1
|
Bai M, Jin Y, Jin Z, Xie Y, Chen J, Zhong Q, Wang Z, Zhang Q, Cai Y, Qun F, Yuki N, Xin C, Shen X, Zhu J. Distinct immunophenotypic profiles and neutrophil heterogeneity in colorectal cancer. Cancer Lett 2025; 616:217570. [PMID: 39993650 DOI: 10.1016/j.canlet.2025.217570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/16/2025] [Accepted: 02/17/2025] [Indexed: 02/26/2025]
Abstract
Colorectal cancer (CRC) exhibits significant molecular and immunological heterogeneity. Neutrophil infiltration patterns play a crucial yet poorly understood role in tumor progression and patient outcomes. This study presents a comprehensive single-cell atlas of the CRC tumor microenvironment (TME), integrating transcriptomic data from 388,511 cells across 98 samples from 63 patients. Employing advanced computational methods, we stratified patients based on their immune cell infiltration profiles, revealing distinct immunophenotypes with potential therapeutic implications. Our analysis focused on tissue-resident neutrophils (TRNs) and uncovered previously uncharacterized subpopulations with diverse functional states. Trajectory inference analysis revealed a dynamic differentiation path from normal-associated neutrophils to tumor-associated neutrophils, highlighting the remarkable plasticity of these cells within the tumor environment. By integrating single-cell data with bulk transcriptomic and clinical information, we identified specific neutrophil-derived gene signatures associated with poor prognosis in CRC, suggesting their potential as novel prognostic biomarkers. This study not only provides unprecedented insights into neutrophil heterogeneity in CRC but also identifies potential targets for immunomodulatory therapies. Our findings lay the groundwork for developing more nuanced, personalized immunotherapeutic strategies for CRC, potentially improving treatment efficacy for patients who currently show a limited response to existing immunotherapies.
Collapse
Affiliation(s)
- Minghua Bai
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
| | - Yuzhao Jin
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China; Wenzhou Medical University, Wenzhou, China
| | - Zihao Jin
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, China
| | - Yuhao Xie
- College of Pharmacy and Health Sciences, St. John's University, Queens, New York, USA
| | - Jinggang Chen
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, China
| | - Qingping Zhong
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China; Wenzhou Medical University, Wenzhou, China
| | | | - Qian Zhang
- Department of Colorectal Surgery, Zhejiang Cancer Hospital, Hangzhou, China
| | - Yibo Cai
- Department of Colorectal Surgery, Zhejiang Cancer Hospital, Hangzhou, China
| | - FangYa Qun
- National Institutes for Quantum Science and Technology(QST), Chiba, Japan
| | - Nitta Yuki
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
| | - Cheng Xin
- Department of Colorectal Surgery, Changhai Hospital, Naval Mdical University, Shanghai, China.
| | - Xiaohui Shen
- Department of General Surgery, Department of General Practice, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China.
| | - Ji Zhu
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China; Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
2
|
Alexandrova Y, Yero A, Olivenstein R, Orlova M, Schurr E, Estaquier J, Costiniuk CT, Jenabian MA. Dynamics of pulmonary mucosal cytotoxic CD8 T-cells in people living with HIV under suppressive antiretroviral therapy. Respir Res 2024; 25:240. [PMID: 38867225 PMCID: PMC11170847 DOI: 10.1186/s12931-024-02859-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/29/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Despite the success of antiretroviral therapy (ART), people living with HIV (PLWH) suffer from a high burden of pulmonary diseases, even after accounting for their smoking status. Cytotoxic CD8 T-cells are likely implicated in this phenomenon and may act as a double-edged sword. While being essential in viral infection control, their hyperactivation can also contribute to lung mucosal tissue damage. The effects of HIV and smoking on pulmonary mucosal CD8 T-cell dynamics has been a neglected area of research, which we address herein. METHODS Bronchoalveolar lavage (BAL) fluid were obtained from ART-treated PLWH (median duration of supressed viral load: 9 years; smokers: n = 14; non-smokers: n = 21) and HIV-uninfected controls (smokers: n = 11; non-smokers: n = 20) without any respiratory symptoms or active infection. Lymphocytes were isolated and CD8 T-cell subsets and homing markers were characterized by multiparametric flow cytometry. RESULTS Both smoking and HIV infection were independently associated with a significant increase in frequencies of total pulmonary mucosal CD8 T-cell. BAL CD8 T-cells were primarily CD69 + expressing CD103 and/or CD49a, at least one of the two granzymes (GzmA/GzmB), and little Perforin. Higher expression levels of CD103, CD69, and GzmB were observed in smokers versus non-smokers. The ex vivo phenotype of GzmA + and GzmB + cells revealed increased expression of CD103 and CXCR6 in smokers, while PLWH displayed elevated levels of CX3CR1 compared to controls. CONCLUSION Smoking and HIV could promote cytotoxic CD8 T-cell retention in small airways through different mechanisms. Smoking likely increases recruitment and retention of GzmB + CD8 Trm via CXCR6 and CD103. Heightened CX3CR1 expression could be associated with CD8 non-Trm recruitment from the periphery in PLWH.
Collapse
Affiliation(s)
- Yulia Alexandrova
- Department of Biological Sciences, Université du Québec à Montréal (UQAM), 141, Avenue President Kennedy, Montreal, QC, H2X 1Y4, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC, Canada
| | - Alexis Yero
- Department of Biological Sciences, Université du Québec à Montréal (UQAM), 141, Avenue President Kennedy, Montreal, QC, H2X 1Y4, Canada
| | - Ronald Olivenstein
- Division of Respirology, Department of Medicine, McGill University, Montreal, QC, Canada
| | - Marianna Orlova
- Infectious Diseases and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC, Canada
| | - Erwin Schurr
- Infectious Diseases and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC, Canada
- Departments of Human Genetics and Medicine, McGill University, Montreal, QC, Canada
| | - Jerome Estaquier
- Centre de recherche de CHU de Québec - Université Laval Research Center, Québec City, Québec, Canada
| | - Cecilia T Costiniuk
- Infectious Diseases and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC, Canada
- Division of Infectious Diseases and Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
| | - Mohammad-Ali Jenabian
- Department of Biological Sciences, Université du Québec à Montréal (UQAM), 141, Avenue President Kennedy, Montreal, QC, H2X 1Y4, Canada.
| |
Collapse
|
3
|
Ko KP, Zhang S, Huang Y, Kim B, Zou G, Jun S, Zhang J, Zhao Y, Martin C, Dunbar KJ, Efe G, Rustgi AK, Nakagawa H, Zhang H, Liu Z, Park JI. Tumor niche network-defined subtypes predict immunotherapy response of esophageal squamous cell cancer. iScience 2024; 27:109795. [PMID: 38741711 PMCID: PMC11089351 DOI: 10.1016/j.isci.2024.109795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/16/2024] [Accepted: 04/17/2024] [Indexed: 05/16/2024] Open
Abstract
Despite the promising outcomes of immune checkpoint inhibitors (ICIs), resistance to ICI presents a new challenge. Therefore, selecting patients for specific ICI applications is crucial for maximizing therapeutic efficacy. Herein, we curated 69 human esophageal squamous cell cancer (ESCC) patients' tumor microenvironment (TME) single-cell transcriptomic datasets to subtype ESCC. Integrative analyses of the cellular network and transcriptional signatures of T cells and myeloid cells define distinct ESCC subtypes characterized by T cell exhaustion, and interleukin (IL) and interferon (IFN) signaling. Furthermore, this approach classifies ESCC patients into ICI responders and non-responders, as validated by whole tumor transcriptomes and liquid biopsy-based single-cell transcriptomes of anti-PD-1 ICI responders and non-responders. Our study stratifies ESCC patients based on TME transcriptional network, providing novel insights into tumor niche remodeling and potentially predicting ICI responses in ESCC patients.
Collapse
Affiliation(s)
- Kyung-Pil Ko
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shengzhe Zhang
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yuanjian Huang
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bongjun Kim
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Gengyi Zou
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sohee Jun
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jie Zhang
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yahui Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Cecilia Martin
- Division of Digestive and Liver Diseases, Department of Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Karen J. Dunbar
- Division of Digestive and Liver Diseases, Department of Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Gizem Efe
- Division of Digestive and Liver Diseases, Department of Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Anil K. Rustgi
- Division of Digestive and Liver Diseases, Department of Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Hiroshi Nakagawa
- Division of Digestive and Liver Diseases, Department of Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Haiyang Zhang
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhihua Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jae-Il Park
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
- Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
4
|
Cossu D, Tomizawa Y, Yokoyama K, Sakanishi T, Momotani E, Sechi LA, Hattori N. Mycobacterium avium subsp. paratuberculosis Antigens Elicit a Strong IgG4 Response in Patients with Multiple Sclerosis and Exacerbate Experimental Autoimmune Encephalomyelitis. Life (Basel) 2023; 13:1437. [PMID: 37511812 PMCID: PMC10381415 DOI: 10.3390/life13071437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
Neuroinflammation can be triggered by microbial products disrupting immune regulation. In this study, we investigated the levels of IgG1, IgG2, IgG3, and IgG4 subclasses against the heat shock protein (HSP)70533-545 peptide and lipopentapeptide (MAP_Lp5) derived from Mycobacterium avium subsp. paratuberculosis (MAP) in the blood samples of Japanese and Italian individuals with relapsing remitting multiple sclerosis (MS). Additionally, we examined the impact of this peptide on MOG-induced experimental autoimmune encephalomyelitis (EAE). A total of 130 Japanese and 130 Italian subjects were retrospectively analyzed using the indirect ELISA method. Furthermore, a group of C57BL/6J mice received immunization with the MAP_HSP70533-545 peptide two weeks prior to the active induction of MOG35-55 EAE. The results revealed a significantly robust antibody response against MAP_HSP70533-545 in serum of both Japanese and Italian MS patients compared to their respective control groups. Moreover, heightened levels of serum IgG4 antibodies specific to MAP antigens were correlated with the severity of the disease. Additionally, EAE mice that were immunized with MAP_HSP70533-545 peptide exhibited more severe disease symptoms and increased reactivity of MOG35-55-specific T-cell compared to untreated mice. These findings provide evidence suggesting a potential link between MAP and the development or exacerbation of MS, particularly in a subgroup of MS patients with elevated serum IgG4 levels.
