1
|
Skrajnowska D, Szterk A, Ofiara K, Kowalczyk P, Bobrowska-Korczak B. The Genistein Supply and Elemental Composition of Rat Kidneys in an Induced Breast Cancer Model. Nutrients 2025; 17:1184. [PMID: 40218942 PMCID: PMC11990330 DOI: 10.3390/nu17071184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 03/22/2025] [Accepted: 03/27/2025] [Indexed: 04/14/2025] Open
Abstract
Background: Many natural phytochemicals support the work of the kidneys. The health effects of genistein have been confirmed in many kidney diseases (inflammation and acute kidney injury, cancer or menopausal or senile changes). Genistein through various mechanisms can affect kidney conditions. Objectives: The purpose of this work was to analyze the supply of various forms of genistein at a low dose (0.2 mg/kg b.w.) on the renal mineral composition of rats under conditions of mammary gland tumorigenesis (induced with DMBA). Methods: Sprague rats at the age of 40 days were divided into four research groups, i.e., a control group receiving only standard feed and four groups receiving feed supplemented with genistein in the form of nanoparticles (0.1 mg/mL, i.e., 0.2 mg/kg.i.d.) (size: 92 ± 41 nm), genistein in microparticle form (0.1 mg/mL, i.e., 0.2 mg/kg.i.d.) (size: 587 ± 83 nm) and genistein in macroparticle form (normal, classical) (0.1 mg/mL, i.e., 0.2 mg/kg.i.d.). Mammary gland cancer was induced using DMBA (7,12-dimethyl-1,2-benz(a)anthracene). The experiment lasted 100 days. The concentrations of Ca, Zn, Fe, Cu, As, Se, Rb, Sr, Mo, B, and Mn were measured using the ICP-MS method, while the levels of K, Mg, and Na were measured using the FAAS method. Results: It was shown that, depending on the degree of miniaturization of genistein, its administration affected changes in kidney mineral composition, primarily resulting in a strongly reduced calcium content in the group of rats receiving nanogenistein. We found a negative impact of nanogenistein administration on the amount of calcium and iron, indicating an increased distribution or excretion of these elements from the body, as well as an increase in the number of elements, especially magnesium, sodium, zinc, boron, and copper concentrations, compared to the non-supplemented group. Conclusions: This study confirms the need for thorough clinical analyses in the future, with regard to the effects of genistein, especially its nanoforms on the body.
Collapse
Affiliation(s)
- Dorota Skrajnowska
- Department of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (D.S.)
| | - Arkadiusz Szterk
- ASLAB Science, Fort Służew 1/9, 02-787 Warsaw, Poland (K.O.)
- Chair of Preclinical Sciences, Department of Pharmacology and Toxicology, Warsaw University of Life Sciences, Nowoursynowska 166, 02-787 Warsaw, Poland
| | - Karol Ofiara
- ASLAB Science, Fort Służew 1/9, 02-787 Warsaw, Poland (K.O.)
| | - Paweł Kowalczyk
- Department of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (D.S.)
| | - Barbara Bobrowska-Korczak
- Department of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (D.S.)
| |
Collapse
|
2
|
Zhou C, Guan D, Guo J, Niu S, Cai Z, Li C, Qin C, Yan W, Yang D. Human Parathyroid Hormone Analog (3-34/29-34) promotes wound re-epithelialization through inducing keratinocyte migration and epithelial-mesenchymal transition via PTHR1-PI3K/AKT activation. Cell Commun Signal 2023; 21:217. [PMID: 37612710 PMCID: PMC10464420 DOI: 10.1186/s12964-023-01243-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/22/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGROUND Re-epithelialization is important in the process of wound healing. Various methods have been identified to expedite the process, but their clinical application remains limited. While parathyroid hormone (PTH) has shown promising results in wound healing due to its role in promoting collagen deposition and cell migration, application is limited by its potentially inhibitive effects when being continuously and locally administrated. Herein, we developed a novel PTH analog, Human parathyroid hormone (hPTH) (3-34/29-34) (henceforth MY-1), by partially replacing and repeating the amino acid sequences of hPTH (1-34), and evaluated its effect on skin wound re-epithelialization. METHODS CCK-8, colony formation unit assay, and Ki67 immunofluorescent staining were performed to evaluate the effect of MY-1 on HaCaT cell proliferation. Then, wound scratch assay, Transwell assay and lamellipodia staining were carried out to evaluate the effect of MY-1 on cell migration. Moreover, the epithelial-mesenchymal transition (EMT) markers were measured using qPCR and western blot analysis. For in-vivo drug delivery, gelatin methacryloyl (GelMA) hydrogel was employed to load the MY-1, with the physicochemical characteristics evaluated prior to its application in wound models. Then, MY-1's role in wound healing was determined via acute skin wound models. Finally, the mechanism that MY-1 activated was also detected on HaCaT cells and in-vivo wound models. RESULTS In-vitro, MY-1 accelerated the migration and EMT of HaCaT cells, while having little effect on cell proliferation. GelMA and MY-1-incorporated GelMA hydrogels showed similar physicochemical characteristics and were used in the in-vivo studies, where the results revealed that MY-1 led to a stronger re-epithelialization by inducing basal keratinocyte migration and EMT. Further studies on in-vivo wound models and in-vitro HaCaT cells revealed that MY-1 regulated cell migration and EMT through activating PI3K/AKT signaling. The parathyroid hormone type 1 receptor (PTHR1), the main receptor of PTH, was found to be the upstream of PI3K/AKT signaling, through interfering PTHR1 expression with a small interference RNA following detection of the PI3K/AKT activation. CONCLUSION Collectively, our study demonstrated that MY-1 accelerates skin wound re-epithelialization by inducing keratinocyte migration and EMT via PTHR1-PI3K/AKT axis activation. Video Abstract.
