived endothelial progenitor cells (hCB-EPCs) from a separate, healthy donor. TEBVs fabricated from HGPS iSMCs and hCB-EPCs show reduced vasoactivity, increased medial wall thickness, increased calcification and apoptosis relative to TEBVs fabricated from normal iSMCs or primary MSCs. Additionally, treatment of HGPS TEBVs with the proposed therapeutic Everolimus, increases HGPS TEBV vasoactivity and increases iSMC differentiation in the TEBVs. These results show the ability of this iPSC-derived TEBV to reproduce key features of HGPS and respond to drugs.
Collapse
Affiliation(s)
- Leigh Atchison
- Department of Biomedical Engineering at Duke University, Durham, NC, 27708, United States
| | - Haoyue Zhang
- Department of Cell Biology and Molecular Genetics at University of Maryland, College Park, MD, 20742, United States
| | - Kan Cao
- Department of Cell Biology and Molecular Genetics at University of Maryland, College Park, MD, 20742, United States
| | - George A Truskey
- Department of Biomedical Engineering at Duke University, Durham, NC, 27708, United States.
| |
Collapse
|
18
|
Zelltherapie am Augenhintergrund – gestern, heute, morgen. MED GENET-BERLIN 2017. [DOI: 10.1007/s11825-017-0140-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Zusammenfassung
Der gemeinsame Endpunkt vieler Netzhautdegenerationen ist ein Zelluntergang im retinalen Pigmentepithel und/oder der neurosensorischen Retina und ein damit verbundener irreversibler Visusverlust. Therapieansätze in fortgeschrittenen Erkrankungsstadien müssen folglich ebenfalls den Ersatz dieser verloren gegangenen Zellen und Gewebe adressieren. Hier zeichnen sich in den letzten Jahren vor allem auf dem Gebiet der stammzellbasierten zellulären Transplantationstherapie rasante Fortschritte in Grundlagenforschung und klinischer Anwendung ab. Besonders die induzierten pluripotenten Stammzellen scheinen die personalisierte Medizin signifikant voranbringen zu können, falls es gelingt wesentliche Bedenken und Limitationen zu überwinden. Diese Übersicht benennt retinale Krankheitsbilder, bei denen Zelltherapie eine potenzielle Therapieoption darstellt, und gibt einen kurzen Einblick in bisherige Therapiemöglichkeiten. Darüber hinaus werden insbesondere die potenziellen Anwendungsbereiche induzierter pluripotenter Stammzellen mit ihren Vorteilen, aber auch Problemen beleuchtet. Der Hauptfokus liegt auf dem stammzellbasierten Ersatz des retinalen Pigmentepithels, da dieser im Hinblick auf eine therapeutische Anwendung am Menschen, im Vergleich zu anderen Zellen der neurosensorischen Netzhaut, die größten Fortschritte verzeichnet. Abschließend wird ein Überblick über bereits laufende klinische Studien zur Therapie von Netzhautdegenerationen mittels stammzellbasierter zellulärer Transplantationstherapie gegeben.
Collapse
|
19
|
Berezin AE. New Trends in Stem Cell Transplantation in Diabetes Mellitus Type I and Type II. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/978-3-319-55687-1_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
20
|
A preliminary analysis of volatile metabolites of human induced pluripotent stem cells along the in vitro differentiation. Sci Rep 2017; 7:1621. [PMID: 28487523 PMCID: PMC5431616 DOI: 10.1038/s41598-017-01790-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 03/31/2017] [Indexed: 12/25/2022] Open
Abstract
Cellular metabolism of stem cell biology is still an unexplored field. However, considering the amount of information carried by metabolomes, this is a promising field for a fast identification of stem cells itself and during the differentiation process. One of the goals of such application is the identification of residual pluripotent cells before cell transplantation to avoid the occurrence of teratomas. In this paper, we investigated in vitro the volatile compounds (VOCs) released during human induced pluripotent stem cells (hiPSCs) reprogramming. In particular, we studied hiPSCs differentiation to floating and adherent embryoid bodies until early neural progenitor cells. A preliminary Gas Chromatographic/Mass Spectrometer (GC/MS) analysis, based on a single extraction method and chromatographic separation, indicated 17 volatile compounds whose relative abundance is altered in each step of the differentiation process. The pattern of VOCs shown by hiPSCs is well distinct and makes these cells sharply separated from the other steps of differentiations. Similar behaviour has also been observed with an array of metalloporphyrins based gas sensors. The use of electronic sensors to control the process of differentiation of pluripotent stem cells might suggest a novel perspective for a fast and on-line control of differentiation processes.
Collapse
|
21
|
Low K, Wong LY, Maldonado M, Manjunath C, Horner CB, Perez M, Myung NV, Nam J. Physico-electrochemical Characterization of Pluripotent Stem Cells during Self-Renewal or Differentiation by a Multi-modal Monitoring System. Stem Cell Reports 2017; 8:1329-1339. [PMID: 28457888 PMCID: PMC5425683 DOI: 10.1016/j.stemcr.2017.03.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/27/2017] [Accepted: 03/28/2017] [Indexed: 01/14/2023] Open
Abstract
Monitoring pluripotent stem cell behaviors (self-renewal and differentiation to specific lineages/phenotypes) is critical for a fundamental understanding of stem cell biology and their translational applications. In this study, a multi-modal stem cell monitoring system was developed to quantitatively characterize physico-electrochemical changes of the cells in real time, in relation to cellular activities during self-renewal or lineage-specific differentiation, in a non-destructive, label-free manner. The system was validated by measuring physical (mass) and electrochemical (impedance) changes in human induced pluripotent stem cells undergoing self-renewal, or subjected to mesendodermal or ectodermal differentiation, and correlating them to morphological (size, shape) and biochemical changes (gene/protein expression). An equivalent circuit model was used to further dissect the electrochemical (resistive and capacitive) contributions of distinctive cellular features. Overall, the combination of the physico-electrochemical measurements and electrical circuit modeling collectively offers a means to longitudinally quantify the states of stem cell self-renewal and differentiation.