Collapse
Affiliation(s)
- Davide Cossu
- Department of Neurology, Juntendo University, Tokyo 1138431, Japan
- Biomedical Research Core Facilities, Juntendo University, Tokyo 1138431, Japan
- Department of Biomedical Sciences, Sassari University, 07100 Sassari, Italy
| | - Yuji Tomizawa
- Department of Neurology, Juntendo University, Tokyo 1138431, Japan
| | - Kazumasa Yokoyama
- Department of Neurology, Juntendo University, Tokyo 1138431, Japan
- Tosei Center for Neurological Diseases, Shizuoka 4180026, Japan
| | - Tamami Sakanishi
- Division of Cell Biology, Juntendo University, Tokyo 1138431, Japan
| | - Eiichi Momotani
- Department of Neurology, Juntendo University, Tokyo 1138431, Japan
- Comparative Medical Research Institute, Tsukuba 3050856, Japan
| | - Leonardo A Sechi
- Department of Biomedical Sciences, Sassari University, 07100 Sassari, Italy
- SC Microbiology, AOU Sassari, 07100 Sassari, Italy
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University, Tokyo 1138431, Japan
- Neurodegenerative Disorders Collaborative Laboratory, RIKEN Center for Brain Science, Saitama 3510918, Japan
| |
Collapse
|
5
|
Joshi BS, Garcia Romeu H, Aliyandi A, de Vries MP, Zuhorn IS. DNAJB6-Containing Extracellular Vesicles as Chaperone Delivery Systems: A Proteomic Analysis. Pharmaceutics 2022; 14:2485. [PMID: 36432676 PMCID: PMC9698516 DOI: 10.3390/pharmaceutics14112485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Cell-derived extracellular vesicles (EVs) are effectors of cell-to-cell communication that are in the spotlight as promising candidates for in vivo drug delivery because of their ability to enter cells and deliver cargo. For example, proteins of interest can be loaded into EVs to mediate protein transfer into target cells. To determine causality between EV content and function, which is also important to assess the clinical safety of EVs, it is crucial to comprehensively characterize their complete molecular composition. Here, we investigated EVs loaded with the chaperone protein DNAJB6. Chaperone proteins assist in protein folding and have been suggested to alleviate protein aggregation diseases, such as Alzheimer's disease and Huntington's disease. We analyzed and compared the proteome of EVs isolated from wildtype HEK293T cells with that of EVs from HEK 293T cells overexpressing DNAJB6-WT or loss-of-function mutant DNAJB6-M3. Comprehensive analysis of proteomics data showed enhanced levels of DNAJB6 as well as protein-folding-related proteins in EVs derived from DNAJB6-overexpression cells. Interestingly, upregulation of a chaperone and its protein-folding-related proteins resulted in downregulation of another chaperone plus its related proteins, and vice versa. This implies the presence of compensatory mechanisms in the cellular expression of chaperones. Collectively, we provide the proteomic EV signatures underlying EV mediated DNAJB6 transmission by HEK293T cells, with the aim of establishing a causal relationship between EV protein content and EV function.
Collapse
Affiliation(s)
- Bhagyashree S. Joshi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| | - Hector Garcia Romeu
- Groningen Research Institute of Pharmacy, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| | - Aldy Aliyandi
- Groningen Research Institute of Pharmacy, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| | - Marcel P. de Vries
- Interfaculty Mass Spectrometry Center, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| | - Inge S. Zuhorn
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| |
Collapse
|
6
|
Olayanju AOD, Adeleke A, Okolo CS, Ogunyemi OO, Mary OK. Association between haematological values and heat shock protein 70 of sickle cell disease patients in Ado-Ekiti, Ekiti State, Nigeria. Pan Afr Med J 2022; 43:47. [PMID: 36523286 PMCID: PMC9733451 DOI: 10.11604/pamj.2022.43.47.33346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 08/31/2022] [Indexed: 09/10/2024] Open
Abstract
Sickle cell disease, a genetically inherited blood disorder is a major cause of mortality and morbidity in Nigeria. This condition has significant pathological consequences that result in hemolytic events, induction of inflammatory process, vaso-occlusive episodes, and the stress response that leads to the induction of heat shock protein (HSP) 70. Therefore, this study aimed at correlating the level of serum heat shock protein 70 to haematological parameters in sickle cell subjects. A total of eighty-eight (88) consented participants were recruited for this study, which included apparently healthy persons with homozygous hemoglobin (HbAA 20), heterozygous hemoglobin (HbAS 30), homozygous hemoglobin (HbSS 30), and homozygous hemoglobin (HbSC 08). Subjects are in crisis and steady state. Venous blood samples (5 mls) were collected from subjects in ethylene diamine tetra acetic acid (EDTA) container and analyzed hemoglobin variants using hemoglobin electrophoresis, HSP 70 by Elisa method, and full blood count using standard methods. We demonstrated a significant increase (P<005) in HSP 70 levels of sickle cell disease HbSS and HbSC in steady state and crises when compared to the controls HbAA and HbAS. A significant (p<0.0001) increase noticed in the crisis state is higher than in the steady state. While the mean value of mean corpuscular hemoglobin concentration (MCHC) (35.1±43.4), pack cell volume (PCV) (22.4±2.7), hemoglobin (Hb) (8.8±0.9), absolute neutrophil count (386.4±31) and Absolute neutrophil count (7.0±2.1) in steady state subjects was significantly higher (p<0.01), as compared to crisis state (29.5±2.5, 21.8±3.4, 7.3±1.8, 269.5±42 and 6.5±2.5) for the respective parameters, whereas, mean corpuscular volume (30.5±3.1), white blood cell (16.8±3.4), absolute lymphocyte count (5.0±1.3) in sickle cell disease subject in crisis state are significantly higher (p<0.01) than in steady state (29.3±2.2, 11.3±2.8, 4.3±1.1) respectively. The mean value of mean corpuscular volume (87.3±8.2) in the crisis state was higher when compared to the steady state (83.5±7.2) and the mean value of red bloood cell (2.7±0.4) in the steady state was higher when compared to the crisis state (2.3±0.7). The differences were not significant (p<0.01). These findings suggest that an association exists between Hsp 70 and haematological parameters in sickle cell subjects. This implies that Hsp 70 might be a marker in oxidative stress, hypoxia, vaso-occlusion crisis, and increased serum Hsp 70 levels seem to reflect systemic inflammation. However, further studies are required to determine whether circulating Hsp 70 plays a causative role in the pathogenesis of sickle cell.
Collapse
Affiliation(s)
| | - Adedoyin Adeleke
- Department of Medical Laboratory Science, Afe Babalola University, Ado Ekiti, Nigeria
| | | | | | | |
Collapse
|
7
|
A phylogeographic assessment of the greater kudu (Tragelaphus strepsiceros) across South Africa. CONSERV GENET 2022. [DOI: 10.1007/s10592-022-01464-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Brajer-Luftmann B, Kaczmarek M, Nowicka A, Stelmach-Mardas M, Wyrzykiewicz M, Yasar S, Piorunek T, Sikora J, Batura-Gabryel H. Regulatory T cells, damage-associated molecular patterns, and myeloid-derived suppressor cells in bronchoalveolar lavage fluid interlinked with chronic obstructive pulmonary disease severity: An observational study. Medicine (Baltimore) 2022; 101:e29208. [PMID: 35687771 PMCID: PMC9276103 DOI: 10.1097/md.0000000000029208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/17/2022] [Indexed: 01/04/2023] Open
Abstract
The role of regulatory T cells (Tregs), damage-associated molecular patterns (DAMPs), and myeloid-derived suppressor cells (MDSCs) in the mechanism of innate and adaptive immune responses in chronic obstructive pulmonary disease (COPD) is not well understood.Evaluating the presence of Tregs in the bronchoalveolar lavage fluid (BALF) and peripheral blood in patients with COPD, and assessment of the relationship between Tregs, MDSCs, and DAMPs as factors activating innate and adaptive immune responses. Description of the association between immune and clinical parameters in COPD.Thirty-one patients with COPD were enrolled. Clinical parameters (forced expiratory volume in one second [FEV1], forced vital capacity, total lung capacity [TLC], diffusion capacity of carbon monoxide, and B-BMI, O-obstruction, D-dyspnea, E-exercise [BODE]) were assessed. Tregs and MDSCs were investigated in the BALF and blood using monoclonal antibodies directly conjugated with fluorochromes in flow cytometry. The levels of defensin (DEF2), galectin-1 (Gal-1), galectin-3 (Gal-3), galectin-9 (Gal-9), heat shock protein-27 (HSP27), and surfactant protein A were assessed via sandwich enzyme-linked immunosorbent assay.The percentage of Tregs was significantly higher in the blood than in the BALF, in contrast to the mean fluorescence intensity of forkhead box P3 (FoxP3). Significant associations were observed between Tregs and HSP27 (r = 0.39), Gal-1 (r = 0.55), Gal-9 (r = -0.46), and MDSCs (r = -0.50), and between FoxP3 and Gal-1 (r = -0.42), Gal-3 (r = -0.39), and MDSCs (r = -0.43). Tregs and clinical parameters, including FEV1%pred (r = 0.39), residual volume (RV)%pred (r = -0.56), TLC%pred (r = -0.55), RV/TLC (r = -0.50), arterial oxygen saturation (r = -0.38), and arterial oxygen pressure (r = -0.39) were significantly correlated. FoxP3 was significantly interlinked with RV/TLC (r = -0.52), arterial oxygen pressure (r = 0.42), and BODE index (r = -0.57).The interaction between innate and adaptive immune responses in patients with COPD was confirmed. The expression of Tregs in BALF may have prognostic value in patients with COPD. The conversion of immune responses to clinical parameters appears to be associated with disease severity.