Collapse
Affiliation(s)
- Chunhao Zhou
- Department of Orthopaedics, Nanfang Hospital, Division of Spine Surgery, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515, P. R. China
| | - Donghua Guan
- Department of Orthopaedics, Nanfang Hospital, Division of Spine Surgery, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515, P. R. China
- Department of Emergency, Zengcheng Branch of Nanfang Hospital, Southern Medical University, No. 28 Chuangxin Avenue Yongning Street, Guangzhou, 511340, P. R. China
| | - Jialiang Guo
- Department of Orthopaedics, Nanfang Hospital, Division of Spine Surgery, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515, P. R. China
| | - Shangbo Niu
- Department of Orthopaedics, Nanfang Hospital, Division of Spine Surgery, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515, P. R. China
| | - Zhihai Cai
- Department of Orthopaedics, Nanfang Hospital, Division of Spine Surgery, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515, P. R. China
| | - Chengfu Li
- Department of Orthopaedics, Nanfang Hospital, Division of Spine Surgery, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515, P. R. China
| | - Chenghe Qin
- Department of Orthopaedics, Nanfang Hospital, Division of Orthopaedic Trauma, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515, P. R. China
| | - Wenjuan Yan
- Department of Stomatology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515, P. R. China.
| | - Dehong Yang
- Department of Orthopaedics, Nanfang Hospital, Division of Spine Surgery, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515, P. R. China.
| |
Collapse
|
3
|
Effects of Genistein on Common Kidney Diseases. Nutrients 2022; 14:nu14183768. [PMID: 36145144 PMCID: PMC9506319 DOI: 10.3390/nu14183768] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 12/16/2022] Open
Abstract
Genistein is a naturally occurring phytoestrogen (soy or soybean products) that is classified as an isoflavone, and its structure is similar to that of endogenous estrogens; therefore, genistein can exert an estrogen-like effect via estrogen receptors. Additionally, genistein is a tyrosine kinase inhibitor, which enables it to block abnormal cell growth and proliferation signals through the inhibition of tyrosine kinase. Genistein is also an angiogenesis inhibitor and an antioxidant. Genistein has effects on kidney cells, some of the kidney’s physiological functions, and a variety of kidney diseases. First, genistein exerts a protective effect on normal cells by reducing the inflammatory response, inhibiting apoptosis, inhibiting oxidative stress, inhibiting remodeling, etc., but after cell injury, the protective effect of genistein decreases or even has the opposite effect. Second, genistein can regulate renin intake to maintain blood pressure balance, regulate calcium uptake to regulate Ca2+ and Pi balances, and reduce vasodilation to promote diuresis. Third, genistein has beneficial effects on a variety of kidney diseases (including acute kidney disease, kidney cancer, and different chronic kidney diseases), such as reducing symptoms, delaying disease progression, and improving prognosis. Therefore, this paper reviews animal and human studies on the protective effects of genistein on the kidney in vivo and in vitro to provide a reference for clinical research in the future.