Collapse
Affiliation(s)
- Karen Low
- Department of Bioengineering, University of California-Riverside, Materials Science & Engineering Building 331, 900 University Avenue, Riverside, CA 92521, USA
| | - Lauren Y Wong
- Department of Bioengineering, University of California-Riverside, Materials Science & Engineering Building 331, 900 University Avenue, Riverside, CA 92521, USA
| | - Maricela Maldonado
- Department of Bioengineering, University of California-Riverside, Materials Science & Engineering Building 331, 900 University Avenue, Riverside, CA 92521, USA
| | - Chetas Manjunath
- Department of Bioengineering, University of California-Riverside, Materials Science & Engineering Building 331, 900 University Avenue, Riverside, CA 92521, USA
| | - Christopher B Horner
- Department of Bioengineering, University of California-Riverside, Materials Science & Engineering Building 331, 900 University Avenue, Riverside, CA 92521, USA
| | - Mark Perez
- Department of Bioengineering, University of California-Riverside, Materials Science & Engineering Building 331, 900 University Avenue, Riverside, CA 92521, USA
| | - Nosang V Myung
- Department of Chemical and Environmental Engineering, University of California-Riverside, Bourns Hall B355, 900 University Avenue, Riverside, CA 92521, USA
| | - Jin Nam
- Department of Bioengineering, University of California-Riverside, Materials Science & Engineering Building 331, 900 University Avenue, Riverside, CA 92521, USA.
| |
Collapse
|
22
|
Rethinking therapeutic strategies in cancer: Wars, fields, anomalies and monsters. SOCIAL THEORY & HEALTH 2016. [DOI: 10.1057/sth.2016.4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
23
|
Tasan I, Jain S, Zhao H. Use of genome-editing tools to treat sickle cell disease. Hum Genet 2016; 135:1011-28. [PMID: 27250347 PMCID: PMC5002234 DOI: 10.1007/s00439-016-1688-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 05/11/2016] [Indexed: 12/26/2022]
Abstract
Recent advances in genome-editing techniques have made it possible to modify any desired DNA sequence by employing programmable nucleases. These next-generation genome-modifying tools are the ideal candidates for therapeutic applications, especially for the treatment of genetic disorders like sickle cell disease (SCD). SCD is an inheritable monogenic disorder which is caused by a point mutation in the β-globin gene. Substantial success has been achieved in the development of supportive therapeutic strategies for SCD, but unfortunately there is still a lack of long-term universal cure. The only existing curative treatment is based on allogeneic stem cell transplantation from healthy donors; however, this treatment is applicable to a limited number of patients only. Hence, a universally applicable therapy is highly desirable. In this review, we will discuss the three programmable nucleases that are commonly used for genome-editing purposes: zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9). We will continue by exemplifying uses of these methods to correct the sickle cell mutation. Additionally, we will present induction of fetal globin expression as an alternative approach to cure sickle cell disease. We will conclude by comparing the three methods and explaining the concerns about their use in therapy.
Collapse
Affiliation(s)
- Ipek Tasan
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Surbhi Jain
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Huimin Zhao
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
24
|
Sun AX, Numpaisal PO, Gottardi R, Shen H, Yang G, Tuan RS. Cell and Biomimetic Scaffold-Based Approaches for Cartilage Regeneration. ACTA ACUST UNITED AC 2016. [DOI: 10.1053/j.oto.2016.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
25
|
Shi L, Cui Y, Luan J, Zhou X, Han J. Urine-derived induced pluripotent stem cells as a modeling tool to study rare human diseases. Intractable Rare Dis Res 2016; 5:192-201. [PMID: 27672542 PMCID: PMC4995418 DOI: 10.5582/irdr.2016.01062] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Rare diseases with a low prevalence are a key public health issue because the causes of those diseases are difficult to determine and those diseases lack a clearly established or curative treatment. Thus, investigating the molecular mechanisms that underlie the pathology of rare diseases and facilitating the development of novel therapies using disease models is crucial. Human induced pluripotent stem cells (iPSCs) are well suited to modeling rare diseases since they have the capacity for self-renewal and pluripotency. In addition, iPSC technology provides a valuable tool to generate patient-specific iPSCs. These cells can be differentiated into cell types that have been affected by a disease. These cells would circumvent ethical concerns and avoid immunological rejection, so they could be used in cell replacement therapy or regenerative medicine. To date, human iPSCs could have been generated from multiple donor sources, such as skin, adipose tissue, and peripheral blood. However, these cells are obtained via invasive procedures. In contrast, several groups of researchers have found that urine may be a better source for producing iPSCs from normal individuals or patients. This review discusses urinary iPSC (UiPSC) as a candidate for modeling rare diseases. Cells obtained from urine have overwhelming advantages compared to other donor sources since they are safely, affordably, and frequently obtained and they are readily obtained from patients. The use of iPSC-based models is also discussed. UiPSCs may prove to be a key means of modeling rare diseases and they may facilitate the treatment of those diseases in the future.
Collapse
Affiliation(s)
- Liang Shi
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Science, Ji'nan, Shandong, China
- Key Laboratory for Rare Disease Research of Shandong Province, Key Laboratory for Biotech Drugs of the Ministry of Health, Shandong Medical Biotechnological Center, Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Yazhou Cui
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Science, Ji'nan, Shandong, China
| | - Jing Luan
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Science, Ji'nan, Shandong, China
| | - Xiaoyan Zhou
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Science, Ji'nan, Shandong, China
| | - Jinxiang Han
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Science, Ji'nan, Shandong, China
- Address correspondence to: Dr. Jinxiang Han, Key Laboratory for Rare Disease Research of Shandong Province, Key Laboratory for Biotech Drugs of the Ministry of Health, Shandong Medical Biotechnological Center, Shandong Academy of Medical Sciences, Ji'nan, Shandong 250062, China. E-mail:
| |
Collapse
|
26
|
Hossini AM, Quast AS, Plötz M, Grauel K, Exner T, Küchler J, Stachelscheid H, Eberle J, Rabien A, Makrantonaki E, Zouboulis CC. PI3K/AKT Signaling Pathway Is Essential for Survival of Induced Pluripotent Stem Cells. PLoS One 2016; 11:e0154770. [PMID: 27138223 PMCID: PMC4854383 DOI: 10.1371/journal.pone.0154770] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 04/19/2016] [Indexed: 12/20/2022] Open
Abstract
Apoptosis is a highly conserved biochemical mechanism which is tightly controlled in cells. It contributes to maintenance of tissue homeostasis and normally eliminates highly proliferative cells with malignant properties. Induced pluripotent stem cells (iPSCs) have recently been described with significant functional and morphological similarities to embryonic stem cells. Human iPSCs are of great hope for regenerative medicine due to their broad potential to differentiate into specialized cell types in culture. They may be useful for exploring disease mechanisms and may provide the basis for future cell-based replacement therapies. However, there is only poor insight into iPSCs cell signaling as the regulation of apoptosis. In this study, we focused our attention on the apoptotic response of Alzheimer fibroblast-derived iPSCs and two other Alzheimer free iPSCs to five biologically relevant kinase inhibitors as well as to the death ligand TRAIL. To our knowledge, we are the first to report that the relatively high basal apoptotic rate of iPSCs is strongly suppressed by the pancaspase inhibitor QVD-Oph, thus underlining the dependency on proapoptotic caspase cascades. Furthermore, wortmannin, an inhibitor of phosphoinositid-3 kinase / Akt signaling (PI3K-AKT), dramatically and rapidly induced apoptosis in iPSCs. In contrast, parental fibroblasts as well as iPSC-derived neuronal cells were not responsive. The resulting condensation and fragmentation of DNA and decrease of the membrane potential are typical features of apoptosis. Comparable effects were observed with an AKT inhibitor (MK-2206). Wortmannin resulted in disappearance of phosphorylated AKT and activation of the main effector caspase-3 in iPSCs. These results clearly demonstrate for the first time that PI3K-AKT represents a highly essential survival signaling pathway in iPSCs. The findings provide improved understanding on the underlying mechanisms of apoptosis regulation in iPSCs.
