1
|
Wang Y, Yang S, Liu X, Chen C, Li Q, Wang X, Xu W, Gao J, Wang Y, Wang W, Wang T. Xiongshao Zhitong granules alleviate nitroglycerin-induced migraine by regulating the TRPV1-mediated NLRP3 inflammatory pathway in rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 142:156754. [PMID: 40252439 DOI: 10.1016/j.phymed.2025.156754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 04/21/2025]
Abstract
BACKGROUND Migraine is a prevalent neurological disorder accompanied by a considerable economic burden. Xiongshao Zhitong granules (XSZT) have anti-inflammatory and analgesic functions in the clinic and are used for migraine therapy. However, the mechanisms by which XSZT treats migraine remain unclear. PURPOSE To discover the underlying mechanism and active ingredients of XSZT in the treatment of migraine. METHODS The nitroglycerin (NTG)-induced chronic migraine (CM) model was established and used to detect the therapeutic effect of XSZT on migraine. To elucidate the mechanism, we detected transient receptor potential vanilloid 1 (TRPV1) -mediated NOD-like receptor protein 3 (NLRP3) inflammasome activation in the CM rat model and the LPS-induced inflammatory BV-2 cell model using Western blotting, immunofluorescence and ELISA techniques. The potentially active ingredients of XSZT were determined by UHPLC-LTQ-Orbitrap MS, molecular docking, and surface plasmon resonance. RESULTS Our findings revealed that XSZT reduced the number of head scratching, increased the periorbital pain threshold and shortened the time spent in the dark box, decreased c-Fos expression in the CM rat model, suggesting an analgesic effect of XSZT on migraine. XSZT inhibited neurogenic inflammation, including downregulating CGRP, TNF-α, IL-1β and IL-18 levels and decreasing the degranulation rate of mast cells. Additionally, XSZT suppressed the expression and activation of TRPV1 and the NLRP3 inflammasome in the trigeminal nucleus caudalis. In vitro experiments confirmed that activated TRPV1 increased the level of the NLRP3 inflammasome by increasing intracellular calcium levels. Galloylpaeoniflorin, isogastrin, ellagic acid and salvianolic acid A interacted with TRPV1 and inhibited IL-1β secretion. CONCLUSION XSZT plays a therapeutic role in migraine through regulating TRPV1-mediated NLRP3 inflammatory activation and galloylpaeoniflorin, isogastrin, ellagic acid and salvianolic acid A might be the active ingredients of XSZT, which provides an experimental basis for the clinical treatment of migraine.
Collapse
Affiliation(s)
- Yuxi Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, PR China; School of Life Science, Beijing University of Chinese Medicine, Beijing, PR China
| | - Song Yang
- State Administration of Traditional Chinese Medicine Key Laboratory of Famous Doctors and Famous Prescriptions, Beijing, PR China; National Medical Products Administration Key Laboratory for Research and Evaluation of Traditional Chinese, Beijing University of Chinese Medicine, Beijing, PR China
| | - Xiaoyao Liu
- School of Chinese Materia Medicine, Beijing University of Chinese Medicine, Beijing, PR China
| | - Cong Chen
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, PR China
| | - Qian Li
- School of Chinese Materia Medicine, Beijing University of Chinese Medicine, Beijing, PR China
| | - Xiaozhu Wang
- School of Chinese Materia Medicine, Beijing University of Chinese Medicine, Beijing, PR China
| | - Wenhui Xu
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, PR China; State Administration of Traditional Chinese Medicine Key Laboratory of Famous Doctors and Famous Prescriptions, Beijing, PR China; National Medical Products Administration Key Laboratory for Research and Evaluation of Traditional Chinese, Beijing University of Chinese Medicine, Beijing, PR China
| | - Jian Gao
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, PR China; State Administration of Traditional Chinese Medicine Key Laboratory of Famous Doctors and Famous Prescriptions, Beijing, PR China; National Medical Products Administration Key Laboratory for Research and Evaluation of Traditional Chinese, Beijing University of Chinese Medicine, Beijing, PR China
| | - Yao Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, PR China; School of Life Science, Beijing University of Chinese Medicine, Beijing, PR China.
| | - Weiling Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, PR China; State Administration of Traditional Chinese Medicine Key Laboratory of Famous Doctors and Famous Prescriptions, Beijing, PR China; National Medical Products Administration Key Laboratory for Research and Evaluation of Traditional Chinese, Beijing University of Chinese Medicine, Beijing, PR China.
| | - Ting Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, PR China; State Administration of Traditional Chinese Medicine Key Laboratory of Famous Doctors and Famous Prescriptions, Beijing, PR China; National Medical Products Administration Key Laboratory for Research and Evaluation of Traditional Chinese, Beijing University of Chinese Medicine, Beijing, PR China.