Collapse
|
4
|
Solopov P, Colunga Biancatelli RML, Dimitropoulou C, Catravas JD. Dietary Phytoestrogens Ameliorate Hydrochloric Acid-Induced Chronic Lung Injury and Pulmonary Fibrosis in Mice. Nutrients 2021; 13:3599. [PMID: 34684599 PMCID: PMC8536981 DOI: 10.3390/nu13103599] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 11/16/2022] Open
Abstract
We previously reported that female mice exhibit protection against chemically induced pulmonary fibrosis and suggested a potential role of estrogen. Phytoestrogens act, at least in part, via stimulation of estrogen receptors; furthermore, compared to residents of Western countries, residents of East Asian countries consume higher amounts of phytoestrogens and exhibit lower rates of pulmonary fibrosis. Therefore, we tested the hypothesis that dietary phytoestrogens ameliorate the severity of experimentally induced pulmonary fibrosis. Male mice placed on either regular soybean diet or phytoestrogen-free diet were instilled with 0.1 N HCl to provoke pulmonary fibrosis. Thirty days later, lung mechanics were measured as indices of lung function and bronchoalveolar lavage fluid (BALF) and lung tissue were analyzed for biomarkers of fibrosis. Mice on phytoestrogen-free diet demonstrated increased mortality and stronger signs of chronic lung injury and pulmonary fibrosis, as reflected in the expression of collagen, extracellular matrix deposition, histology, and lung mechanics, compared to mice on regular diet. We conclude that dietary phytoestrogens play an important role in the pathogenesis of pulmonary fibrosis and suggest that phytoestrogens (e.g., genistein) may be useful as part of a therapeutic regimen against hydrochloric acid-induced lung fibrosis and chronic lung dysfunction.
Collapse
Affiliation(s)
- Pavel Solopov
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA; (R.M.L.C.B.); (C.D.); (J.D.C.)
| | | | - Christiana Dimitropoulou
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA; (R.M.L.C.B.); (C.D.); (J.D.C.)
| | - John D. Catravas
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA; (R.M.L.C.B.); (C.D.); (J.D.C.)
- School of Medical Diagnostic & Translational Sciences, College of Health Sciences, Old Dominion University, Norfolk, VA 23508, USA
| |
Collapse
|
5
|
Sharifi-Rad J, Quispe C, Imran M, Rauf A, Nadeem M, Gondal TA, Ahmad B, Atif M, Mubarak MS, Sytar O, Zhilina OM, Garsiya ER, Smeriglio A, Trombetta D, Pons DG, Martorell M, Cardoso SM, Razis AFA, Sunusi U, Kamal RM, Rotariu LS, Butnariu M, Docea AO, Calina D. Genistein: An Integrative Overview of Its Mode of Action, Pharmacological Properties, and Health Benefits. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3268136. [PMID: 34336089 PMCID: PMC8315847 DOI: 10.1155/2021/3268136] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/11/2021] [Accepted: 06/28/2021] [Indexed: 12/15/2022]
Abstract
Genistein is an isoflavone first isolated from the brooming plant Dyer's Genista tinctoria L. and is widely distributed in the Fabaceae family. As an isoflavone, mammalian genistein exerts estrogen-like functions. Several biological effects of genistein have been reported in preclinical studies, such as the antioxidant, anti-inflammatory, antibacterial, and antiviral activities, the effects of angiogenesis and estrogen, and the pharmacological activities on diabetes and lipid metabolism. The purpose of this review is to provide up-to-date evidence of preclinical pharmacological activities with mechanisms of action, bioavailability, and clinical evidence of genistein. The literature was researched using the most important keyword "genistein" from the PubMed, Science, and Google Scholar databases, and the taxonomy was validated using The Plant List. Data were also collected from specialized books and other online resources. The main positive effects of genistein refer to the protection against cardiovascular diseases and to the decrease of the incidence of some types of cancer, especially breast cancer. Although the mechanism of protection against cancer involves several aspects of genistein metabolism, the researchers attribute this effect to the similarity between the structure of soy genistein and that of estrogen. This structural similarity allows genistein to displace estrogen from cellular receptors, thus blocking their hormonal activity. The pharmacological activities resulting from the experimental studies of this review support the traditional uses of genistein, but in the future, further investigations are needed on the efficacy, safety, and use of nanotechnologies to increase bioavailability and therapeutic efficacy.