Collapse
Affiliation(s)
- Amir M Hossini
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Dessau, Germany
| | - Annika S Quast
- Department of Dermatology and Allergy, Skin Cancer Center Charité, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Plötz
- Department of Dermatology and Allergy, Skin Cancer Center Charité, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Katharina Grauel
- NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Department of Biology, Chemistry, Pharmacy, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Tarik Exner
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Dessau, Germany
| | - Judit Küchler
- Berlin Institute of Health-Stem Cell Core Facility, Berlin, Germany
| | - Harald Stachelscheid
- Berlin Institute of Health-Stem Cell Core Facility, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jürgen Eberle
- Department of Dermatology and Allergy, Skin Cancer Center Charité, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Anja Rabien
- Department of Urology and Berlin Institute of Urologic Research, Charité- Universitätsmedizin Berlin, Berlin, Germany
| | - Evgenia Makrantonaki
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Dessau, Germany.,Research Geriatrics Group, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Department of Dermatology and Allergology, Universitätsklinikum Ulm, Ulm, Germany
| | - Christos C Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Dessau, Germany
| |
Collapse
|
27
|
Spitalieri P, Talarico VR, Murdocca M, Novelli G, Sangiuolo F. Human induced pluripotent stem cells for monogenic disease modelling and therapy. World J Stem Cells 2016; 8:118-35. [PMID: 27114745 PMCID: PMC4835672 DOI: 10.4252/wjsc.v8.i4.118] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 01/21/2016] [Accepted: 02/14/2016] [Indexed: 02/06/2023] Open
Abstract
Recent and advanced protocols are now available to derive human induced pluripotent stem cells (hiPSCs) from patients affected by genetic diseases. No curative treatments are available for many of these diseases; thus, hiPSCs represent a major impact on patient' health. hiPSCs represent a valid model for the in vitro study of monogenic diseases, together with a better comprehension of the pathogenic mechanisms of the pathology, for both cell and gene therapy protocol applications. Moreover, these pluripotent cells represent a good opportunity to test innovative pharmacological treatments focused on evaluating the efficacy and toxicity of novel drugs. Today, innovative gene therapy protocols, especially gene editing-based, are being developed, allowing the use of these cells not only as in vitro disease models but also as an unlimited source of cells useful for tissue regeneration and regenerative medicine, eluding ethical and immune rejection problems. In this review, we will provide an up-to-date of modelling monogenic disease by using hiPSCs and the ultimate applications of these in vitro models for cell therapy. We consider and summarize some peculiar aspects such as the type of parental cells used for reprogramming, the methods currently used to induce the transcription of the reprogramming factors, and the type of iPSC-derived differentiated cells, relating them to the genetic basis of diseases and to their inheritance model.
Collapse
Affiliation(s)
- Paola Spitalieri
- Paola Spitalieri, Valentina Rosa Talarico, Michela Murdocca, Giuseppe Novelli, Federica Sangiuolo, Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy
| | - Valentina Rosa Talarico
- Paola Spitalieri, Valentina Rosa Talarico, Michela Murdocca, Giuseppe Novelli, Federica Sangiuolo, Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy
| | - Michela Murdocca
- Paola Spitalieri, Valentina Rosa Talarico, Michela Murdocca, Giuseppe Novelli, Federica Sangiuolo, Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy
| | - Giuseppe Novelli
- Paola Spitalieri, Valentina Rosa Talarico, Michela Murdocca, Giuseppe Novelli, Federica Sangiuolo, Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy
| | - Federica Sangiuolo
- Paola Spitalieri, Valentina Rosa Talarico, Michela Murdocca, Giuseppe Novelli, Federica Sangiuolo, Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy
| |
Collapse
|
28
|
Zhou H, Martinez H, Sun B, Li A, Zimmer M, Katsanis N, Davis EE, Kurtzberg J, Lipnick S, Noggle S, Rao M, Chang S. Rapid and Efficient Generation of Transgene-Free iPSC from a Small Volume of Cryopreserved Blood. Stem Cell Rev Rep 2016; 11:652-65. [PMID: 25951995 PMCID: PMC4493720 DOI: 10.1007/s12015-015-9586-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Human peripheral blood and umbilical cord blood represent attractive sources of cells for reprogramming to induced pluripotent stem cells (iPSCs). However, to date, most of the blood-derived iPSCs were generated using either integrating methods or starting from T-lymphocytes that have genomic rearrangements thus bearing uncertain consequences when using iPSC-derived lineages for disease modeling and cell therapies. Recently, both peripheral blood and cord blood cells have been reprogrammed into transgene-free iPSC using the Sendai viral vector. Here we demonstrate that peripheral blood can be utilized for medium-throughput iPSC production without the need to maintain cell culture prior to reprogramming induction. Cell reprogramming can also be accomplished with as little as 3000 previously cryopreserved cord blood cells under feeder-free and chemically defined Xeno-free conditions that are compliant with standard Good Manufacturing Practice (GMP) regulations. The first iPSC colonies appear 2–3 weeks faster in comparison to previous reports. Notably, these peripheral blood- and cord blood-derived iPSCs are free of detectable immunoglobulin heavy chain (IGH) and T cell receptor (TCR) gene rearrangements, suggesting they did not originate from B- or T- lymphoid cells. The iPSCs are pluripotent as evaluated by the scorecard assay and in vitro multi lineage functional cell differentiation. Our data show that small volumes of cryopreserved peripheral blood or cord blood cells can be reprogrammed efficiently at a convenient, cost effective and scalable way. In summary, our method expands the reprogramming potential of limited or archived samples either stored at blood banks or obtained from pediatric populations that cannot easily provide large quantities of peripheral blood or a skin biopsy.