Collapse
Affiliation(s)
- Beata Brajer-Luftmann
- Department of Pulmonology, Allergology and Pulmonary Oncology, Poznan University of Medical Sciences, Szamarzewskiego 84 Street, Poznan, Poland
| | - Mariusz Kaczmarek
- Department of Cancer Immunology, Poznan University of Medical Sciences, Garbary 15 Street, Poznan, Poland
- Gene Therapy Laboratory, Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Centre, Garbary 15 Street, Poznan, Poland
| | - Agata Nowicka
- Department of Pulmonology, Allergology and Pulmonary Oncology, Poznan University of Medical Sciences, Szamarzewskiego 84 Street, Poznan, Poland
| | - Marta Stelmach-Mardas
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, Szamarzewskiego 84 Street, Poznan, Poland
| | - Magdalena Wyrzykiewicz
- Department of Clinical Immunology, Poznan University of Medical Sciences, Rokietnicka 5D Street, Poznan, Poland
| | - Senan Yasar
- The Christ Hospital Heart and Vascular Center, The Carl and Edyth Lindner Center for Research and Education, Cincinnati, OH
| | - Tomasz Piorunek
- Department of Pulmonology, Allergology and Pulmonary Oncology, Poznan University of Medical Sciences, Szamarzewskiego 84 Street, Poznan, Poland
| | - Jan Sikora
- Department of Clinical Immunology, Poznan University of Medical Sciences, Rokietnicka 5D Street, Poznan, Poland
| | - Halina Batura-Gabryel
- Department of Pulmonology, Allergology and Pulmonary Oncology, Poznan University of Medical Sciences, Szamarzewskiego 84 Street, Poznan, Poland
| |
Collapse
|
9
|
James J, Chen Y, Hernandez CM, Forster F, Dagnell M, Cheng Q, Saei AA, Gharibi H, Lahore GF, Åstrand A, Malhotra R, Malissen B, Zubarev RA, Arnér ESJ, Holmdahl R. Redox regulation of PTPN22 affects the severity of T-cell-dependent autoimmune inflammation. eLife 2022; 11:74549. [PMID: 35587260 PMCID: PMC9119677 DOI: 10.7554/elife.74549] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 03/16/2022] [Indexed: 12/16/2022] Open
Abstract
Chronic autoimmune diseases are associated with mutations in PTPN22, a modifier of T cell receptor (TCR) signaling. As with all protein tyrosine phosphatases, the activity of PTPN22 is redox regulated, but if or how such regulation can modulate inflammatory pathways in vivo is not known. To determine this, we created a mouse with a cysteine-to-serine mutation at position 129 in PTPN22 (C129S), a residue proposed to alter the redox regulatory properties of PTPN22 by forming a disulfide with the catalytic C227 residue. The C129S mutant mouse showed a stronger T-cell-dependent inflammatory response and development of T-cell-dependent autoimmune arthritis due to enhanced TCR signaling and activation of T cells, an effect neutralized by a mutation in Ncf1, a component of the NOX2 complex. Activity assays with purified proteins suggest that the functional results can be explained by an increased sensitivity to oxidation of the C129S mutated PTPN22 protein. We also observed that the disulfide of native PTPN22 can be directly reduced by the thioredoxin system, while the C129S mutant lacking this disulfide was less amenable to reductive reactivation. In conclusion, we show that PTPN22 functionally interacts with Ncf1 and is regulated by oxidation via the noncatalytic C129 residue and oxidation-prone PTPN22 leads to increased severity in the development of T-cell-dependent autoimmunity.
Collapse
Affiliation(s)
- Jaime James
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Yifei Chen
- Division of Biochemistry, Dept. of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden.,Department of Gastroenterology, the First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Clara M Hernandez
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Florian Forster
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Markus Dagnell
- Division of Biochemistry, Dept. of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Qing Cheng
- Division of Biochemistry, Dept. of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Amir A Saei
- Division of Physiological Chemistry I, Dept. of Medical Biochemistry and Biophysics Karolinska Institute, Stockholm, Sweden.,Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Hassan Gharibi
- Division of Physiological Chemistry I, Dept. of Medical Biochemistry and Biophysics Karolinska Institute, Stockholm, Sweden
| | - Gonzalo Fernandez Lahore
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Annika Åstrand
- Project Leader Department, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Rajneesh Malhotra
- Translational Science and Experimental Medicine, Research and Early Development Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Bernard Malissen
- Centre d'Immunophénomique, Aix Marseille Université, INSERM, Marseille, France
| | - Roman A Zubarev
- Division of Physiological Chemistry I, Dept. of Medical Biochemistry and Biophysics Karolinska Institute, Stockholm, Sweden.,Department of Pharmacological & Technological Chemistry, I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Elias S J Arnér
- Division of Biochemistry, Dept. of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden.,Department of Selenoprotein Research, National Institute of Oncology, Budapest, Hungary
| | - Rikard Holmdahl
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.,National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
10
|
TCF-1 controls T reg cell functions that regulate inflammation, CD8 + T cell cytotoxicity and severity of colon cancer. Nat Immunol 2021; 22:1152-1162. [PMID: 34385712 PMCID: PMC8428683 DOI: 10.1038/s41590-021-00987-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 06/29/2021] [Indexed: 02/07/2023]
Abstract
The transcription factor TCF-1 is essential for the development and function of regulatory T (Treg) cells; however, its function is poorly understood. Here, we show that TCF-1 primarily suppresses transcription of genes that are co-bound by Foxp3. Single-cell RNA-sequencing analysis identified effector memory T cells and central memory Treg cells with differential expression of Klf2 and memory and activation markers. TCF-1 deficiency did not change the core Treg cell transcriptional signature, but promoted alternative signaling pathways whereby Treg cells became activated and gained gut-homing properties and characteristics of the TH17 subset of helper T cells. TCF-1-deficient Treg cells strongly suppressed T cell proliferation and cytotoxicity, but were compromised in controlling CD4+ T cell polarization and inflammation. In mice with polyposis, Treg cell-specific TCF-1 deficiency promoted tumor growth. Consistently, tumor-infiltrating Treg cells of patients with colorectal cancer showed lower TCF-1 expression and increased TH17 expression signatures compared to adjacent normal tissue and circulating T cells. Thus, Treg cell-specific TCF-1 expression differentially regulates TH17-mediated inflammation and T cell cytotoxicity, and can determine colorectal cancer outcome.
Collapse
|
11
|
Ullah M, Qian NPM, Yannarelli G, Akbar A. Heat shock protein 20 promotes sirtuin 1-dependent cell proliferation in induced pluripotent stem cells. World J Stem Cells 2021; 13:659-669. [PMID: 34249234 PMCID: PMC8246253 DOI: 10.4252/wjsc.v13.i6.659] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/27/2021] [Accepted: 05/27/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Heat shock proteins (HSPs) are molecular chaperones that protect cells against cellular stresses or injury. However, it has been increasingly recognized that they also play crucial roles in regulating fundamental cellular processes. HSP20 has been implicated in cell proliferation, but conflicting studies have shown that it can either promote or suppress proliferation. The underlying mechanisms by which HSP20 regulates cell proliferation and pluripotency remain unexplored. While the effect of HSP20 on cell proliferation has been recognized, its role in inducing pluripotency in human-induced pluripotent stem cells (iPSCs) has not been addressed. AIM To evaluate the efficacy of HSP20 overexpression in human iPSCs and evaluate the ability to promote cell proliferation. The purpose of this study was to investigate whether overexpression of HSP20 in iPSCs can increase pluripotency and regeneration. METHODS We used iPSCs, which retain their potential for cell proliferation. HSP20 overexpression effectively enhanced cell proliferation and pluripotency. Overexpression of HSP20 in iPSCs was characterized by immunocytochemistry staining and real-time polymerase chain reaction. We also used cell culture, cell counting, western blotting, and flow cytometry analyses to validate HSP20 overexpression and its mechanism. RESULTS This study demonstrated that overexpression of HSP20 can increase the pluripotency in iPSCs. Furthermore, by overexpressing HSP20 in iPSCs, we showed that HSP20 upregulated proliferation markers, induced pluripotent genes, and drove cell proliferation in a sirtuin 1 (SIRT1)-dependent manner. These data have practical applications in the field of stem cell-based therapies where the mass expansion of cells is needed to generate large quantities of stem cell-derived cells for transplantation purposes. CONCLUSION We found that the overexpression of HSP20 enhanced the proliferation of iPSCs in a SIRT1-dependent manner. Herein, we established the distinct crosstalk between HSP20 and SIRT1 in regulating cell proliferation and pluripotency. Our study provides novel insights into the mechanisms controlling cell proliferation that can potentially be exploited to improve the expansion and pluripotency of human iPSCs for cell transplantation therapies. These results suggest that iPSCs overexpressing HSP20 exert regenerative and proliferative effects and may have the potential to improve clinical outcomes.