Collapse
Affiliation(s)
- Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, Iquique 1110939, Chile
| | - Muhammad Imran
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar-, 23561 Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Nadeem
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari-, Pakistan
| | | | - Bashir Ahmad
- Center of Biotechnology and Microbiology, University of Peshawar, Peshawar-, 25120 KPK, Pakistan
| | - Muhammad Atif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72341, Saudi Arabia
| | | | - Oksana Sytar
- Department of Plant Biology Department, Institute of Biology, Taras Shevchenko National University of Kyiv, Volodymyrska Str., 64, Kyiv 01033, Ukraine
- Department of Plant Physiology, Slovak University of Agriculture, A. Hlinku 2, 94976 Nitra, Slovakia
| | - Oxana Mihailovna Zhilina
- Department of Organic Chemistry, Pyatigorsk Medical-Pharmaceutical Institute (PMPI), Branch of Volgograd State Medical University, Ministry of Health of Russia, Pyatigorsk 357532, Russia
| | - Ekaterina Robertovna Garsiya
- Department of Pharmacognosy, Botany and Technology of Phytopreparations, Pyatigorsk Medical-Pharmaceutical Institute (PMPI), Branch of Volgograd State Medical University, Ministry of Health of Russia, Pyatigorsk 357532, Russia
| | - Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - Daniel Gabriel Pons
- Grupo Multidisciplinar de Oncología Traslacional (GMOT), Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears (UIB), Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma 07122, Spain
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepción, Concepción 4070386, Chile
- Unidad de Desarrollo Tecnológico, Universidad de Concepción UDT, Concepción 4070386, Chile
| | - Susana M. Cardoso
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ahmad Faizal Abdull Razis
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Usman Sunusi
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Biochemistry, Bayero University Kano, PMB 3011 Kano, Nigeria
| | - Ramla Muhammad Kamal
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Pharmacology, Federal University Dutse, PMB 7156 Dutse Jigawa State, Nigeria
| | - Lia Sanda Rotariu
- Banat's University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, Romania
| | - Monica Butnariu
- Banat's University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, Romania
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|
6
|
Jheng HF, Hayashi K, Matsumura Y, Kawada T, Seno S, Matsuda H, Inoue K, Nomura W, Takahashi H, Goto T. Anti-Inflammatory and Antioxidative Properties of Isoflavones Provide Renal Protective Effects Distinct from Those of Dietary Soy Proteins against Diabetic Nephropathy. Mol Nutr Food Res 2020; 64:e2000015. [PMID: 32281228 DOI: 10.1002/mnfr.202000015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/25/2020] [Indexed: 01/29/2023]
Abstract
SCOPE Dietary soy reportedly protects from diabetic nephropathy (DN), but its active components and mechanism of action remain unknown. METHODS AND RESULTS In this study, KKAy mice are fed three types of diet: Dietary soy isoflavones with soy protein (Soy-IP) diet, reduced isoflavones soy protein (RisoP), and oral administration of isoflavones aglycones (IsoAgc). Albuminuria and glycosuria are decreased only in the soy-IP group. The risoP group show reduced expansion of mesangial matrix and renal fibrosis, the IsoAgc group show renal anti-fibrotic and anti-inflammatory effects; however, these renal pathological changes are repressed in the soy-IP group, suggesting the distinct protective roles of soy protein or isoflavones in DN. The isoflavone genistein has a better inhibitory effect on the inflammatory response and cellular interactions in both mouse tubular cells and macrophages when exposed to high glucose and albumin (HGA). Genistein also represses HGA-induced activator protein 1 activation and reactive oxidases stress generation, accompanied by reduced NADPH oxidase (NOX) gene expression. Finally, diabetic mice show a decrease in lipid peroxidation levels in both plasma and urine, along with lower NOXs gene expression. CONCLUSION The data elucidate the detailed mechanism by which isoflavones inhibit renal inflammation and provide a potential practical adjunct therapy to restrict DN progression.
Collapse
Affiliation(s)
- Huei-Fen Jheng
- Division of Food Science and Biotechnology, Laboratory of Molecular Function of Food, Graduate School of Agriculture, Kyoto University, Uji, 611-0011, Japan
| | - Kanako Hayashi
- Division of Food Science and Biotechnology, Laboratory of Molecular Function of Food, Graduate School of Agriculture, Kyoto University, Uji, 611-0011, Japan
| | - Yasuki Matsumura
- Division of Agronomy and Horticultural Science, Laboratory of Quality Analysis and Assessment, Graduate School of Agriculture, Kyoto University, Uji, 611-0011, Japan
| | - Teruo Kawada
- Division of Food Science and Biotechnology, Laboratory of Molecular Function of Food, Graduate School of Agriculture, Kyoto University, Uji, 611-0011, Japan
| | - Shigeto Seno
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Suita, 565-0871, Japan
| | - Hideo Matsuda
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Suita, 565-0871, Japan
| | - Kazuo Inoue
- Division of Food Science and Biotechnology, Laboratory of Molecular Function of Food, Graduate School of Agriculture, Kyoto University, Uji, 611-0011, Japan
| | - Wataru Nomura
- Division of Food Science and Biotechnology, Laboratory of Molecular Function of Food, Graduate School of Agriculture, Kyoto University, Uji, 611-0011, Japan
| | - Haruya Takahashi
- Division of Food Science and Biotechnology, Laboratory of Molecular Function of Food, Graduate School of Agriculture, Kyoto University, Uji, 611-0011, Japan
| | - Tsuyoshi Goto
- Division of Food Science and Biotechnology, Laboratory of Molecular Function of Food, Graduate School of Agriculture, Kyoto University, Uji, 611-0011, Japan
| |
Collapse
|
7
|
Wu X, Liu M, Wei G, Guan Y, Duan J, Xi M, Wang J. Renal protection of rhein against 5/6 nephrectomied-induced chronic kidney disease: role of SIRT3-FOXO3α signalling pathway. ACTA ACUST UNITED AC 2020; 72:699-708. [PMID: 32196681 DOI: 10.1111/jphp.13234] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 01/01/2020] [Indexed: 12/17/2022]