Collapse
Affiliation(s)
- Hongyan Zhou
- The New York Stem Cell Foundation Research Institute, New York, NY, 10032, USA,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Glucocorticoids alter neuronal differentiation of human neuroepithelial-like cells by inducing long-lasting changes in the reactive oxygen species balance. Neuropharmacology 2016; 107:422-431. [PMID: 26992751 DOI: 10.1016/j.neuropharm.2016.03.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 02/26/2016] [Accepted: 03/11/2016] [Indexed: 11/20/2022]
Abstract
Prenatal exposure to excess glucocorticoid has been shown to have adverse effects on the developing nervous system that may lead to alterations of fetal and adult neurogenesis, resulting in behavioral changes. In addition, an imbalance of the redox state, with an increased susceptibility to oxidative stress, has been observed in rodent neural stem cells exposed to the synthetic glucocorticoid analog dexamethasone (Dex). In the present study, we used the induced pluripotent stem cells (IPSC)-derived lt-NES AF22 cell line, representative of the neuroepithelial stage in central nervous system development, to investigate the heritable effects of Dex on reactive oxygen species (ROS) balance and its impact on neuronal differentiation. By analysing gene expression in daughter cells that were never directly exposed to Dex, we could observe a downregulation of four key antioxidant enzymes, namely Catalase, superoxide dismutase 1, superoxide dismutase 2 and glutathione peroxidase7, along with an increased intracellular ROS concentration. The imbalance in the intracellular REDOX state was associated to a significant downregulation of major neuronal markers and a concomitant increase of glial cells. Interestingly, upon treatment with the antioxidant N-acetyl-cysteine (NAC), the misexpression of both neuronal and glial markers analyzed was recovered. These novel findings point to the increased ROS concentration playing a direct role in the heritable alterations of the differentiation potential induced by Dex exposure. Moreover, the data support the hypothesis that early insults may have detrimental long-lasting consequences on neurogenesis. Based on the positive effects exerted by NAC, it is conceivable that therapeutic strategies including antioxidants may be effective in the treatment of neuropsychiatric disorders that have been associated to increased ROS and impaired neurogenesis.
Collapse
|
30
|
Abstract
Cardiovascular and neurodegenerative diseases are major health threats in many
developed countries. Recently, target tissues derived from human embryonic stem
(hES) cells and induced pluripotent stem cells (iPSCs), such as cardiomyocytes
(CMs) or neurons, have been actively mobilized for drug screening. Knowledge of
drug toxicity and efficacy obtained using stem cell-derived tissues could
parallel that obtained from human trials. Furthermore, iPSC disease models could
be advantageous in the development of personalized medicine in various parts of
disease sectors. To obtain the maximum benefit from iPSCs in disease modeling,
researchers are now focusing on aging, maturation, and metabolism to
recapitulate the pathological features seen in patients. Compared to pediatric
disease modeling, adult-onset disease modeling with iPSCs requires proper
maturation for full manifestation of pathological features. Herein, the success
of iPSC technology, focusing on patient-specific drug treatment,
maturation-based disease modeling, and alternative approaches to compensate for
the current limitations of patient iPSC modeling, will be further discussed.
[BMB Reports 2015; 48(5): 256-265]
Collapse
Affiliation(s)
- Changsung Kim
- Department of Bioscience and Biotechnology, Sejong University, Seoul 143-747, Korea
| |
Collapse
|
31
|
Rodolfo C, Di Bartolomeo S, Cecconi F. Autophagy in stem and progenitor cells. Cell Mol Life Sci 2016; 73:475-96. [PMID: 26502349 PMCID: PMC11108450 DOI: 10.1007/s00018-015-2071-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 10/12/2015] [Accepted: 10/14/2015] [Indexed: 12/27/2022]
Abstract
Autophagy is a highly conserved cellular process, responsible for the degradation and recycling of damaged and/or outlived proteins and organelles. This is the major cellular pathway, acting throughout the formation of cytosolic vesicles, called autophagosomes, for the delivering to lysosome. Recycling of cellular components through autophagy is a crucial step for cell homeostasis as well as for tissue remodelling during development. Impairment of this process has been related to the pathogenesis of various diseases, such as cancer and neurodegeneration, to the response to bacterial and viral infections, and to ageing. The ability of stem cells to self-renew and differentiate into the mature cells of the body renders this unique type of cell highly crucial to development and tissue renewal, not least in various diseases. During the last two decades, extensive knowledge about autophagy roles and regulation in somatic cells has been acquired; however, the picture about the role and the regulation of autophagy in the different types of stem cells is still largely unknown. Autophagy is a major player in the quality control and maintenance of cellular homeostasis, both crucial factors for stem cells during an organism's life. In this review, we have highlighted the most significant advances in the comprehension of autophagy regulation in embryonic and tissue stem cells, as well as in cancer stem cells and induced pluripotent cells.
Collapse
Affiliation(s)
- Carlo Rodolfo
- Dipartimento di Biologia, Università degli Studi di Roma Tor Vergata, 00133, Rome, Italy
- IRCCS Fondazione Santa Lucia, 00143, Rome, Italy
| | - Sabrina Di Bartolomeo
- Dipartimento di Biologia, Università degli Studi di Roma Tor Vergata, 00133, Rome, Italy
- IRCCS Fondazione Santa Lucia, 00143, Rome, Italy
| | - Francesco Cecconi
- Dipartimento di Biologia, Università degli Studi di Roma Tor Vergata, 00133, Rome, Italy.
- IRCCS Fondazione Santa Lucia, 00143, Rome, Italy.