Collapse
Affiliation(s)
- Mujib Ullah
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, CA 94304, United States.
| | - Nicole Pek Min Qian
- Immunology and School of Medicine, Stanford University, Stanford, CA 94304, United States
| | - Gustavo Yannarelli
- Laboratorio de Regulación Génica y Células Madre, Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMeTTyB), Universidad Favaloro-CONICET, Buenos Aires 1078, Argentina
| | - Asma Akbar
- Institute for Molecular Medicine, School of Medicine, Stanford University, Stanford, CA 94304, United States
| |
Collapse
|
12
|
Rosa BA, Choi YJ, McNulty SN, Jung H, Martin J, Agatsuma T, Sugiyama H, Le TH, Doanh PN, Maleewong W, Blair D, Brindley PJ, Fischer PU, Mitreva M. Comparative genomics and transcriptomics of 4 Paragonimus species provide insights into lung fluke parasitism and pathogenesis. Gigascience 2020; 9:giaa073. [PMID: 32687148 PMCID: PMC7370270 DOI: 10.1093/gigascience/giaa073] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/19/2020] [Accepted: 06/16/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Paragonimus spp. (lung flukes) are among the most injurious foodborne helminths, infecting ∼23 million people and subjecting ∼292 million to infection risk. Paragonimiasis is acquired from infected undercooked crustaceans and primarily affects the lungs but often causes lesions elsewhere including the brain. The disease is easily mistaken for tuberculosis owing to similar pulmonary symptoms, and accordingly, diagnostics are in demand. RESULTS We assembled, annotated, and compared draft genomes of 4 prevalent and distinct Paragonimus species: Paragonimus miyazakii, Paragonimus westermani, Paragonimus kellicotti, and Paragonimus heterotremus. Genomes ranged from 697 to 923 Mb, included 12,072-12,853 genes, and were 71.6-90.1% complete according to BUSCO. Orthologous group analysis spanning 21 species (lung, liver, and blood flukes, additional platyhelminths, and hosts) provided insights into lung fluke biology. We identified 256 lung fluke-specific and conserved orthologous groups with consistent transcriptional adult-stage Paragonimus expression profiles and enriched for iron acquisition, immune modulation, and other parasite functions. Previously identified Paragonimus diagnostic antigens were matched to genes, providing an opportunity to optimize and ensure pan-Paragonimus reactivity for diagnostic assays. CONCLUSIONS This report provides advances in molecular understanding of Paragonimus and underpins future studies into the biology, evolution, and pathogenesis of Paragonimus and related foodborne flukes. We anticipate that these novel genomic and transcriptomic resources will be invaluable for future lung fluke research.
Collapse
Affiliation(s)
- Bruce A Rosa
- Department of Internal Medicine, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, USA
| | - Young-Jun Choi
- Department of Internal Medicine, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, USA
| | - Samantha N McNulty
- The McDonnell Genome Institute at Washington University, School of Medicine, 4444 Forest Park Ave, St. Louis, MO 63108, USA
| | - Hyeim Jung
- Department of Internal Medicine, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, USA
| | - John Martin
- Department of Internal Medicine, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, USA
| | - Takeshi Agatsuma
- Department of Environmental Health Sciences, Kochi Medical School, Kohasu, Oko-cho 185-1, Nankoku, Kochi, 783-8505, Japan
| | - Hiromu Sugiyama
- Laboratory of Helminthology, Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Thanh Hoa Le
- Department of Immunology, Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cay Giay, Ha Noi 10307, Vietnam
| | - Pham Ngoc Doanh
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cay Giay, Ha Noi 10307, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cay Giay, Ha Noi 10307, Vietnam
| | - Wanchai Maleewong
- Research and Diagnostic Center for Emerging Infectious Diseases, Khon Kaen University, 123 Moo 16 Mittraphap Rd., Nai-Muang, Muang District, Khon Kaen 40002, Thailand
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, 123 Moo 16 Mittraphap Rd., Nai-Muang, Muang District, Khon Kaen 40002, Thailand
| | - David Blair
- College of Marine and Environmental Sciences, James Cook University, 1 James Cook Drive, Townsville, Queensland 4811, Australia
| | - Paul J Brindley
- Departments of Microbiology, Immunology and Tropical Medicine, and Research Center for Neglected Diseases of Poverty, and Pathology School of Medicine & Health Sciences, George Washington University, Ross Hall 2300 Eye Street, NW, Washington, DC 20037, USA
| | - Peter U Fischer
- Department of Internal Medicine, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, USA
| | - Makedonka Mitreva
- Department of Internal Medicine, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, USA
- The McDonnell Genome Institute at Washington University, School of Medicine, 4444 Forest Park Ave, St. Louis, MO 63108, USA
| |
Collapse
|
13
|
Alvarez F, Al-Aubodah TA, Yang YH, Piccirillo CA. Mechanisms of T REG cell adaptation to inflammation. J Leukoc Biol 2020; 108:559-571. [PMID: 32202345 DOI: 10.1002/jlb.1mr0120-196r] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/19/2020] [Accepted: 02/03/2020] [Indexed: 12/17/2022] Open
Abstract
Inflammation is an important defense mechanism. In this complex and dynamic process, drastic changes in the tissue micro-environment play key roles in dictating the nature of the evolving immune response. However, uncontrolled inflammation is detrimental, leading to unwanted cellular damage, loss of physiological functions, and even death. As such, the immune system possesses tools to limit inflammation while ensuring rapid and effective clearance of the inflammatory trigger. Foxp3+ regulatory T (TREG ) cells, a potently immunosuppressive CD4+ T cell subset, play a crucial role in immune tolerance by controlling the extent of the response to self and non-self Ags, all-the-while promoting a quick return to immune homeostasis. TREG cells adapt to changes in the local micro-environment enabling them to migrate, proliferate, survive, differentiate, and tailor their suppressive ability at inflamed sites. Several inflammation-associated factors can impact TREG cell functional adaptation in situ including locally released alarmins, oxygen availability, tissue acidity and osmolarity and nutrient availability. Here, we review some of these key signals and pathways that control the adaptation of TREG cell function in inflammatory settings.
Collapse
Affiliation(s)
- Fernando Alvarez
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada.,Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.,Centre of Excellence in Translational Immunology (CETI), Montréal, Québec, Canada
| | - Tho-Alfakar Al-Aubodah
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada.,Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.,Centre of Excellence in Translational Immunology (CETI), Montréal, Québec, Canada
| | - Yujian H Yang
- Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.,Centre of Excellence in Translational Immunology (CETI), Montréal, Québec, Canada.,Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Ciriaco A Piccirillo
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada.,Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.,Centre of Excellence in Translational Immunology (CETI), Montréal, Québec, Canada.,Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, Québec, Canada
| |
Collapse
|
14
|
Gusev EY, Zotova NV. Cellular Stress and General Pathological Processes. Curr Pharm Des 2020; 25:251-297. [PMID: 31198111 DOI: 10.2174/1381612825666190319114641] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 03/13/2019] [Indexed: 02/06/2023]
Abstract
From the viewpoint of the general pathology, most of the human diseases are associated with a limited number of pathogenic processes such as inflammation, tumor growth, thrombosis, necrosis, fibrosis, atrophy, pathological hypertrophy, dysplasia and metaplasia. The phenomenon of chronic low-grade inflammation could be attributed to non-classical forms of inflammation, which include many neurodegenerative processes, pathological variants of insulin resistance, atherosclerosis, and other manifestations of the endothelial dysfunction. Individual and universal manifestations of cellular stress could be considered as a basic element of all these pathologies, which has both physiological and pathophysiological significance. The review examines the causes, main phenomena, developmental directions and outcomes of cellular stress using a phylogenetically conservative set of genes and their activation pathways, as well as tissue stress and its role in inflammatory and para-inflammatory processes. The main ways towards the realization of cellular stress and its functional blocks were outlined. The main stages of tissue stress and the classification of its typical manifestations, as well as its participation in the development of the classical and non-classical variants of the inflammatory process, were also described. The mechanisms of cellular and tissue stress are structured into the complex systems, which include networks that enable the exchange of information with multidirectional signaling pathways which together make these systems internally contradictory, and the result of their effects is often unpredictable. However, the possible solutions require new theoretical and methodological approaches, one of which includes the transition to integral criteria, which plausibly reflect the holistic image of these processes.
Collapse
Affiliation(s)
- Eugeny Yu Gusev
- Laboratory of the Immunology of Inflammation, Institute of Immunology and Physiology, Yekaterinburg, Russian Federation
| | - Natalia V Zotova
- Laboratory of the Immunology of Inflammation, Institute of Immunology and Physiology, Yekaterinburg, Russian Federation.,Department of Medical Biochemistry and Biophysics, Ural Federal University named after B.N.Yeltsin, Yekaterinburg, Russian Federation
| |
Collapse
|
15
|
Charles J, Castellino FJ, Ploplis VA. Past and Present Behçet's Disease Animal Models. Curr Drug Targets 2020; 21:1652-1663. [PMID: 32682369 PMCID: PMC7746599 DOI: 10.2174/1389450121666200719010425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/23/2020] [Accepted: 06/29/2020] [Indexed: 12/12/2022]
Abstract
Behçet's disease (BD) is presumably an autoinflammatory disease of unknown etiology for which several animal models have been described over the years. Agents and methods used for the development of these models have ranged from the herpes simplex type one virus (hsv-1) pathogen to the use of transgenic mice. Other models have also been used to investigate a possible autoimmune component. Each model possesses its own unique set of benefits and shortcomings, with no one model fully being able to recapitulate the disease phenotype. Here, we review the proposed models and provide commentary on their effectiveness and usefulness in studying the disease.