| |
Collapse
|
2
|
Li XF, Yang X, Gao H. Activation of the NF-κB signaling pathway by Reynoutria japonica Houtt ameliorates complete Freund's adjuvant-induced arthritis in rats. Inflammopharmacology 2025; 33:1407-1424. [PMID: 39971820 DOI: 10.1007/s10787-025-01662-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 01/20/2025] [Indexed: 02/21/2025]
Abstract
BACKGROUND Rheumatoid arthritis (RA) manifests through persistent synovitis and systemic inflammation, which ultimately result in the degradation of cartilage and bone. The current study was to scrutinize the anti-arthritic effect of Reynoutria japonica Houtt ameliorating complete Freund's adjuvant (CFA)-induced RA in rats and explore the underlying mechanism. MATERIAL AND METHODS CFA was used for the induction of RA in the rats (rats were received the oral administration of Reynoutria japonica Houtt) and estimation of body weight and organ weight. The paw volume, arthritic score, paw withdrawn threshold, and paw withdrawn latency were estimated at regular time. The RF, hematological, hepatic, non-hepatic, ATG, oxidative stress, cytokines, and inflammatory parameters were estimated. The mRNA expression of different genes was scrutinized. RESULTS Reynoutria japonica Houtt treatment improved the body weight and reduced the spleen and thymus index. Reynoutria japonica Houtt also suppressed the paw edema, arthritic score, paw withdrawn threshold, and paw withdrawn latency at regular time interval. Reynoutria japonica Houtt suppressed the RF and altered the hematological, hepatic, non-hepatic, cytokines and inflammatory parameters. Reynoutria japonica Houtt treatment significantly (P < 0.001) altered the expression of MMP-2, MMP-9, MMP-12, TNF-α, IL-1β, Il-6, IL-10, IL-17, COX-1, COX-2, NF-κB, iNOS, mTOR, LC3-II, AMPK, and Beclin 1. CONCLUSION The result clearly stated the promising effect of Reynoutria japonica Houtt against CFA-induced RA in rats via the suppression of NF-κB signaling pathway.
Collapse
Affiliation(s)
- Xiao-Feng Li
- Department of Orthopedics, The Second Hospital of Shandong University, Jinan, 250033, China
| | - Xiongwu Yang
- The Third Affiliated Hospital of Guangxi University of Chinese Medicine (Liuzhou Hospital of Traditional Chinese Medicine), Liuzhou, 545001, China.
| | - Hui Gao
- College of Nursing, Guangxi University of Chinese Medicine, Nanning, 530200, China
| |
Collapse
|
3
|
Hagag UI, Halfaya FM, Al-Muzafar HM, Al-Jameel SS, Amin KA, Abou El-Kheir W, Mahdi EA, Hassan GANR, Ahmed OM. Impacts of mesenchymal stem cells and hyaluronic acid on inflammatory indicators and antioxidant defense in experimental ankle osteoarthritis. World J Orthop 2024; 15:1056-1074. [PMID: 39600854 PMCID: PMC11586742 DOI: 10.5312/wjo.v15.i11.1056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/13/2024] [Accepted: 10/09/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND No effective treatment guarantees full recovery from osteoarthritis (OA), and few therapies have disadvantages. AIM To determine if bone marrow mesenchymal stem cells (BMMSCs) and hyaluronic acid (HA) treat ankle OA in Wistar rats. METHODS BMMSCs were characterized using flow cytometry with detection of surface markers [cluster of differentiation 90 (CD90), CD105, CD34, and CD45]. Fifty male Wistar rats were divided into five groups of 10 rats each: Group I, saline into the right tibiotarsal joint for 2 days; Group II, monosodium iodate (MIA) into the same joint; Groups III, MIA + BMMSCs; Group IV, MIA + HA; and Group V, MIA + BMMSCs + HA. BMMSCs (1 × 106 cells/rat), HA (75 µg/rat), and BMMSCs (1 × 106 cells/rat) alongside HA (75 µg/rat) were injected intra-articularly into the tibiotarsal joint of the right hind leg at the end of weeks 2, 3, and 4 after the MIA injection. RESULTS The elevated right hind leg circumference values in the paw and arthritis clinical score of osteoarthritic rats were significantly ameliorated at weeks 4, 5, and 6. Lipid peroxide significantly increased in the serum of osteoarthritic rats, whereas reduced serum glutathione and glutathione transferase levels were decreased. BMMSCs and HA significantly improved OA. The significantly elevated ankle matrix metalloproteinase 13 (MMP-13) mRNA and transforming growth factor beta 1 (TGF-β1) protein expression, and tumor necrosis factor alpha (TNF-α) and interleukin-17 (IL-17) serum levels in osteoarthritic rats were significantly downregulated by BMMSCs and HA. The effects of BMMSCs and HA on serum TNF-α and IL-17 were more potent than their combination. The lowered serum IL-4 levels in osteoarthritic rats were significantly upregulated by BMMSCs and HA. Additionally, BMMSCs and HA caused a steady decrease in joint injury and cartilage degradation. CONCLUSION BMMSCs and/or HA have anti-arthritic effects mediated by antioxidant and anti-inflammatory effects on MIA-induced OA. MMP-13 and TGF-β1 expression improves BMMSCs and/or HA effects on OA in Wistar rats.