Abstract
OBJECTIVES The purpose of this study is to investigate the antifibrosis and anti-oxidation of rhein in vivo and in vitro, and to evaluate potential mechanisms involved in the treatment of chronic kidney disease (CKD). METHODS In experimental animal studies, CKD was established by 5/6 nephrectomy (5/6Nx). Serum creatinine (Scr) and blood urea nitrogen (BUN) were determined. Histopathologic tests were performed by HE and Masson trichrome stained. The level of ROS was investigated by fluorescence microplate with the probe 2', 7'-dichlorofluorescein diacetate (DCFH-DA). The protein expressions of p47phox and gp91phox were measured in 5/6Nx rats. In HK-2 cells, the expression of SIRT3 and Foxo3α was measured in SIRT3 knockdown conditions. The indicators of oxidation and fibrosisi were measured in SIRT3 knockdown conditions. KEY FINDINGS The results showed that, in addition to reducing renal interstitial pathologic injury and collagen fibrils, rhein administration improved renal function. The protective mechanisms were attributed to active SIRT3/FOXO3α signalling pathway and then play the anti-oxidative capacity of rhein, as well as to subsequent antifibrotic effect. CONCLUSION Taken together, rhein protected kidney through SIRT3/FOXO3a involvement. The anti-oxidative capacity of rhein contributed to the protective effects including the subsequent antifibrotic responses.
Collapse
Affiliation(s)
- Xiaoxiao Wu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Meiyou Liu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Guo Wei
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yue Guan
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jialin Duan
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Miaomiao Xi
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jingwen Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
8
|
Jia Q, Yang R, Liu XF, Ma SF, Wang L. Genistein attenuates renal fibrosis in streptozotocin‑induced diabetic rats. Mol Med Rep 2018; 19:423-431. [PMID: 30431100 PMCID: PMC6297769 DOI: 10.3892/mmr.2018.9635] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 10/17/2018] [Indexed: 12/12/2022] Open
Abstract
The present study aimed to investigate the antifibrogenic effects of genistein (GEN) on the kidney in streptozotocin (STZ)-induced diabetic rats and to determine the associated mechanisms. Rats were randomized into four groups: Normal control (N), STZ (S), L (STZ + low-dose GEN) and H (STZ + high-dose GEN). After 8 weeks, the fasting blood glucose (FBG) level, the ratio of kidney weight to body weight (renal index), 24-h urine protein, blood urea nitrogen (BUN), serum creatinine (SCr), renal total antioxidant capacity (T-AOC), superoxide dismutase (SOD), lipid peroxidation (LPO), malondialdehyde (MDA) and hydroxyproline (Hyp) contents were measured. The histomorphology and ultrastructure of the kidney were also assessed. In addition, mRNA expression levels of transforming growth factor-β1 (TGF-β1) and protein expression levels of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), NAD(P)H:quinone oxidoreductase 1 (NQO1), TGF-β1, mothers against decapentaplegic homolog 3 (Smad3), phosphorylated (p)-Smad3 and collagen IV were estimated. Compared with group N, the levels of FBG, renal index, 24-h urine protein, BUN, SCr, LPO, MDA and Hyp were increased, whereas the levels of T-AOC and SOD were decreased in group S. The structure of renal tissue was damaged, and the expression of Nrf2, HO-1 and NQO1 were reduced, whereas the expression of TGF-β1, Smad3, p-Smad3 and collagen IV were increased in group S. Compared with group S, the aforementioned indices were improved in groups L and H. In conclusion, GEN exhibited reno-protective effects in diabetic rats and its mechanisms may be associated with the inhibition of oxidative stress by activating the Nrf2-HO-1/NQO1 pathway, and the alleviation of renal fibrosis by suppressing the TGF-β1/Smad3 pathway.
Collapse
Affiliation(s)
- Qiang Jia
- Department of Physiology, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Rui Yang
- Department of Physiology, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Xiao-Fen Liu
- Department of Physiology, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Shan-Feng Ma
- Department of Physiology, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Lei Wang
- Department of Physiology, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| |
Collapse
|
9
|
Gao Z, Zhu W, Zhang H, Li Z, Cui T. The influence of fasudil on renal proximal tubular cell epithelial-mesenchymal transition induced by parathormone. Ren Fail 2018; 39:575-581. [PMID: 28741985 PMCID: PMC6446168 DOI: 10.1080/0886022x.2017.1349677] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
BACKGROUND Renal fibrosis is a common pathway through which a variety of chronic kidney diseases progress to end-stage renal disease. Epithelial-mesenchymal transition (EMT) of renal proximal tubular cells is one of the most important factors in renal fibrosis. This study investigates if fasudil could influence EMT of renal proximal tubular cells. METHODS HK-2 cells in passage 3-4 were used for all experiments. The cells were divided into five groups and treated with different concentrations of PTH and then observe cellular morphological changes at 0, 24 and 48 h using an inverted microscope and investigate the expression of the epithelial cell marker E-cadherin and the renal fibroblast marker α-smooth muscle actin (α-SMA). RESULTS PTH significantly induced EMT, fasudil-inhibited EMT induced by PTH to different degrees, and the inhibitory effect of fasudil was most pronounced at 20 μmol/L. CONCLUSION Monitoring PTH levels, early prevention and control of hyperparathyroidism and reducing the concentration of PTH are important means to improve prognosis and delay the progression of chronic kidney disease. Fasudil can restrain EMT induced by PTH; this conclusion provides experimental data for the application of fasudil in the clinical prevention and treatment of renal fibrosis.
