1
|
Zangerolamo L, Carvalho M, Solon C, Sidarta-Oliveira D, Soares GM, Marmentini C, Boschero AC, Tseng YH, Velloso LA, Barbosa HCL. Central FGF19 signaling enhances energy homeostasis and adipose tissue thermogenesis through sympathetic activation in obese mice. Am J Physiol Endocrinol Metab 2025; 328:E524-E542. [PMID: 40059865 DOI: 10.1152/ajpendo.00488.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/17/2025] [Accepted: 02/26/2025] [Indexed: 04/02/2025]
Abstract
Fibroblast growth factor 19 (FGF19) signaling in the brain is associated with body weight loss, reduced food intake, and improved glycemic control in obese mice through unclear mechanisms. Here, we investigated the effects of central FGF19 administration on peripheral tissues, focusing on adipose tissue and its contributions to body weight loss. Using single-cell RNA sequencing of the adult murine hypothalamus, we found that FGF19 has the potential to target multiple cell populations, including astrocytes-tanycytes, microglia, neurons, and oligodendrocytes. Central delivery of FGF19 decreased body weight gain and ameliorated glucose-insulin homeostasis in diet-induced obese (DIO) mice. These results were accompanied by increased energy expenditure and reduced peripheric inflammation. Notably, these effects were attributable to the increased activity of thermogenic adipocytes, as upregulated thermogenic markers in brown and inguinal adipose tissue and improved cold tolerance were induced by central FGF19. However, under blunted sympathetic activity, the described effects were abolished. Moreover, cold exposure induced upregulation of FGF19 receptors and coreceptors specifically in the hypothalamus, suggesting a critical metabolic adaptation for thermoregulation and energy homeostasis. Our findings indicate that central FGF19 signaling improves energy homeostasis in DIO mice, at least in part, by stimulating sympathetic activity and adipose tissue thermogenesis. These findings highlight FGF19's potential as a therapeutic target for obesity and metabolic disorders.NEW & NOTEWORTHY Although most studies associate central fibroblast growth factor 19 (FGF19) with reduced food intake, our findings highlight its role in enhancing thermogenesis in white and brown adipose tissues through sympathetic activation. Central FGF19 not only regulates feeding but also drives peripheral adaptations critical for energy homeostasis and body weight control under obesogenic conditions. These insights underscore the significance of top-down mechanisms in FGF19 action and its therapeutic potential for combating obesity.
Collapse
Affiliation(s)
- Lucas Zangerolamo
- Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Sao Paulo, Brazil
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, United States
| | - Marina Carvalho
- Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Sao Paulo, Brazil
| | - Carina Solon
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Sao Paulo, Brazil
| | - Davi Sidarta-Oliveira
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Sao Paulo, Brazil
| | - Gabriela M Soares
- Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Sao Paulo, Brazil
| | - Carine Marmentini
- Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Sao Paulo, Brazil
| | - Antonio C Boschero
- Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Sao Paulo, Brazil
| | - Yu-Hua Tseng
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, United States
| | - Licio A Velloso
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Sao Paulo, Brazil
| | - Helena C L Barbosa
- Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Sao Paulo, Brazil
| |
Collapse
|
2
|
Javed M, Ahmed W, Khan A, Rabbani I. Comparison of Efficacy of Fermented Garlic and Orlistat (Lipase Inhibitor) in Obesity Management Using an Experimental Rodent Model. Foods 2023; 12:3905. [PMID: 37959027 PMCID: PMC10647778 DOI: 10.3390/foods12213905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/20/2023] [Accepted: 05/24/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Black garlic, also known as fermented garlic, is a useful food that may have therapeutic benefits. The aim of this study was to analyze the impact of fermented garlic and orlistat therapy on obese rats. METHODS A total of 40 male albino rats (245-250 g) were fed either an HFD (n = 32) or a normal diet (n = 8) for 6 weeks; therefore we randomly assigned the rats into: group I (normal diet), group II (HFD), groups III and IV (HFD with fermented garlic), and group V (orlistat for) 6 weeks. Two different dosages of fermented garlic (481.2 mg/kg and 963.3 mg/kg) were administered. Afterward, blood was collected, body weight was measured, and tissue was collected for further analysis. RESULTS Both the orlistat and black garlic groups showed a significant reduction in BMI, lipid profiles, and insulin levels compared with the baseline. The orlistat group showed significant elevation (p < 0.005) in body weight, organ weight, lipids, and liver parameters, with histopathological findings. The administration of black garlic improved the inflammatory markers with all other parameters. CONCLUSION The fermented garlic and orlistat reinstated all of the investigated parameters significantly (p < 0.05), especially body weight and lipid profiles, and induced histopathological changes compared to the drug orlistat. Additionally, it showed anti-obesity-related therapeutic impacts compared with the orlistat drug. Black garlic provides a reliable and effective treatment for obesity compared to orlistat.