- Unit of Cell Stress and Survival, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark.
| |
Collapse
|
32
|
Induced Pluripotent Stem Cells: Generation Strategy and Epigenetic Mystery behind Reprogramming. Stem Cells Int 2016; 2016:8415010. [PMID: 26880993 PMCID: PMC4736417 DOI: 10.1155/2016/8415010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/03/2015] [Accepted: 11/11/2015] [Indexed: 01/06/2023] Open
Abstract
Possessing the ability of self-renewal with immortalization and potential for differentiation into different cell types, stem cells, particularly embryonic stem cells (ESC), have attracted significant attention since their discovery. As ESC research has played an essential role in developing our understanding of the mechanisms underlying reproduction, development, and cell (de)differentiation, significant efforts have been made in the biomedical study of ESC in recent decades. However, such studies of ESC have been hampered by the ethical issues and technological challenges surrounding them, therefore dramatically inhibiting the potential applications of ESC in basic biomedical studies and clinical medicine. Induced pluripotent stem cells (iPSCs), generated from the reprogrammed somatic cells, share similar characteristics including but not limited to the morphology and growth of ESC, self-renewal, and potential differentiation into various cell types. The discovery of the iPSC, unhindered by the aforementioned limitations of ESC, introduces a viable alternative to ESC. More importantly, the applications of iPSC in the development of disease models such as neurodegenerative disorders greatly enhance our understanding of the pathogenesis of such diseases and also facilitate the development of clinical therapeutic strategies using iPSC generated from patient somatic cells to avoid an immune rejection. In this review, we highlight the advances in iPSCs generation methods as well as the mechanisms behind their reprogramming. We also discuss future perspectives for the development of iPSC generation methods with higher efficiency and safety.
Collapse
|
33
|
Park B, Yoo KH, Kim C. Hematopoietic stem cell expansion and generation: the ways to make a breakthrough. Blood Res 2015; 50:194-203. [PMID: 26770947 PMCID: PMC4705045 DOI: 10.5045/br.2015.50.4.194] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 12/11/2015] [Accepted: 12/16/2015] [Indexed: 12/28/2022] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) is the first field where human stem cell therapy was successful. Flooding interest on human stem cell therapy to cure previously incurable diseases is largely indebted to HSCT success. Allogeneic HSCT has been an important modality to cure various diseases including hematologic malignancies, various non-malignant hematologic diseases, primary immunodeficiency diseases, and inborn errors of metabolism, while autologous HSCT is generally performed to rescue bone marrow aplasia following high-dose chemotherapy for solid tumors or multiple myeloma. Recently, HSCs are also spotlighted in the field of regenerative medicine for the amelioration of symptoms caused by neurodegenerative diseases, heart diseases, and others. Although the demand for HSCs has been growing, their supply often fails to meet the demand of the patients needing transplant due to a lack of histocompatible donors or a limited cell number. This review focuses on the generation and large-scale expansion of HSCs, which might overcome current limitations in the application of HSCs for clinical use. Furthermore, current proof of concept to replenish hematological homeostasis from non-hematological origin will be covered.
Collapse
Affiliation(s)
- Bokyung Park
- Department of Bioscience and Biotechnology, Sejong University, Korea
| | - Keon Hee Yoo
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Korea.; Department of Medical Device Management and Research, SAIHST, Sungkyunkwan University, Seoul, Korea
| | - Changsung Kim
- Department of Bioscience and Biotechnology, Sejong University, Korea
| |
Collapse
|
34
|
Grassmann F, Ach T, Brandl C, Heid IM, Weber BH. What Does Genetics Tell Us About Age-Related Macular Degeneration? Annu Rev Vis Sci 2015; 1:73-96. [DOI: 10.1146/annurev-vision-082114-035609] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Thomas Ach
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, Alabama 35294
- Department of Ophthalmology, University Hospital Würzburg, Würzburg, D-97080, Germany
| | - Caroline Brandl
- Institute of Human Genetics and
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, D-93053, Germany;
- Department of Ophthalmology, University Hospital Regensburg, Regensburg, D-93042, Germany
| | - Iris M. Heid
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, D-93053, Germany;
| | | |
Collapse
|
35
|
Bahnassawy L, Perumal TM, Gonzalez-Cano L, Hillje AL, Taher L, Makalowski W, Suzuki Y, Fuellen G, del Sol A, Schwamborn JC. TRIM32 modulates pluripotency entry and exit by directly regulating Oct4 stability. Sci Rep 2015; 5:13456. [PMID: 26307407 PMCID: PMC4642535 DOI: 10.1038/srep13456] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 07/17/2015] [Indexed: 12/27/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) have revolutionized the world of regenerative medicine; nevertheless, the exact molecular mechanisms underlying their generation and differentiation remain elusive. Here, we investigated the role of the cell fate determinant TRIM32 in modulating such processes. TRIM32 is essential for the induction of neuronal differentiation of neural stem cells by poly-ubiquitinating cMyc to target it for degradation resulting in inhibition of cell proliferation. To elucidate the role of TRIM32 in regulating somatic cell reprogramming we analysed the capacity of TRIM32-knock-out mouse embryonic fibroblasts (MEFs) in generating iPSC colonies. TRIM32 knock-out MEFs produced a higher number of iPSC colonies indicating a role for TRIM32 in inhibiting this cellular transition. Further characterization of the generated iPSCs indicated that the TRIM32 knock-out iPSCs show perturbed differentiation kinetics. Additionally, mathematical modelling of global gene expression data revealed that during differentiation an Oct4 centred network in the wild-type cells is replaced by an E2F1 centred network in the TRIM32 deficient cells. We show here that this might be caused by a TRIM32-dependent downregulation of Oct4. In summary, the data presented here reveal that TRIM32 directly regulates at least two of the four Yamanaka Factors (cMyc and Oct4), to modulate cell fate transitions.