Collapse
Affiliation(s)
- Jermilia Charles
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Francis J. Castellino
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Victoria A. Ploplis
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
16
|
Shanmugasundaram R, Wick M, Lilburn MS. Effect of a post-hatch lipopolysaccharide challenge in Turkey poults and ducklings after a primary embryonic heat stress. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 101:103436. [PMID: 31283944 DOI: 10.1016/j.dci.2019.103436] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 07/05/2019] [Accepted: 07/05/2019] [Indexed: 06/09/2023]
Abstract
The effect of embryonic thermal manipulation on the post-hatch immune response to a lipopolysaccharide (LPS) challenge was studied in Pekin ducklings and turkey poults. Commercial duck and turkey eggs were distributed among four treatments: SS-Control (37.5 °C from embryonic day [ED] 1 to 25); SS-LPS (37.5 °C from ED1 to 25 + LPS at D0 [hatch]); HH-LPS (38 °C from ED1 to 25 + LPS at D0; SH-LPS (37.5 °C from ED1 to 10 and 38 °C from ED 11 to 25 + LPS at D0). At ED16 and ED24, the egg shell temperature of the duck and turkey eggs in the HH and SH treatments were higher (P ≤ 0.01) than the SS treatment. Ducklings and poults in the HH treatment had the lowest yolk free body weight at hatch (P ≤ 0.05). At 24, 48, and 72 h post-LPS injection, ducklings and poults in the HH-LPS treatment had significantly reduced BW compared with the SS-Con treatments (P ≤ 0.05). Ducklings and poults in the SH-LPS and HH-LPS treatments had increased plasma heat shock protein 70 (HSP70) and lower splenic HSP70 mRNA amounts than the SS-LPS treatments at 24, and 48 h post-challenge (P ≤ 0.05). At 48 and 72 h, macrophage nitric oxide (NO) production in ducklings and poults in the SH-LPS and HH-LPS treatments was lower than in the SS-LPS treatments (P ≤ 0.05). Ducklings and poults in the SH-LPS treatment had increased thymocyte proliferation compared to the SS-LPS treatment at 24, 48 and 72 h (P ≤ 0.05). At 24 h, ducklings in the SH-LPS treatment had increased splenic IL-10 and reduced IFNγ and IL-6 mRNA abundance. However, both ducklings and poults in the HH-LPS treatment had increased IFNγ, and IL-10 mRNA abundance compared to the SS-LPS treatment (P ≤ 0.05). At 48 h, SH-LPS ducklings and poults had lower splenic IL-10 mRNA abundance (P ≤ 0.05) while the HH-LPS treatment resulted in comparable splenic IL-10 mRNA compared to the SS-LPS treatment (P ≥ 0.05). Ducklings and poults in the SH-LPS treatment had increased thymic and splenic CD8+/CD4+ ratios at 24 h versus the SS-LPS treatment (P ≤ 0.05). In conclusion, embryonic thermal manipulation from ED11-25 increased extracellular HSP70 release, thymocyte proliferation and IL-10 but decreased splenic HSP70 and IFNγ mRNA amounts at 24 h post-LPS injection. This suggests that mild heat stress during the later stages of incubation could potentially prime the embryonic immune system thereby enhances the immune response as earlier than 24 h to eliminate the inflammatory response without affecting the growth performance by increase the extracellular release of HSP70 in both ducklings and poults. Continuous exposure to the small increase in temperature from ED 1-25 (HH) caused an imbalance between pro (IFNγ)- and anti-inflammatory cytokines(IL-10) which affects hatchling responses to an inflammatory challenge and increased mortality. The amount of extracellular HSP70 could potentially play an important role in modulating the immune response against inflammatory challenges.
Collapse
Affiliation(s)
- R Shanmugasundaram
- Department of Animal Sciences, The Ohio State University, Wooster, OH, 44691, USA; Department of Poultry Sciences, University of Georgia, Athens, GA, 30602, USA
| | - M Wick
- Department of Animal Sciences, The Ohio State University, Wooster, OH, 44691, USA
| | - M S Lilburn
- Department of Animal Sciences, The Ohio State University, Wooster, OH, 44691, USA.
| |
Collapse
|
17
|
Yuste-Calvo C, López-Santalla M, Zurita L, Cruz-Fernández CF, Sánchez F, Garín MI, Ponz F. Elongated Flexuous Plant Virus-Derived Nanoparticles Functionalized for Autoantibody Detection. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1438. [PMID: 31658770 PMCID: PMC6835482 DOI: 10.3390/nano9101438] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 02/07/2023]
Abstract
Nanoparticles derived from the elongated flexuous capsids of Turnip mosaic virus (TuMV) have been shown to be efficient tools for antibody sensing with a very high sensitivity if adequately functionalized with the corresponding epitopes. Taking advantage of this possibility, TuMV virus-like particles (VLPs) have been genetically derivatized with a peptide from the chaperonin Hsp60, a protein described to be involved in inflammation processes and autoimmune diseases. Antibodies against the peptide have been previously shown to have a diagnostic value in at least one autoimmune disease, multiple sclerosis. The functionalized Hsp60-VLPs showed their significant increase in sensing potency when compared to monoclonal antibody detection of the peptide in a conventional immunoassay. Additionally, the developed Hsp60-VLPs allowed the detection of autoantibodies against the Hsp60 peptide in an in vivo mouse model of dextran sodium sulfate (DSS)-induced colitis. The detection of minute amounts of the autoantibodies allowed us to perform the analysis of their evolution during the progression of the disease. The anti-Hsp60 autoantibody levels in the sera of the inflamed mice went down during the induction phase of the disease. Increased levels of the anti-HSP60 autoantibodies were detected during the resolution phase of the disease. An extension of a previously proposed model for the involvement of Hsp60 in inflammatory processes is considered, incorporating a role for Hsp60 autoantibodies. This, and related models, can now be experimentally tested thanks to the autoantibody detection hypersensitivity provided by the functionalized VLPs.
Collapse
Affiliation(s)
- Carmen Yuste-Calvo
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (CBGP, UPM-INIA), Campus Montegancedo, Autopista M-40, km 38. Pozuelo de Alarcón, 28223 Madrid, Spain.
| | - Mercedes López-Santalla
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER), 28040 Madrid, Spain.
- Advanced Therapy Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD/UAM), 28040 Madrid, Spain.
| | - Lucía Zurita
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (CBGP, UPM-INIA), Campus Montegancedo, Autopista M-40, km 38. Pozuelo de Alarcón, 28223 Madrid, Spain.
| | - César F Cruz-Fernández
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (CBGP, UPM-INIA), Campus Montegancedo, Autopista M-40, km 38. Pozuelo de Alarcón, 28223 Madrid, Spain.
| | - Flora Sánchez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (CBGP, UPM-INIA), Campus Montegancedo, Autopista M-40, km 38. Pozuelo de Alarcón, 28223 Madrid, Spain.
| | - Marina I Garín
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER), 28040 Madrid, Spain.
- Advanced Therapy Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD/UAM), 28040 Madrid, Spain.
| | - Fernando Ponz
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (CBGP, UPM-INIA), Campus Montegancedo, Autopista M-40, km 38. Pozuelo de Alarcón, 28223 Madrid, Spain.
| |
Collapse
|
18
|
Yuan X, Zhu J, Kang Q, He X, Guo D. Protective Effect of Hesperidin Against Sepsis-Induced Lung Injury by Inducing the Heat-Stable Protein 70 (Hsp70)/Toll-Like Receptor 4 (TLR4)/ Myeloid Differentiation Primary Response 88 (MyD88) Pathway. Med Sci Monit 2019; 25:107-114. [PMID: 30608918 PMCID: PMC6329256 DOI: 10.12659/msm.912490] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Background Sepsis-induced lung injury is associated with high mortality. The present investigation evaluated the protective effect of hesperidin against sepsis-induced lung injury and also postulates the possible mechanism of its action. Material/Methods Lung injury was induced by sepsis in all animals, in which sepsis was produced by cecal ligation and puncture (CLP). Animals were treated with hesperidin 10 and 20 mg/kg i.v. 30 min after the surgery. Oxygenation index and lung injury score were determined and levels of pro-inflammatory mediators and markers of oxidative stress were also estimated in the lung tissues. Moreover, expression of caspase-3, B-cell lymphoma (Bcl-2), Toll-like receptor 4 (TLR4), heat-stable protein 70 (Hsp70) and myeloid differentiation primary response 88 (MyD88) protein was estimated by Western blot assay and immunofluorescence assay. Results Hesperidin attenuated the partial pressure of arterial oxygen/fraction of inspired oxygen (PaO2/FiO2) ratio and lung injury score in CLP-induced lung injury mice. There was a significant (p<0.01) decrease in the level of pro-inflammatory mediators in the lung tissue of CLP-induced lung injury mice. Moreover, markers of oxidative stress were attenuated in the hesperidin-treated group. Treatment with hesperidin attenuated the expression of caspase-3, Bcl-2, TLR4, Hsp70, and MyD88 protein in the lung tissue of CLP-induced lung injury mice. Conclusions Hesperidin protects against lung injury by attenuating the Hsp70/TLR4/MyD88 pathway in CLP-induced lung injury mice.