Collapse
Affiliation(s)
- Ziqing Gao
- a Department of Ultrasound , the Fifth Affiliated Hospital of Sun Yat-Sen University , Zhuhai , China
| | - Weiping Zhu
- b Department of Nephrology , the Fifth Affiliated Hospital of Sun Yat-Sen University , Zhuhai , China
| | - Hua Zhang
- b Department of Nephrology , the Fifth Affiliated Hospital of Sun Yat-Sen University , Zhuhai , China
| | - Zhonghe Li
- b Department of Nephrology , the Fifth Affiliated Hospital of Sun Yat-Sen University , Zhuhai , China
| | - Tongxia Cui
- b Department of Nephrology , the Fifth Affiliated Hospital of Sun Yat-Sen University , Zhuhai , China
| |
Collapse
|
10
|
Lin SC, Chou HC, Chiang BL, Chen CM. CTGF upregulation correlates with MMP-9 level in airway remodeling in a murine model of asthma. Arch Med Sci 2017; 13:670-676. [PMID: 28507585 PMCID: PMC5420622 DOI: 10.5114/aoms.2016.60371] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 05/05/2015] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Connective tissue growth factor (CTGF) mediates hypertrophy, proliferation, and extracellular matrix synthesis. Matrix metalloproteinase (MMP) plays a role in airway extracellular matrix remodeling. The correlation between CTGF and MMP in airway remodeling of asthma was unknown. This study investigated lung CTGF expression and its correlation with MMP and airway structural changes in a murine model of asthma. MATERIAL AND METHODS Female BALB/c mice were sensitized and challenged by intraperitoneal injections and intranasal phosphate-buffered saline (PBS) or ovalbumin (OVA). Airway responsiveness and serum OVA-specific IgE were measured. Airway structural changes were quantified by morphometric analysis. Differential cell counts and MMP-2, MMP-9, and tissue inhibitor of metalloproteinase (TIMP)-1 were evaluated in bronchoalveolar lavage fluid (BALF). Lung CTGF was determined by Western blot. RESULTS Serum OVA-specific IgE level and airway responsiveness in enhanced pause (Penh) is significantly higher in sensitized mice challenged with OVA compared to PBS-challenged mice. MMP-2, MMP-9, and TIMP-1 in BALF were significantly higher in OVA mice. Airway structural changes of animals' lungs with OVA challenge showed increased thickness of the smooth muscle layer and numbers of Goblet cells and inflammatory cells and eosinophils near airways and perivascular areas. Lung CTGF expression significantly increased in OVA-challenged mice. CTGF expressions positively correlated with MMP-9 (r = 0.677, p < 0.05), TIMP-1 (r = 0.574, p < 0.05) and thickness of the smooth muscle layer (r = 0.499, p < 0.05). CONCLUSIONS This study indicates that CTGF upregulation correlates with MMP-9, probably involved in the pathogenesis of airway remodeling of asthma.