Collapse
Affiliation(s)
- Lamia'a Bahnassawy
- Westfälische Wilhelms-Universität Münster, ZMBE, Institute of Cell Biology, Stem Cell Biology and Regeneration Group, Von-Esmarch-Str. 56, 48149 Münster, Germany.,Luxembourg Centre for Systems Biomedicine (LCSB), Developmental and Cellular Biology, University of Luxembourg, 7 avenue des Hauts-Fourneaux, 4362 Esch-Belval, Luxembourg
| | - Thanneer M Perumal
- Luxembourg Centre for Systems Biomedicine (LCSB), Computational Biology, University of Luxembourg, 7 avenue des Hauts-Fourneaux, 4362 Esch-Belval, Luxembourg
| | - Laura Gonzalez-Cano
- Luxembourg Centre for Systems Biomedicine (LCSB), Developmental and Cellular Biology, University of Luxembourg, 7 avenue des Hauts-Fourneaux, 4362 Esch-Belval, Luxembourg
| | - Anna-Lena Hillje
- Luxembourg Centre for Systems Biomedicine (LCSB), Developmental and Cellular Biology, University of Luxembourg, 7 avenue des Hauts-Fourneaux, 4362 Esch-Belval, Luxembourg
| | - Leila Taher
- Institute for Biostatistics and Informatics in Medicine und Ageing Research, Rostock University Medical Centre, Ernst-Heydemann-Str. 8, 18057 Rostock, Germany
| | - Wojciech Makalowski
- Westfälische Wilhelms-Universität Münster, Institute of Bioinformatics, Niels-Stensen-Straße 14, 48149 Münster, Germany
| | - Yutaka Suzuki
- Department of Medical Genome Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba-ken 227-8561, Japan
| | - Georg Fuellen
- Institute for Biostatistics and Informatics in Medicine und Ageing Research, Rostock University Medical Centre, Ernst-Heydemann-Str. 8, 18057 Rostock, Germany
| | - Antonio del Sol
- Luxembourg Centre for Systems Biomedicine (LCSB), Computational Biology, University of Luxembourg, 7 avenue des Hauts-Fourneaux, 4362 Esch-Belval, Luxembourg
| | - Jens Christian Schwamborn
- Westfälische Wilhelms-Universität Münster, ZMBE, Institute of Cell Biology, Stem Cell Biology and Regeneration Group, Von-Esmarch-Str. 56, 48149 Münster, Germany.,Luxembourg Centre for Systems Biomedicine (LCSB), Developmental and Cellular Biology, University of Luxembourg, 7 avenue des Hauts-Fourneaux, 4362 Esch-Belval, Luxembourg
| |
Collapse
|
36
|
Guo XL, Chen JS. Research on induced pluripotent stem cells and the application in ocular tissues. Int J Ophthalmol 2015; 8:818-25. [PMID: 26309885 DOI: 10.3980/j.issn.2222-3959.2015.04.31] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 02/02/2015] [Indexed: 12/31/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) were firstly induced from mouse fibroblasts since 2006, and then the research on iPSCs had made great progress in the following years. iPSCs were established from different somatic cells through DNA, RNA, protein or small molecule pathways and transduction vehicles. With continuous improvement of technology on reprogramming, the induction of iPSCs became more secure and effective, and showed enormous promise for clinical applications. We reviewed different reprogramming of somatic cells, four kinds of pathways of reprogramming and three types of transduction vehicles, and discuss the research of iPSCs in ophthalmology and the prospect of iPSCs applications.
Collapse
Affiliation(s)
- Xiao-Ling Guo
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Jian-Su Chen
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou 510632, Guangdong Province, China ; Eye Institute, Medical College of Jinan University, Guangzhou 510632, Guangdong Province, China ; Department of Ophthalmology, the First Clinical Medical College of Jinan University, Guangzhou 510632, Guangdong Province, China
| |
Collapse
|
37
|
Wan W, Cao L, Kalionis B, Xia S, Tai X. Applications of Induced Pluripotent Stem Cells in Studying the Neurodegenerative Diseases. Stem Cells Int 2015; 2015:382530. [PMID: 26240571 PMCID: PMC4512612 DOI: 10.1155/2015/382530] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Accepted: 12/05/2014] [Indexed: 12/21/2022] Open
Abstract
Neurodegeneration is the umbrella term for the progressive loss of structure or function of neurons. Incurable neurodegenerative disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD) show dramatic rising trends particularly in the advanced age groups. However, the underlying mechanisms are not yet fully elucidated, and to date there are no biomarkers for early detection or effective treatments for the underlying causes of these diseases. Furthermore, due to species variation and differences between animal models (e.g., mouse transgenic and knockout models) of neurodegenerative diseases, substantial debate focuses on whether animal and cell culture disease models can correctly model the condition in human patients. In 2006, Yamanaka of Kyoto University first demonstrated a novel approach for the preparation of induced pluripotent stem cells (iPSCs), which displayed similar pluripotency potential to embryonic stem cells (ESCs). Currently, iPSCs studies are permeating many sectors of disease research. Patient sample-derived iPSCs can be used to construct patient-specific disease models to elucidate the pathogenic mechanisms of disease development and to test new therapeutic strategies. Accordingly, the present review will focus on recent progress in iPSC research in the modeling of neurodegenerative disorders and in the development of novel therapeutic options.
Collapse
Affiliation(s)
- Wenbin Wan
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Lan Cao
- State Key Laboratory of Medical Neurobiology, Department of Neurobiology and Institutes of Brain Science, School of Basic Medical Science, Fudan University, Shanghai 200032, China
| | - Bill Kalionis
- Department of Perinatal Medicine, Pregnancy Research Centre and University of Melbourne Department of Obstetrics and Gynaecology, Royal Women's Hospital, Parkville, VIC 3052, Australia
| | - Shijin Xia
- Shanghai Institute of Geriatrics, Huadong Hospital, Fudan University, Shanghai 200040, China
| | - Xiantao Tai
- School of Acupuncture, Massage and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming 650500, China
| |
Collapse
|
38
|
Conway MK, Gerger MJ, Balay EE, O'Connell R, Hanson S, Daily NJ, Wakatsuki T. Scalable 96-well Plate Based iPSC Culture and Production Using a Robotic Liquid Handling System. J Vis Exp 2015:e52755. [PMID: 26068617 DOI: 10.3791/52755] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Continued advancement in pluripotent stem cell culture is closing the gap between bench and bedside for using these cells in regenerative medicine, drug discovery and safety testing. In order to produce stem cell derived biopharmaceutics and cells for tissue engineering and transplantation, a cost-effective cell-manufacturing technology is essential. Maintenance of pluripotency and stable performance of cells in downstream applications (e.g., cell differentiation) over time is paramount to large scale cell production. Yet that can be difficult to achieve especially if cells are cultured manually where the operator can introduce significant variability as well as be prohibitively expensive to scale-up. To enable high-throughput, large-scale stem cell production and remove operator influence novel stem cell culture protocols using a bench-top multi-channel liquid handling robot were developed that require minimal technician involvement or experience. With these protocols human induced pluripotent stem cells (iPSCs) were cultured in feeder-free conditions directly from a frozen stock and maintained in 96-well plates. Depending on cell line and desired scale-up rate, the operator can easily determine when to passage based on a series of images showing the optimal colony densities for splitting. Then the necessary reagents are prepared to perform a colony split to new plates without a centrifugation step. After 20 passages (~3 months), two iPSC lines maintained stable karyotypes, expressed stem cell markers, and differentiated into cardiomyocytes with high efficiency. The system can perform subsequent high-throughput screening of new differentiation protocols or genetic manipulation designed for 96-well plates. This technology will reduce the labor and technical burden to produce large numbers of identical stem cells for a myriad of applications.