Collapse
Affiliation(s)
- Xiaoyan Yuan
- Ningxia Medical University, Yinchuan, Ningxia, China (mainland).,Department of Emergency Medicine, Shanghai Gongli Hospital, Second Military Medical University, Shanghai, China (mainland)
| | - Jinyuan Zhu
- Ningxia Medical University, Yinchuan, Ningxia, China (mainland).,General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China (mainland)
| | - Qi Kang
- Department of Emergency Medicine, Shanghai Gongli Hospital, Second Military Medical University, Shanghai, China (mainland)
| | - Xiaoxue He
- Medical Laboratory, Shanghai Gongli Hospital, Second Military Medical University, Shanghai, China (mainland)
| | - Dongfeng Guo
- Department of Emergency Medicine, Shanghai Gongli Hospital, Second Military Medical University, Shanghai, China (mainland)
| |
Collapse
|
19
|
Zafar H, Saier MH. Comparative genomics of transport proteins in seven Bacteroides species. PLoS One 2018; 13:e0208151. [PMID: 30517169 PMCID: PMC6281302 DOI: 10.1371/journal.pone.0208151] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 11/12/2018] [Indexed: 01/29/2023] Open
Abstract
The communities of beneficial bacteria that live in our intestines, the gut microbiome, are important for the development and function of the immune system. Bacteroides species make up a significant fraction of the human gut microbiome, and can be probiotic and pathogenic, depending upon various genetic and environmental factors. These can cause disease conditions such as intra-abdominal sepsis, appendicitis, bacteremia, endocarditis, pericarditis, skin infections, brain abscesses and meningitis. In this study, we identify the transport systems and predict their substrates within seven Bacteroides species, all shown to be probiotic; however, four of them (B. thetaiotaomicron, B. vulgatus, B. ovatus, B. fragilis) can be pathogenic (probiotic and pathogenic; PAP), while B. cellulosilyticus, B. salanitronis and B. dorei are believed to play only probiotic roles (only probiotic; OP). The transport system characteristics of the four PAP and three OP strains were identified and tabulated, and results were compared among the seven strains, and with E. coli and Salmonella strains. The Bacteroides strains studied contain similarities and differences in the numbers and types of transport proteins tabulated, but both OP and PAP strains contain similar outer membrane carbohydrate receptors, pore-forming toxins and protein secretion systems, the similarities were noteworthy, but these Bacteroides strains showed striking differences with probiotic and pathogenic enteric bacteria, particularly with respect to their high affinity outer membrane receptors and auxiliary proteins involved in complex carbohydrate utilization. The results reveal striking similarities between the PAP and OP species of Bacteroides, and suggest that OP species may possess currently unrecognized pathogenic potential.
Collapse
Affiliation(s)
- Hassan Zafar
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA, United States of America
- Institute of Microbiology, University of Agriculture, Faisalabad, Punjab, Pakistan
| | - Milton H. Saier
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA, United States of America
| |
Collapse
|
20
|
Sharma V, Mobeen F, Prakash T. Exploration of Survival Traits, Probiotic Determinants, Host Interactions, and Functional Evolution of Bifidobacterial Genomes Using Comparative Genomics. Genes (Basel) 2018; 9:genes9100477. [PMID: 30275399 PMCID: PMC6210967 DOI: 10.3390/genes9100477] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 09/10/2018] [Indexed: 12/15/2022] Open
Abstract
Members of the genus Bifidobacterium are found in a wide-range of habitats and are used as important probiotics. Thus, exploration of their functional traits at the genus level is of utmost significance. Besides, this genus has been demonstrated to exhibit an open pan-genome based on the limited number of genomes used in earlier studies. However, the number of genomes is a crucial factor for pan-genome calculations. We have analyzed the pan-genome of a comparatively larger dataset of 215 members of the genus Bifidobacterium belonging to different habitats, which revealed an open nature. The pan-genome for the 56 probiotic and human-gut strains of this genus, was also found to be open. The accessory- and unique-components of this pan-genome were found to be under the operation of Darwinian selection pressure. Further, their genome-size variation was predicted to be attributed to the abundance of certain functions carried by genomic islands, which are facilitated by insertion elements and prophages. In silico functional and host-microbe interaction analyses of their core-genome revealed significant genomic factors for niche-specific adaptations and probiotic traits. The core survival traits include stress tolerance, biofilm formation, nutrient transport, and Sec-secretion system, whereas the core probiotic traits are imparted by the factors involved in carbohydrate- and protein-metabolism and host-immunomodulations.
Collapse
Affiliation(s)
- Vikas Sharma
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh 175005, India.
| | - Fauzul Mobeen
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh 175005, India.
| | - Tulika Prakash
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh 175005, India.
| |
Collapse
|
21
|
Wang S, Li X, Li T, Wang H, Zhang X, Lou J, Xing Q, Hu X, Bao Z. The GRP94 gene of Yesso scallop (Patinopecten yessoensis): Characterization and expression regulation in response to thermal and bacterial stresses. FISH & SHELLFISH IMMUNOLOGY 2018; 80:443-451. [PMID: 29894740 DOI: 10.1016/j.fsi.2018.06.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/09/2018] [Indexed: 06/08/2023]
Abstract
The 94-kDa glucose-regulated protein (GRP94) belonging to the HSP90 family is an endoplasmic reticulum (ER) chaperone. It plays critical roles in ER quality control, and has been implicated as a specialized immune chaperone to regulate both innate and adaptive immunity. In this study, we identified and characterized a GRP94 gene (PyGRP94) from Yesso scallop (Patinopecten yessoensis). The protein sequence of PyGRP94 is highly conserved with its homologs in vertebrates, with a signal sequence in N-terminal, an ER retrieval signal sequence in C-terminal and a HATPase_c domain. Expression analysis suggests that PyGRP94 transcripts in early embryos are maternally derived and the zygotic expression is started from D-shaped larvae. This gene is also expressed in almost all the adult tissues examined except smooth muscle, with the highest expression level in hemocytes. Besides, PyGRP94 was demonstrated to be induced by heat shock and both Gram-positive (Micrococcus luteus) and Gram-negative (Vibrio anguillarum) bacterial infection, with much more dramatic changes being observed after V. anguillarum challenge. Our results suggest the involvement of PyGRP94 in response to thermal stress, and that it might play an important role in the innate immune defense of scallop.
Collapse
Affiliation(s)
- Shuyue Wang
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao 266003, China
| | - Xu Li
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao 266003, China
| | - Tingting Li
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao 266003, China
| | - Huizhen Wang
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao 266003, China
| | - Xiangchao Zhang
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao 266003, China
| | - Jiarun Lou
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao 266003, China
| | - Qiang Xing
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao 266003, China
| | - Xiaoli Hu
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Zhenmin Bao
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
22
|
Guisasola MC, Alonso B, Bravo B, Vaquero J, Chana F. An overview of cytokines and heat shock response in polytraumatized patients. Cell Stress Chaperones 2018; 23:483-489. [PMID: 29101529 PMCID: PMC6045557 DOI: 10.1007/s12192-017-0859-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/20/2017] [Accepted: 10/20/2017] [Indexed: 12/12/2022] Open
Abstract
Early after injury, local tissue damage induces a local and systemic inflammatory response that activates the immune system and leads to the development of systemic inflammatory response syndrome (SIRS). This post-traumatic response often results in uncontrolled release of inflammatory mediators and over-activation of the immune system, which occasionally results in multiple organ dysfunction syndrome (MODS). In parallel, a state of immunosuppression develops. This counter-regulating suppression of different cellular and humoral immune functions has been termed "compensatory anti-inflammatory response syndrome (CARS)." Both SIRS and CARS occur simultaneously even in the initial phase after injury. Pro- and anti-inflammatory cytokines have been suggested to play a major role in development of SIRS, although the degree of involvement of the different cytokines is quite disparate. While TNF-α and IL-1β are quite irrelevant for predicting organ dysfunction, IL-6 is the parameter that best predicts mortality. The hyperinflammatory state seems to be the cause of post-traumatic immunosuppression and heat shock proteins (HSPs), which have been proposed as one of the endogenous stimuli for the deterioration of the immune system acting as danger-associated molecular patterns (DAMPs). Extracellular HSPA1A released from injured tissues increase up to ten times immediately after trauma and even more in patients with MODS. It has powerful immune properties that could contribute to post-traumatic immunosuppression through several mechanisms that have been previously described, so HSPs could represent trauma-associated immunomodulatory mediators. For this reason, HSPA1A has been suggested to be a helpful early prognostic biomarker of trauma after severe injury: serial quantification of serum HSPA1A and anti-Hsp70 concentrations in the first hours after trauma is proposed to be used as a predictive biomarker of MODS and immunosuppression development in polytraumatized patients.