Collapse
Affiliation(s)
- Sheng-Chieh Lin
- Department of Pediatrics, Shuang-Ho Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsiu-Chu Chou
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Bor-Luen Chiang
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chung-Ming Chen
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Pediatrics, Taipei Medical University Hospital, Taipei, Taiwan
| |
Collapse
|
11
|
Taylor JM, Kieneker LM, de Borst MH, Visser ST, Kema IP, Bakker SJL, Gansevoort RT. Urinary Calcium Excretion and Risk of Chronic Kidney Disease in the General Population. Kidney Int Rep 2016; 2:366-379. [PMID: 29318214 PMCID: PMC5720525 DOI: 10.1016/j.ekir.2016.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 12/19/2016] [Accepted: 12/22/2016] [Indexed: 12/25/2022] Open
Abstract
Introduction High urinary calcium excretion (UCaE) has been shown to lead to accelerated renal function decline in individuals with renal tubular diseases. It is not known whether this association also exists in the general population. Therefore, we investigated whether high UCaE is associated with risk of developing chronic kidney disease (CKD) in community-dwelling subjects. Methods Urine samples of 5491 subjects who were free of CKD at baseline and participated in the Prevention of Renal and Vascular End-Stage Disease study (a prospective, observational, general population-based cohort of Dutch men and women aged 28–75 years) were examined for UCaE. UCa concentration was measured in two 24-hour urine samples at baseline (1997–1998) by indirect potentiometry. UCaE was treated as a continuous variable and a categorical variable grouped according to sex-specific quintiles for UCaE. UCaE was compared with de novo development of estimated glomerular filtration rate <60 ml/min per 1.73 m2 and/or albuminuria >30 mg/24 h. Results Baseline median UCaE was 4.13 mmol/24 h for men and 3.52 mmol/24 h for women. During a median follow-up of 10.3 years, 899 subjects developed CKD. After multivariable adjustment, every 1 mmol/24 h higher baseline UCaE was associated with a 6% lower risk for incident CKD during follow-up (hazard ratio: 0.94 [0.88–0.99], P = 0.02). The association was shown to be significantly nonlinear, with highest risk of CKD in the lowest quintile for UCaE (hazard ratio: 1.28 [0.97–1.68], P = 0.09). There was no association between UCaE and mortality or cardiovascular health during follow-up, suggesting that this association was not a reflection of poor nutritional intake due to bad health. Discussion These findings indicate that high UCaE does not increase risk of CKD, but rather that low UCaE may be harmful.
Collapse
Affiliation(s)
- Jacob M Taylor
- Department of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Lyanne M Kieneker
- Department of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Martin H de Borst
- Department of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Sipke T Visser
- Department of Pharmacoepidemiology and Pharmacoeconomics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Ido P Kema
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Stephan J L Bakker
- Department of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Ron T Gansevoort
- Department of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
12
|
McGraw NJ, Krul ES, Grunz-Borgmann E, Parrish AR. Soy-based renoprotection. World J Nephrol 2016; 5:233-257. [PMID: 27152261 PMCID: PMC4848148 DOI: 10.5527/wjn.v5.i3.233] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 01/16/2016] [Accepted: 03/14/2016] [Indexed: 02/06/2023] Open
Abstract
Chronic kidney disease (CKD) is a significant public health problem as risk factors such as advanced age, obesity, hypertension and diabetes rise in the global population. Currently there are no effective pharmacologic treatments for this disease. The role of diet is important for slowing the progression of CKD and managing symptoms in later stages of renal insufficiency. While low protein diets are generally recommended, maintaining adequate levels of intake is critical for health. There is an increasing appreciation that the source of protein may also be important. Soybean protein has been the most extensively studied plant-based protein in subjects with kidney disease and has demonstrated renal protective properties in a number of clinical studies. Soy protein consumption has been shown to slow the decline in estimated glomerular filtration rate and significantly improve proteinuria in diabetic and non-diabetic patients with nephropathy. Soy’s beneficial effects on renal function may also result from its impact on certain physiological risk factors for CKD such as dyslipidemia, hypertension and hyperglycemia. Soy intake is also associated with improvements in antioxidant status and systemic inflammation in early and late stage CKD patients. Studies conducted in animal models have helped to identify the underlying molecular mechanisms that may play a role in the positive effects of soy protein on renal parameters in polycystic kidney disease, metabolically-induced kidney dysfunction and age-associated progressive nephropathy. Despite the established relationship between soy and renoprotection, further studies are needed for a clear understanding of the role of the cellular and molecular target(s) of soy protein in maintaining renal function.
Collapse
|
13
|
Kim EK, Choi EJ, Debnath T. Role of phytochemicals in the inhibition of epithelial–mesenchymal transition in cancer metastasis. Food Funct 2016; 7:3677-85. [DOI: 10.1039/c6fo00901h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Epithelial–mesenchymal transition (EMT) development is controlled by several signaling pathways including Hedgehog, Wnt, fibroblast growth factors (FGF), hepatocyte growth factor/scatter factor (HGF),etc. Phytochemicals is very promising therapeutic candidate that inhibit the progression of EMT by inhibiting the signaling pathways.