Collapse
Affiliation(s)
- Mavra Javed
- Department of Food Science and Human Nutrition, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Waqas Ahmed
- Department of Food Science and Human Nutrition, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Azmatullah Khan
- Department of Food Science and Human Nutrition, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Imtiaz Rabbani
- Department of Physiology, University of Veterinary and Animal Sciences, Lahore 38040, Pakistan
| |
Collapse
|
3
|
Zhang H, Ke W, Chen X, Han Y, Xiong Y, Zhu F, Xiang Y, Yan R, Cai H, Huang S, Ke X. High-Fat Diet Promotes Adipogenesis in Offspring Female Rats Induced by Perinatal Exposure to 4-Nonylphenol. BIOMED RESEARCH INTERNATIONAL 2023; 2023:6540585. [PMID: 37398946 PMCID: PMC10313470 DOI: 10.1155/2023/6540585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 02/28/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023]
Abstract
Background Both high-fat diet (HFD) and 4-nonylphenol (4-NP) could affect fat formation in adipose tissue individually. We investigated whether HFD promote abnormal adipose tissue formation caused by early exposure to 4-NP in life and preliminarily explore the possible mechanisms involved. Methods The first-generation rats were treated with HFD on postnatal day after pregnant rats exposure to 5 ug/kg/day 4-NP. Then, the second generation rats started to only receive normal diet without 4-NP or HFD. We analyzed organ coefficient and histopathology of fat tissues, biochemical index, and gene level involved in lipid metabolism in female offspring rats. Results HFD and 4-NP interaction synergistically increased birth weight, body weight, and organ coefficients of adipose tissue in offspring female rats. HFD accelerately aggravated abnormal lipid metabolism and increased the adipocyte mean areas around the uterus of the offspring female rats induced by prenatal exposure to 4-NP. HFD also facilitate the regulation of gene expression involved lipid metabolism in offspring female rats induced by perinatal exposure to 4-NP, even passed on to the second generation of female rats. Moreover, HFD and 4-NP interaction synergistically declined the gene and protein expression of estrogen receptor (ER) in the adipose tissue of second-generation female rats. Conclusion HFD and 4-NP synergistically regulate the expression of lipid metabolism genes in adipose tissue of F2 female rats and promote adipose tissue generation, leading to obesity in offspring rats, which is closely related to low expression of ER. Therefore, ER genes and proteins may be involved in the synergistic effect of HFD and 4-NP.
Collapse
Affiliation(s)
- Hongyu Zhang
- School of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430030, China
| | - Weiran Ke
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Xi Chen
- Department of Nosocomial Infection Management, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yu Han
- School of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430030, China
| | - Yan Xiong
- School of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430030, China
| | - Feng Zhu
- School of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430030, China
| | - Yang Xiang
- School of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430030, China
| | - Rong Yan
- School of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430030, China
| | - Hongbo Cai
- School of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430030, China
| | - Shunmei Huang
- Department of Geriatrics, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Xiaoyu Ke
- Emergency Department and Intensive Care Unit, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
4
|
Fernández-Felipe J, Valencia-Avezuela M, Merino B, Somoza B, Cano V, Sanz-Martos AB, Frago LM, Fernández-Alfonso MS, Ruiz-Gayo M, Chowen JA. Effects of saturated versus unsaturated fatty acids on metabolism, gliosis, and hypothalamic leptin sensitivity in male mice. Nutr Neurosci 2023; 26:173-186. [PMID: 35125071 DOI: 10.1080/1028415x.2022.2029294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND Development of obesity and its comorbidities is not only the result of excess energy intake, but also of dietary composition. Understanding how hypothalamic metabolic circuits interpret nutritional signals is fundamental to advance towards effective dietary interventions. OBJECTIVE We aimed to determine the metabolic response to diets enriched in specific fatty acids. METHODS Male mice received a diet enriched in unsaturated fatty acids (UOLF) or saturated fatty acids (SOLF) for 8 weeks. RESULTS UOLF and SOLF mice gained more weight and adiposity, but with no difference between these two groups. Circulating leptin levels increased on both fatty acid-enriched diet, but were higher in UOLF mice, as were leptin mRNA levels in visceral adipose tissue. In contrast, serum non-esterified fatty acid levels only rose in SOLF mice. Hypothalamic mRNA levels of NPY decreased and of POMC increased in both UOLF and SOLF mice, but only SOLF mice showed signs of hypothalamic astrogliosis and affectation of central fatty acid metabolism. Exogenous leptin activated STAT3 in the hypothalamus of all groups, but the activation of AKT and mTOR and the decrease in AMPK activation in observed in controls and UOLF mice was not found in SOLF mice. CONCLUSIONS Diets rich in fatty acids increase body weight and adiposity even if energy intake is not increased, while increased intake of saturated and unsaturated fatty acids differentially modify metabolic parameters that could underlie more long-term comorbidities. Thus, more understanding of how specific nutrients affect metabolism, weight gain, and obesity associated complications is necessary.