Collapse
|
39
|
Finotti A, Breda L, Lederer CW, Bianchi N, Zuccato C, Kleanthous M, Rivella S, Gambari R. Recent trends in the gene therapy of β-thalassemia. J Blood Med 2015; 6:69-85. [PMID: 25737641 PMCID: PMC4342371 DOI: 10.2147/jbm.s46256] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The β-thalassemias are a group of hereditary hematological diseases caused by over 300 mutations of the adult β-globin gene. Together with sickle cell anemia, thalassemia syndromes are among the most impactful diseases in developing countries, in which the lack of genetic counseling and prenatal diagnosis have contributed to the maintenance of a very high frequency of these genetic diseases in the population. Gene therapy for β-thalassemia has recently seen steadily accelerating progress and has reached a crossroads in its development. Presently, data from past and ongoing clinical trials guide the design of further clinical and preclinical studies based on gene augmentation, while fundamental insights into globin switching and new technology developments have inspired the investigation of novel gene-therapy approaches. Moreover, human erythropoietic stem cells from β-thalassemia patients have been the cellular targets of choice to date whereas future gene-therapy studies might increasingly draw on induced pluripotent stem cells. Herein, we summarize the most significant developments in β-thalassemia gene therapy over the last decade, with a strong emphasis on the most recent findings, for β-thalassemia model systems; for β-, γ-, and anti-sickling β-globin gene addition and combinatorial approaches including the latest results of clinical trials; and for novel approaches, such as transgene-mediated activation of γ-globin and genome editing using designer nucleases.
Collapse
Affiliation(s)
- Alessia Finotti
- Laboratory for the Development of Gene and Pharmacogenomic Therapy of Thalassaemia, Biotechnology Centre of Ferrara University, Ferrara, Italy ; Associazione Veneta per la Lotta alla Talassemia, Rovigo, Italy ; Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, Ferrara University, Ferrara, Italy
| | - Laura Breda
- Department of Pediatrics, Division of Haematology/Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Carsten W Lederer
- Department of Molecular Genetics Thalassaemia, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus ; Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Nicoletta Bianchi
- Laboratory for the Development of Gene and Pharmacogenomic Therapy of Thalassaemia, Biotechnology Centre of Ferrara University, Ferrara, Italy ; Associazione Veneta per la Lotta alla Talassemia, Rovigo, Italy ; Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, Ferrara University, Ferrara, Italy
| | - Cristina Zuccato
- Laboratory for the Development of Gene and Pharmacogenomic Therapy of Thalassaemia, Biotechnology Centre of Ferrara University, Ferrara, Italy ; Associazione Veneta per la Lotta alla Talassemia, Rovigo, Italy ; Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, Ferrara University, Ferrara, Italy
| | - Marina Kleanthous
- Department of Molecular Genetics Thalassaemia, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus ; Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Stefano Rivella
- Department of Pediatrics, Division of Haematology/Oncology, Weill Cornell Medical College, New York, NY, USA ; Department of Cell and Development Biology, Weill Cornell Medical College, New York, NY, USA
| | - Roberto Gambari
- Laboratory for the Development of Gene and Pharmacogenomic Therapy of Thalassaemia, Biotechnology Centre of Ferrara University, Ferrara, Italy ; Associazione Veneta per la Lotta alla Talassemia, Rovigo, Italy ; Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, Ferrara University, Ferrara, Italy
| |
Collapse
|
40
|
|
41
|
Brandl C, Grassmann F, Riolfi J, Weber BHF. Tapping Stem Cells to Target AMD: Challenges and Prospects. J Clin Med 2015; 4:282-303. [PMID: 26239128 PMCID: PMC4470125 DOI: 10.3390/jcm4020282] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 01/13/2015] [Indexed: 02/08/2023] Open
Abstract
Human pluripotent stem cells (hPSCs) are increasingly gaining attention in biomedicine as valuable resources to establish patient-derived cell culture models of the cell type known to express the primary pathology. The idea of "a patient in a dish" aims at basic, but also clinical, applications with the promise to mimic individual genetic and metabolic complexities barely reflected in current invertebrate or vertebrate animal model systems. This may particularly be true for the inherited and complex diseases of the retina, as this tissue has anatomical and physiological aspects unique to the human eye. For example, the complex age-related macular degeneration (AMD), the leading cause of blindness in Western societies, can be attributed to a large number of genetic and individual factors with so far unclear modes of mutual interaction. Here, we review the current status and future prospects of utilizing hPSCs, specifically induced pluripotent stem cells (iPSCs), in basic and clinical AMD research, but also in assessing potential treatment options. We provide an outline of concepts for disease modelling and summarize ongoing and projected clinical trials for stem cell-based therapy in late-stage AMD.
Collapse
Affiliation(s)
- Caroline Brandl
- Institute of Human Genetics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.
- Department of Ophthalmology, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93042 Regensburg, Germany.
| | - Felix Grassmann
- Institute of Human Genetics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.
| | - Julia Riolfi
- Institute of Human Genetics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.
| | - Bernhard H F Weber
- Institute of Human Genetics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.