Collapse
Affiliation(s)
- Eun-Kyung Kim
- Division of Food BioScience
- College of Biomedical and Health Sciences
- Konkuk University
- Chungju 27478
- Republic of Korea
| | - Eun-Ju Choi
- Division of Sport Science
- College of Science and Technology
- Konkuk University
- Chungju 27478
- Republic of Korea
| | - Trishna Debnath
- Department of Food Science and Biotechnology
- Dongguk University
- Goyang 10326
- Republic of Korea
| |
Collapse
|
14
|
Zhao H, Zhao L, Zhou Z, Wu Y. The roles of connective tissue growth factor in the development of anastomotic esophageal strictures. Arch Med Sci 2015; 11:770-8. [PMID: 26322089 PMCID: PMC4548024 DOI: 10.5114/aoms.2015.48147] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 06/12/2013] [Accepted: 08/22/2013] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION The aim of this study was to investigate the roles of connective tissue growth factor (CTGF) in the development of anastomotic strictures after surgical repair of the esophagus. MATERIAL AND METHODS Tissues collected from the patients were divided into three groups based on the results of endoscopy and clinical grading. Patients without dysphagia after esophagectomy were used as the control population. The protein levels of CTGF, TGF-β1, Smad2, and Smad4 were determined by immunohistochemistry (IHC) and western blot analyses, while the mRNA levels of the two growth factors were evaluated by real-time polymerase chain reaction. RESULTS Compared with the control group, significantly increased (p < 0.01) levels of CTGF and TGF-β1 protein were observed in the anastomotic stenosis (AS) group, and levels of the two proteins detected by the IHC and western blot analyses were also significantly increased with the increasing severity of stenosis (p < 0.05). The mRNA levels of CTGF and TGF-β1 in the tissues collected from the patients with stenosis were significantly up-regulated (p < 0.05) as compared with those from the control group. In addition, the levels of Smad2 and Smad4 protein were also significantly increased (p < 0.05) with the increasing severity of stenosis, and the protein levels were positively correlated with the levels of CTGF (r = 0.59, p < 0.05) and TGF-β1 (r = 0.63, p < 0.05). CONCLUSIONS Inhibition of CTGF protein or mRNA expression may be a distinctive and effective therapy for the treatment of postoperative anastomotic strictures.
Collapse
Affiliation(s)
- Haibin Zhao
- Department of Pathology, the 101 Hospital of Chinese People's Liberation Army, Wuxi, Jiangsu Province, China
| | - Lingna Zhao
- Department of Pathology, the 101 Hospital of Chinese People's Liberation Army, Wuxi, Jiangsu Province, China
| | - Zhihua Zhou
- Department of Pathology, the 101 Hospital of Chinese People's Liberation Army, Wuxi, Jiangsu Province, China
| | - Yaoyi Wu
- Department of Pathology, the 101 Hospital of Chinese People's Liberation Army, Wuxi, Jiangsu Province, China
| |
Collapse
|
15
|
Guo Y, Li Z, Ding R, Li H, Zhang L, Yuan W, Wang Y. Parathyroid hormone induces epithelial-to-mesenchymal transition via the Wnt/β-catenin signaling pathway in human renal proximal tubular cells. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:5978-5987. [PMID: 25337242 PMCID: PMC4203213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 08/21/2014] [Indexed: 06/04/2023]
Abstract
Epithelial-to-mesenchymal transition (EMT) has been shown to play an important role in renal fibrogenesis. Recent studies suggested parathyroid hormone (PTH) could accelerate EMT and subsequent organ fibrosis. However, the precise molecular mechanisms underlying PTH-induced EMT remain unknown. The present study was to investigate whether Wnt/β-catenin signaling pathway is involved in PTH-induced EMT in human renal proximal tubular cells (HK-2 cells) and to determine the profile of gene expression associated with PTH-induced EMT. PTH could induce morphological changes and gene expression characteristic of EMT in cultured HK-2 cells. Suppressing β-catenin expression or DKK1 limited gene expression characteristic of PTH-induced EMT. Based on the PCR array analysis, PTH treatment resulted in the up-regulation of 18 genes and down-regulation of 9 genes compared with the control. The results were further supported by a western blot analysis, which showed the increased Wnt4 protein expression. Wnt4 overexpression also promotes PTH-induced EMT in HK-2 cells. The findings demonstrated that PTH-induced EMT in HK-2 cells is mediated by Wnt/β-catenin signal pathway, and Wnt4 might be a key gene during PTH-induced EMT.
Collapse
Affiliation(s)
- Yunshan Guo
- Department of Nephrology, General Hospital of Ji’nan Military CommandJi’nan 250031, China
| | - Zhen Li
- Department of Nephrology, General Hospital of Ji’nan Military CommandJi’nan 250031, China
| | - Raohai Ding
- Department of Nephrology, General Hospital of Ji’nan Military CommandJi’nan 250031, China
| | - Hongdong Li
- Department of Nephrology, General Hospital of Ji’nan Military CommandJi’nan 250031, China
| | - Lei Zhang
- Department of Nephrology, General Hospital of Ji’nan Military CommandJi’nan 250031, China
| | - Weijie Yuan
- Department of Nephrology, Shanghai Jiaotong University Affiliated First People’s Hospital85 Wu Jin Road, Shanghai 200080, China
| | - Yanxia Wang
- Department of Nephrology, General Hospital of Ji’nan Military CommandJi’nan 250031, China
| |
Collapse
|