Collapse
Affiliation(s)
- Maria Concepción Guisasola
- Servicio de Medicina y Cirugía Experimental, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Hospital General Universitario “Gregorio Marañón”, Dr. Esquerdo 46, 28007 Madrid, Spain
| | - Berta Alonso
- Servicio de Cirugía Ortopédica y Traumatología, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Hospital General Universitario “Gregorio Marañón”, Dr. Esquerdo 46, 28007 Madrid, Spain
| | - Beatriz Bravo
- Instituto de Medicina Molecular Aplicada. Facultad de Medicina, Universidad San Pablo-CEU, Ctra de Boadilla del Monte km. 5,300 Boadilla del Monte, 28668 Madrid, Spain
| | - Javier Vaquero
- Servicio de Cirugía Ortopédica y Traumatología, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Hospital General Universitario “Gregorio Marañón”, Dr. Esquerdo 46, 28007 Madrid, Spain
- Departamento de Cirugía. Facultad de Medicina, Universidad Complutense, Plaza de Ramón y Cajal, 28040 Madrid, Spain
| | - Francisco Chana
- Servicio de Cirugía Ortopédica y Traumatología, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Hospital General Universitario “Gregorio Marañón”, Dr. Esquerdo 46, 28007 Madrid, Spain
- Departamento de Cirugía. Facultad de Medicina, Universidad Complutense, Plaza de Ramón y Cajal, 28040 Madrid, Spain
| |
Collapse
|
23
|
Li ZY, Lu J, Zhang NZ, Chen J, Zhu XQ. Immune Responses Induced by HSP60 DNA Vaccine against Toxoplasma gondii Infection in Kunming Mice. THE KOREAN JOURNAL OF PARASITOLOGY 2018; 56:237-245. [PMID: 29996627 PMCID: PMC6046561 DOI: 10.3347/kjp.2018.56.3.237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/23/2018] [Indexed: 12/31/2022]
Abstract
Toxoplasma gondii can infect all the vertebrates including human, and leads to serious toxoplasmosis and considerable veterinary problems. T. gondii heat shock protein 60 (HSP60) is associated with the activation of antigen presenting cells by inducing initial immune responses and releasing inflammatory cytokines. It might be a potential DNA vaccine candidate for this parasite. A pVAX-HSP60 DNA vaccine was constructed and immune responses was evaluated in Kunming mice in this study. Our data indicated that the innate and adaptive immune responses was elicited by successive immunizations with pVAX-HSP60 DNA, showing apparent increases of CD3e+CD4+ and CD3e+CD8a+ T cells in spleen tissues of the HSP60 DNA-immunized mice (24.70±1.23% and 10.90±0.89%, P<0.05) and higher levels of specific antibodies in sera. Furthermore, the survival period of the immunized mice (10.53±4.78 day) were significantly prolonged during the acute T. gondii infection. Decrease of brain cysts was significant in the experimental group during the chronic infection (P<0.01). Taken together, TgHSP60 DNA can be as a vaccine candidate to prevent the acute and chronic T. gondii infections.
Collapse
Affiliation(s)
- Zhong-Yuan Li
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui Province 230036, P. R. China.,State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, P. R. China
| | - Jing Lu
- Guangdong Wens Dahuanong Biotechnology Co., Ltd, Yunfu, Guangdong Province 524700, P. R. China
| | - Nian-Zhang Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, P. R. China
| | - Jia Chen
- Ningbo University School of Medicine, Ningbo, Zhejiang Province 315211, P. R. China
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, P. R. China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University College of Veterinary Medicine, Yangzhou, Jiangsu Province 225009, P. R. China
| |
Collapse
|
24
|
Cook DP, Gysemans C, Mathieu C. Lactococcus lactis As a Versatile Vehicle for Tolerogenic Immunotherapy. Front Immunol 2018; 8:1961. [PMID: 29387056 PMCID: PMC5776164 DOI: 10.3389/fimmu.2017.01961] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 12/19/2017] [Indexed: 12/22/2022] Open
Abstract
Genetically modified Lactococcus lactis bacteria have been engineered as a tool to deliver bioactive proteins to mucosal tissues as a means to exert both local and systemic effects. They have an excellent safety profile, the result of years of human consumption in the food industry, as well as a lack of toxicity and immunogenicity. Also, containment strategies have been developed to promote further application as clinical protein-based therapeutics. Here, we review technological advancements made to enhanced the potential of L. lactis as live biofactories and discuss some examples of tolerogenic immunotherapies mediated by mucosal drug delivery via L. lactis. Additionally, we highlight their use to induce mucosal tolerance by targeted autoantigen delivery to the intestine as an approach to reverse autoimmune type 1 diabetes.
Collapse
Affiliation(s)
- Dana P Cook
- Laboratory of Clinical and Experimental Endocrinology (CEE), KU Leuven, Leuven, Belgium
| | - Conny Gysemans
- Laboratory of Clinical and Experimental Endocrinology (CEE), KU Leuven, Leuven, Belgium
| | - Chantal Mathieu
- Laboratory of Clinical and Experimental Endocrinology (CEE), KU Leuven, Leuven, Belgium
| |
Collapse
|
25
|
Effect of Endotoxemia in Suckling Rats on Pancreatic Integrity and Exocrine Function in Adults: A Review Report. Gastroenterol Res Pract 2018; 2018:6915059. [PMID: 29576768 PMCID: PMC5821989 DOI: 10.1155/2018/6915059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 11/29/2017] [Accepted: 12/10/2017] [Indexed: 02/07/2023] Open
Abstract
Background. Endotoxin (LPS), the component of Gram-negative bacteria, is responsible for sepsis and neonatal mortality, but low concentrations of LPS produced tissue protection in experimental studies. The effects of LPS applied to the suckling rats on the pancreas of adult animals have not been previously explored. We present the impact of neonatal endotoxemia on the pancreatic exocrine function and on the acute pancreatitis which has been investigated in the adult animals. Endotoxemia was induced in suckling rats by intraperitoneal application of LPS from Escherichia coli or Salmonella typhi. In the adult rats, pretreated in the early period of life with LPS, histological manifestations of acute pancreatitis have been reduced. Pancreatic weight and plasma lipase activity were decreased, and SOD concentration was reversed and accompanied by a significant reduction of lipid peroxidation products (MDA + 4 HNE) in the pancreatic tissue. In the pancreatic acini, the significant increases in protein signals for toll-like receptor 4 and for heat shock protein 60 were found. Signal for the CCK1 receptor was reduced and pancreatic secretory responses to caerulein were diminished, whereas basal enzyme secretion was unaffected. These pioneer studies have shown that exposition of suckling rats to endotoxin has an impact on the pancreas in the adult organism.
Collapse
|
26
|
Endogenous DAMPs, Category I: Constitutively Expressed, Native Molecules (Cat. I DAMPs). DAMAGE-ASSOCIATED MOLECULAR PATTERNS IN HUMAN DISEASES 2018. [PMCID: PMC7122936 DOI: 10.1007/978-3-319-78655-1_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This chapter provides the reader with a collection of endogenous DAMPs in terms of constitutively expressed native molecules. The first class of this category refers to DAMPs, which are passively released from necrotic cells, and includes the most prominent subclasses of high mobility group box I and heat shock proteins. Further subclasses of DAMPs that are passively released from necrotic cells include S100 proteins, nucleic acids, histones, pro-forms of interleukin-1-family members, mitochondria-derived N-formylated peptides, F-actin, and heme. A particular subclass of these passively released DAMPs are molecules, which indirectly activate the inflammasome, including adenosine-5′-triphosphate, monosodium urate crystals, cholesterol crystals, some lipolytic species, and beta-amyloid. All these passively released DAMPs are characterized by their capability to promote necroinflammatory responses. The second class of this Category I refers to molecules, which are exposed on the surface of stressed cells. They include the subclass of phagocytosis-facilitating molecules such as calreticulin, as well as the subclass of MHC-I-related molecules such as MHC-I-related molecule A and B. These DAMPs are capable of inducing the activation of innate lymphoid cells and unconventional T cells. One of these DAMPs, the major histocompatibility complex I-related molecule A, is shown to act as a bona fide transplantation antigen. In sum, the endogenous constitutively expressed native molecules represent an impressive category of DAMPs with extraordinary properties, which play a critical role in the pathogenesis of many human diseases.
Collapse
|
27
|
Wang Y, Zhao H, Shao Y, Liu J, Li J, Xing M. Copper or/and arsenic induce oxidative stress-cascaded, nuclear factor kappa B-dependent inflammation and immune imbalance, trigging heat shock response in the kidney of chicken. Oncotarget 2017; 8:98103-98116. [PMID: 29228677 PMCID: PMC5716717 DOI: 10.18632/oncotarget.21463] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 09/22/2017] [Indexed: 12/26/2022] Open
Abstract
Excessive amount of copper (Cu) and inorganic arsenic (iAs) coexists in drinking water in many regions, this is associated with high risk of nephropathy, defined as chronic structural and functional disorders of the kidney. However, the underlying mechanisms are not well understood. In this study, a total of 72 day-old Hy-line chickens were exposed to 300 mg/kg copper sulphate or/and 30 mg/kg arsenic trioxide for 12 weeks. Indicators of oxidative stress, inflammation and heat shock proteins (HSPs) production were analyzed in kidney. The results showed that, when the toxicant was administrated alone, there is an antagonism between redox homeostasis during the first 4 weeks, which follows a collapse of antioxidant system manifested by damaged biomembrane structure. What's worse, oxidative damage-cascaded histopathological lesions were accompanied by increases of proinflammatory mediators and an imbalance of "Th1/Th2 drift" (Th, helper T cell) regulated by nuclear factor kappa B (NF-κB). Simultaneously, intense heat shock response went with the organism. The above-mentioned renal lesions and indicators changes were time-dependent, more complex and deteriorated effects were observed in Cu/iAs combined groups compared with the others. This study supports Cu and iAs have a synergistic type on the nephro-toxicological process additively. In conclusion, oxidative stress and inflammatory induced by Cu or/and iAs are potential mechanisms in their nephrotoxicity, increased heat shock response may play a renoprotection function in tissues damage.