Collapse
Affiliation(s)
- Jesús Fernández-Felipe
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, Madrid, Spain
| | - Maria Valencia-Avezuela
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
| | - Beatriz Merino
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, Madrid, Spain
| | - Beatriz Somoza
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, Madrid, Spain
| | - Victoria Cano
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, Madrid, Spain
| | - Ana B Sanz-Martos
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, Madrid, Spain
| | - Laura M Frago
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain.,Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Maria S Fernández-Alfonso
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia Universidad Complutense de Madrid, Madrid, Spain
| | - Mariano Ruiz-Gayo
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, Madrid, Spain
| | - Julie A Chowen
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain.,Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.,IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain
| |
Collapse
|
5
|
Baković P, Kesić M, Kolarić D, Štefulj J, Čičin-Šain L. Metabolic and Molecular Response to High-Fat Diet Differs between Rats with Constitutionally High and Low Serotonin Tone. Int J Mol Sci 2023; 24:ijms24032169. [PMID: 36768493 PMCID: PMC9916796 DOI: 10.3390/ijms24032169] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
Maintaining energy balance is a complex physiological function whose dysregulation can lead to obesity and associated metabolic disorders. The bioamine serotonin (5HT) is an important regulator of energy homeostasis, with its central and peripheral pools influencing energy status in opposing ways. Using sublines of rats with constitutionally increased (high-5HT) or decreased (low-5HT) whole-body 5HT tone, we have previously shown that under standard diet constitutionally higher 5HT activity is associated with increased body weight, adiposity, and impaired glucose homeostasis. Here, we investigated the response of 5HT sublines to an obesogenic diet. Consistent with previous findings, high-5HT animals fed a standard diet had poorer metabolic health. However, in response to a high-fat diet, only low-5HT animals increased body weight and insulin resistance. They also showed more pronounced changes in blood metabolic parameters and the expression of various metabolic genes in hypothalamus and adipose tissue. On the other hand, high-5HT animals appeared to be protected from major metabolic disturbances of the obesogenic diet. The results suggest that constitutionally low 5HT activity is associated with higher susceptibility to harmful effects of a high-energy diet. High-5HT subline, which developed less adverse metabolic outcomes on hypercaloric diets, may prove useful in understanding metabolically healthy obesity in humans.
Collapse
Affiliation(s)
- Petra Baković
- Department of Molecular Biology, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia
| | - Maja Kesić
- Department of Molecular Biology, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia
| | - Darko Kolarić
- Centre for Informatics and Computing, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia
| | - Jasminka Štefulj
- Department of Molecular Biology, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia
| | - Lipa Čičin-Šain
- Department of Molecular Biology, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia
- Correspondence:
| |
Collapse
|
6
|
Feng C, Li A, Yin C, Wang S, Jin W, Liu Y, Huo T, Jiang H. Realgar Alleviated Neuroinflammation Induced by High Protein and High Calorie Diet in Rats via the Microbiota-Gut-Brain Axis. Nutrients 2022; 14:nu14193958. [PMID: 36235611 PMCID: PMC9572528 DOI: 10.3390/nu14193958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Purpose: Gastrointestinal heat retention syndrome (GHRS) often occurs in adolescents, resulting into nervous system injury. Realgar, an arsenic mineral with neuroprotective effect, has been widely used to treat GHRS. However, its mechanism of action remains unknown. Methods: A GHRS rat model was established using a high protein and high calorie diet. We performed macroscopic characterization by assessing bowel sounds, hot/cold preference, anal temperature, and fecal features. Atomic fluorescence spectroscopy was employed to evaluate brain arsenic level while hippocampal ultrastructural changes were analyzed using transmission electron microscopy. In addition, inflammatory cytokines and BBB breakdown were analyzed by western blotting, immunofluorescence assays, and immunohistochemistry staining. We also evaluated hippocampal metabolites by LC-MS while fecal microorganisms were assessed by 16S rDNA sequencing. Results: Our data showed that the high protein and high calorie diet induced GHRS. The rat model depicted decreased bowel sounds, increased fecal characteristics score, preference for low temperature zone, and increased anal temperature. In addition, there was increase in inflammatory factors IL-6, Iba-1, and NF-κB p65 as well as reduced BBB structural protein Claudin-5 and Occludin. The data also showed appearance of hippocampus metabolites disorder and fecal microbial imbalance. Realgar treatment conferred a neuroprotective effect by inhibiting GHRS-specific characteristics, neuroinflammatory response, BBB impairment, metabolites disorder, and microbial imbalance in the GHRS rat model. Conclusion: Taken together, our analysis demonstrated that realgar confers a neuroprotective effect in GHRS rats through modulation of the microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Cong Feng
- Department of Health Laboratory Technology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
- Laboratory of Research in Parkinson’s Disease and Related Disorders, Health Sciences Institute, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
| | - Aihong Li
- Department of Health Laboratory Technology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
| | - Chenhui Yin
- Department of Health Laboratory Technology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
| | - Siying Wang
- Department of Health Laboratory Technology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
| | - Weiyuan Jin
- Department of Health Laboratory Technology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
| | - Yi Liu
- Department of Health Laboratory Technology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
| | - Taoguang Huo
- Department of Health Laboratory Technology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
| | - Hong Jiang
- Department of Health Laboratory Technology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
- The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
- Correspondence:
| |
Collapse
|