| |
Collapse
|
42
|
Raitano S, Ordovàs L, De Muynck L, Guo W, Espuny-Camacho I, Geraerts M, Khurana S, Vanuytsel K, Tóth BI, Voets T, Vandenberghe R, Cathomen T, Van Den Bosch L, Vanderhaeghen P, Van Damme P, Verfaillie CM. Restoration of progranulin expression rescues cortical neuron generation in an induced pluripotent stem cell model of frontotemporal dementia. Stem Cell Reports 2014; 4:16-24. [PMID: 25556567 PMCID: PMC4297877 DOI: 10.1016/j.stemcr.2014.12.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 11/28/2014] [Accepted: 12/01/2014] [Indexed: 12/02/2022] Open
Abstract
To understand how haploinsufficiency of progranulin (PGRN) causes frontotemporal dementia (FTD), we created induced pluripotent stem cells (iPSCs) from patients carrying the GRNIVS1+5G > C mutation (FTD-iPSCs). FTD-iPSCs were fated to cortical neurons, the cells most affected in FTD. Although generation of neuroprogenitors was unaffected, their further differentiation into CTIP2-, FOXP2-, or TBR1-TUJ1 double-positive cortical neurons, but not motorneurons, was significantly decreased in FTD-neural progeny. Zinc finger nuclease-mediated introduction of GRN cDNA into the AAVS1 locus corrected defects in cortical neurogenesis, demonstrating that PGRN haploinsufficiency causes inefficient cortical neuron generation. RNA sequencing analysis confirmed reversal of the altered gene expression profile following genetic correction. We identified the Wnt signaling pathway as one of the top defective pathways in FTD-iPSC-derived neurons, which was reversed following genetic correction. Differentiation of FTD-iPSCs in the presence of a WNT inhibitor mitigated defective corticogenesis. Therefore, we demonstrate that PGRN haploinsufficiency hampers corticogenesis in vitro. In vitro generation of cortical neurons from PGRN deficient FTD-iPSC is inefficient Incorporation of GRN cDNA via ZFN technology rescues cortical neurons generation WNT signaling may also play a major role in the defects observed
Collapse
Affiliation(s)
- Susanna Raitano
- Stem Cell Institute, KU Leuven, 3000 Leuven, Belgium; Stem Cell Biology and Embryology Unit, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Laura Ordovàs
- Stem Cell Institute, KU Leuven, 3000 Leuven, Belgium; Stem Cell Biology and Embryology Unit, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Louis De Muynck
- Leuven Research Institute for Neuroscience and Disease (LIND), KU Leuven, 3000 Leuven, Belgium; Research Group Experimental Neurology, Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium; Laboratory of Neurobiology, VIB Vesalius Research Center, 3000 Leuven, Belgium
| | - Wenting Guo
- Leuven Research Institute for Neuroscience and Disease (LIND), KU Leuven, 3000 Leuven, Belgium; Research Group Experimental Neurology, Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium; Laboratory of Neurobiology, VIB Vesalius Research Center, 3000 Leuven, Belgium
| | - Ira Espuny-Camacho
- Institute for Interdisciplinary Research (IRIBHM), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; Institute of Neuroscience (UNI), ULB, 1070 Brussels, Belgium; VIB Center for the Biology of Disease, 3000 Leuven, Belgium; Center of Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | - Martine Geraerts
- Stem Cell Institute, KU Leuven, 3000 Leuven, Belgium; Stem Cell Biology and Embryology Unit, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Satish Khurana
- Stem Cell Institute, KU Leuven, 3000 Leuven, Belgium; Stem Cell Biology and Embryology Unit, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Kim Vanuytsel
- Stem Cell Institute, KU Leuven, 3000 Leuven, Belgium; Stem Cell Biology and Embryology Unit, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Balazs I Tóth
- Laboratory of Ion Channel Research, KU Leuven, 3000 Leuven, Belgium
| | - Thomas Voets
- Laboratory of Ion Channel Research, KU Leuven, 3000 Leuven, Belgium
| | - Rik Vandenberghe
- Leuven Research Institute for Neuroscience and Disease (LIND), KU Leuven, 3000 Leuven, Belgium; Research Group Experimental Neurology, Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium; Department of Neurology, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Toni Cathomen
- Institute for Cell and Gene Therapy, University Medical Center, 79108 Freiburg, Germany; Center for Chronic Immunodeficiency, University Medical Center, 79108 Freiburg, Germany
| | - Ludo Van Den Bosch
- Leuven Research Institute for Neuroscience and Disease (LIND), KU Leuven, 3000 Leuven, Belgium; Research Group Experimental Neurology, Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium; Laboratory of Neurobiology, VIB Vesalius Research Center, 3000 Leuven, Belgium
| | - Pierre Vanderhaeghen
- Institute for Interdisciplinary Research (IRIBHM), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; Institute of Neuroscience (UNI), ULB, 1070 Brussels, Belgium; VIB Center for the Biology of Disease, 3000 Leuven, Belgium; Center of Human Genetics, KU Leuven, 3000 Leuven, Belgium; Walloon Excellence in Life Sciences and Biotechnology (WELBIO), 1070 Brussels, Belgium
| | - Philip Van Damme
- Leuven Research Institute for Neuroscience and Disease (LIND), KU Leuven, 3000 Leuven, Belgium; Research Group Experimental Neurology, Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium; Laboratory of Neurobiology, VIB Vesalius Research Center, 3000 Leuven, Belgium; Department of Neurology, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Catherine M Verfaillie
- Stem Cell Institute, KU Leuven, 3000 Leuven, Belgium; Stem Cell Biology and Embryology Unit, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
43
|
Berezin AE. Diabetes mellitus and cellular replacement therapy: Expected clinical potential and perspectives. World J Diabetes 2014; 5:777-786. [PMID: 25512780 PMCID: PMC4265864 DOI: 10.4239/wjd.v5.i6.777] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/16/2014] [Accepted: 09/23/2014] [Indexed: 02/05/2023] Open
Abstract
Diabetes mellitus (DM) is the most prevailing disease with progressive incidence worldwide. Despite contemporary treatment type one DM and type two DM are frequently associated with long-term major microvascular and macrovascular complications. Currently restoration of failing β-cell function, regulation of metabolic processes with stem cell transplantation is discussed as complements to contemporary DM therapy regimens. The present review is considered paradigm of the regenerative care and the possibly effects of cell therapy in DM. Reprogramming stem cells, bone marrow-derived mononuclear cells; lineage-specified progenitor cells are considered for regenerative strategy in DM. Finally, perspective component of stem cell replacement in DM is discussed.
Collapse
|
44
|
Kim C, Lee HC, Sung JJ. Amyotrophic lateral sclerosis - cell based therapy and novel therapeutic development. Exp Neurobiol 2014; 23:207-14. [PMID: 25258567 PMCID: PMC4174611 DOI: 10.5607/en.2014.23.3.207] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 08/27/2014] [Accepted: 08/27/2014] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease, characterized by the predominant loss of motor neurons (MNs) in primary motor cortex, the brainstem, and the spinal cord, causing premature death in most cases. Minimal delay of pathological development by available medicine has prompted the search for novel therapeutic treatments to cure ALS. Cell-based therapy has been proposed as an ultimate source for regeneration of MNs. Recent completion of non-autologous fetal spinal stem cell transplant to ALS patients brought renewed hope for further human trials to cure the disease. Autologous somatic stem cell-based human trials are now in track to reveal the outcome of the ongoing trials. Furthermore, induced pluripotent stem cell (iPSC)-based ALS disease drug screen and autologous cell transplant options will broaden therapeutic options. In this review paper, we discuss recent accomplishments in cell transplant treatment for ALS and future options with iPSC technology.
Collapse
Affiliation(s)
- Changsung Kim
- Department of Bioscience and Biotechnology, Sejong University, Seoul 143-747, Korea
| | - Hee Chul Lee
- Department of Bioscience and Biotechnology, Sejong University, Seoul 143-747, Korea
| | - Jung-Joon Sung
- Department of Neurology, Seoul National University Hospital, Seoul 110-774, Korea
| |
Collapse
|