Collapse
Affiliation(s)
- Yu Wang
- Department of Physiology, College of Wildlife Resources, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Hongjing Zhao
- Department of Physiology, College of Wildlife Resources, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Yizhi Shao
- Department of Physiology, College of Wildlife Resources, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Juanjuan Liu
- Department of Physiology, College of Wildlife Resources, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Jinglun Li
- Department of Physiology, College of Wildlife Resources, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Mingwei Xing
- Department of Physiology, College of Wildlife Resources, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| |
Collapse
|
28
|
Marek-Trzonkowska N, Piekarska K, Filipowicz N, Piotrowski A, Gucwa M, Vogt K, Sawitzki B, Siebert J, Trzonkowski P. Mild hypothermia provides Treg stability. Sci Rep 2017; 7:11915. [PMID: 28931834 PMCID: PMC5607276 DOI: 10.1038/s41598-017-10151-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 08/04/2017] [Indexed: 12/22/2022] Open
Abstract
Regulatory T cells (Tregs) play crucial role in maintenance of peripheral tolerance. Recent clinical trials confirmed safety and efficacy of Treg treatment of deleterious immune responses. However, Tregs lose their characteristic phenotype and suppressive potential during expansion ex vivo. Therefore, multiple research teams have been studding Treg biology in aim to improve their stability in vitro. In the current paper, we demonstrate that mild hypothermia of 33 °C induces robust proliferation of Tregs, preserves expression of FoxP3, CD25 and Helios, and prevents TSDR methylation during culture in vitro. Tregs expanded at 33 °C have stronger immunosuppressive potential and remarkably anti-inflammatory phenotype demonstrated by the whole transcriptome sequencing. These observations shed new light on impact of temperature on regulation of immune response. We show that just a simple change in temperature can preserve Treg stability, function and accelerate their proliferation, responding to unanswered question- how to preserve Treg stability in vitro.
Collapse
Affiliation(s)
- Natalia Marek-Trzonkowska
- Laboratory of Immunoregulation and Cellular Therapies, Department of Family Medicine, Medical University of Gdańsk, ul. Dębinki 2, 80-210, Gdańsk, Poland.
| | - Karolina Piekarska
- Laboratory of Immunoregulation and Cellular Therapies, Department of Family Medicine, Medical University of Gdańsk, ul. Dębinki 2, 80-210, Gdańsk, Poland
| | - Natalia Filipowicz
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, al. Gen. J. Hallera 107, 80-416, Gdańsk, Poland
| | - Arkadiusz Piotrowski
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, al. Gen. J. Hallera 107, 80-416, Gdańsk, Poland
| | - Magdalena Gucwa
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, al. Gen. J. Hallera 107, 80-416, Gdańsk, Poland
| | - Katrin Vogt
- Institute for Medical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Augustenburgerplatz 1, 13353, Berlin, Germany
| | - Birgit Sawitzki
- Institute for Medical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Augustenburgerplatz 1, 13353, Berlin, Germany
| | - Janusz Siebert
- Department of Family Medicine, Medical University of Gdańsk, ul. Dębinki 2, 80-210, Gdańsk, Poland
| | - Piotr Trzonkowski
- Department of Clinical Immunology and Transplantology, Medical University of Gdańsk, ul. Dębinki 7, 80-210, Gdańsk, Poland
| |
Collapse
|
29
|
Jansen MAA, Spiering R, Broere F, van Laar JM, Isaacs JD, van Eden W, Hilkens CMU. Targeting of tolerogenic dendritic cells towards heat-shock proteins: a novel therapeutic strategy for autoimmune diseases? Immunology 2017; 153:51-59. [PMID: 28804903 DOI: 10.1111/imm.12811] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 07/31/2017] [Accepted: 08/04/2017] [Indexed: 01/28/2023] Open
Abstract
Tolerogenic dendritic cells (tolDCs) are a promising therapeutic tool to restore immune tolerance in autoimmune diseases. The rationale of using tolDCs is that they can specifically target the pathogenic T-cell response while leaving other, protective, T-cell responses intact. Several ways of generating therapeutic tolDCs have been described, but whether these tolDCs should be loaded with autoantigen(s), and if so, with which autoantigen(s), remains unclear. Autoimmune diseases, such as rheumatoid arthritis, are not commonly defined by a single, universal, autoantigen. A possible solution is to use surrogate autoantigens for loading of tolDCs. We propose that heat-shock proteins may be a relevant surrogate antigen, as they are evolutionarily conserved between species, ubiquitously expressed in inflamed tissues and have been shown to induce regulatory T cells, ameliorating disease in various arthritis mouse models. In this review, we provide an overview on how immune tolerance may be restored by tolDCs, the problem of selecting relevant autoantigens for loading of tolDCs, and why heat-shock proteins could be used as surrogate autoantigens.
Collapse
Affiliation(s)
- Manon A A Jansen
- Division of Immunology, Department of Infectious Diseases and Immunology, Utrecht University, the Netherlands
| | - Rachel Spiering
- Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK.,Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE), UK, UK.,NIHR-Newcastle Biomedical Research Centre in Ageing and Long-Term Conditions, Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle University, Newcastle upon Tyne, UK
| | - Femke Broere
- Division of Immunology, Department of Infectious Diseases and Immunology, Utrecht University, the Netherlands
| | - Jacob M van Laar
- Department of Rheumatology & Clinical Immunology, UMC Utrecht, Utrecht, the Netherlands
| | - John D Isaacs
- Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK.,Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE), UK, UK.,NIHR-Newcastle Biomedical Research Centre in Ageing and Long-Term Conditions, Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle University, Newcastle upon Tyne, UK
| | - Willem van Eden
- Division of Immunology, Department of Infectious Diseases and Immunology, Utrecht University, the Netherlands
| | - Catharien M U Hilkens
- Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK.,Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE), UK, UK.,NIHR-Newcastle Biomedical Research Centre in Ageing and Long-Term Conditions, Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
30
|
Lopez-Romero G, Garzon T, Rascon R, Valdez A, Quintero J, Arvizu-Flores AA, Garibay-Escobar A, Rascon L, Astiazarán-García H, Velazquez C. Characterization of BIP protein of G. lamblia as a potential immunogen in a mouse infection model. Immunobiology 2017; 222:884-891. [PMID: 28552268 DOI: 10.1016/j.imbio.2017.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/25/2017] [Accepted: 05/14/2017] [Indexed: 12/11/2022]
Abstract
Giardia lamblia is a protozoan parasite that causes one of the most common gastrointestinal diseases worldwide. To eliminate the parasite from the host intestine, it is necessary the activation of B-cell and T-cell dependent mechanisms. The knowledge about Giardia antigens that can stimulate the host immune response is limited. Recently, it has been described the Binding Immunoglobulin Protein (BIP) of G. lamblia (71kDa) as a potential immunogen. Additionally, our group has identified a highly immunogenic antigen (5G8 protein) of G. lamblia with a relative molecular mass of approximately 70kDa. There is some evidence suggesting that the 5G8 protein may activate both humoral and cellular immune responses. Based on these observations and preliminary mass spectrometry analyses, we hypothesized that the antigen 5G8 could be the BIP protein. In the present study, we characterize immunochemically the BIP protein of Giardia. Flow cytometric assays and western blotting were used to determine the expression profile of BIP and 5G8 antigens in Giardia trophozoites. The differences in expression profile indicated that BIP and 5G8 are not the same molecule. ELISA and Western blotting assays revealed that BIP protein was recognized by antibodies produced during G. lamblia infection in C3H/HeN mice. MTT assays did not reveal the activation of cellular immune response induced by BIP protein in vitro. In addition, we identified the potential B-cell and T-cell epitopes of G. lamblia BIP protein. This molecule is a conserved protein among Giardia strains and other pathogens. The complete immunological characterization of this antigen will contribute to a better understanding of the host-parasite interactions in Giardia infection.
Collapse
Affiliation(s)
- Gloria Lopez-Romero
- Coordinación de Nutrición, Centro de Investigación en Alimentación y Desarrollo A.C. Hermosillo, Sonora, Mexico
| | - Thania Garzon
- Department of Chemistry-Biology, University of Sonora, Hermosillo, Sonora, Mexico
| | - Raul Rascon
- Department of Chemistry-Biology, University of Sonora, Hermosillo, Sonora, Mexico
| | - Alejandra Valdez
- Department of Chemistry-Biology, University of Sonora, Hermosillo, Sonora, Mexico
| | - Jael Quintero
- Health Science Department, University of Sonora, Blvd Bordo Nuevo s/n, Ejido Providencia, 85199 Cd. Obregon, Sonora, Mexico
| | - Aldo A Arvizu-Flores
- Department of Chemistry-Biology, University of Sonora, Hermosillo, Sonora, Mexico
| | | | - Lucila Rascon
- Department of Chemistry-Biology, University of Sonora, Hermosillo, Sonora, Mexico
| | - Humberto Astiazarán-García
- Coordinación de Nutrición, Centro de Investigación en Alimentación y Desarrollo A.C. Hermosillo, Sonora, Mexico
| | - Carlos Velazquez
- Department of Chemistry-Biology, University of Sonora, Hermosillo, Sonora, Mexico.
| |
Collapse
|