Collapse
Affiliation(s)
| | - Fatma Mohamed Halfaya
- Department of Surgery, Anesthesiology and Radiology, Beni-Suef University, Beni Suef 62111, Egypt
| | - Hessah Mohammed Al-Muzafar
- Department of Chemistry, College of Science, Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Suhailah Saud Al-Jameel
- Department of Chemistry, College of Science, Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Kamal Adel Amin
- Department of Chemistry, Biochemistry, College of Science, Basic and Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Wael Abou El-Kheir
- Department of Immunology, Military Medical Academy, Cairo 11511, Al Qāhirah, Egypt
| | - Emad A Mahdi
- Department of Pathology, Beni-Suef University, Beni Suef 62111, Egypt
| | - Gamal Abdel-Nasser Ragab Hassan
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Beni-Suef University, Beni Suef 62521, Egypt
| | - Osama Mohamed Ahmed
- Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
| |
Collapse
|
4
|
Vita AA, Roberts KM, Gundersen A, Farris Y, Zwickey H, Bradley R, Weir TL. Relationships between Habitual Polyphenol Consumption and Gut Microbiota in the INCLD Health Cohort. Nutrients 2024; 16:773. [PMID: 38542685 PMCID: PMC10974568 DOI: 10.3390/nu16060773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 04/01/2024] Open
Abstract
While polyphenol consumption is often associated with an increased abundance of beneficial microbes and decreased opportunistic pathogens, these relationships are not completely described for polyphenols consumed via habitual diet, including culinary herb and spice consumption. This analysis of the International Cohort on Lifestyle Determinants of Health (INCLD Health) cohort uses a dietary questionnaire and 16s microbiome data to examine relationships between habitual polyphenol consumption and gut microbiota in healthy adults (n = 96). In this exploratory analysis, microbial taxa, but not diversity measures, differed by levels of dietary polyphenol consumption. Taxa identified as exploratory biomarkers of daily polyphenol consumption (mg/day) included Lactobacillus, Bacteroides, Enterococcus, Eubacterium ventriosum group, Ruminococcus torques group, and Sutterella. Taxa identified as exploratory biomarkers of the frequency of polyphenol-weighted herb and spice use included Lachnospiraceae UCG-001, Lachnospiraceae UCG-004, Methanobrevibacter, Lachnoclostridium, and Lachnotalea. Several of the differentiating taxa carry out activities important for human health, although out of these taxa, those with previously described pro-inflammatory qualities in certain contexts displayed inverse relationships with polyphenol consumption. Our results suggest that higher quantities of habitual polyphenol consumption may support an intestinal environment where opportunistic and pro-inflammatory bacteria are represented in a lower relative abundance compared to those with less potentially virulent qualities.
Collapse
Affiliation(s)
- Alexandra Adorno Vita
- Helfgott Research Institute, National University of Natural Medicine, Portland, OR 97201, USA
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523, USA
| | - Kristen M. Roberts
- School of Health and Rehabilitation Sciences, Ohio State University, Columbus, OH 43210, USA
| | - Anders Gundersen
- Helfgott Research Institute, National University of Natural Medicine, Portland, OR 97201, USA
| | - Yuliya Farris
- Pacific Northwest National Laboratory, Biological Sciences Division, Richland, WA 99352, USA
| | - Heather Zwickey
- Helfgott Research Institute, National University of Natural Medicine, Portland, OR 97201, USA
| | - Ryan Bradley
- Helfgott Research Institute, National University of Natural Medicine, Portland, OR 97201, USA
- Herbert Wertheim School of Public Health, University of California, San Diego, CA 92037, USA
| | - Tiffany L. Weir
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
5
|
Yadav NK, Yadav R. Medicinal Effects, Phytochemistry, Pharmacology of Euphorbia prostrata and Promising Molecular Mechanisms. Chin J Integr Med 2024; 30:181-192. [PMID: 36653685 DOI: 10.1007/s11655-023-3544-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2022] [Indexed: 01/20/2023]
Abstract
Euphorbiaceae is a large family of dicotyledonous angiosperms with diverse genera including Euphorbia prostrata (E. prostrata). Current research has provided scientific evidence for traditional uses of E. prostrata against diverse pathological conditions such as anti-hemorrhoidal, anti-inflammatory, analgesic, wound healing, antioxidant, antibacterial, leishmanicidal, antitumor activity, and so on. The phytochemical screening has revealed the presence of glycosides, phytosterols, flavonoids, polyphenols, tannins, and anthraquinones with chemical structures elucidation of their respective compounds. The uniqueness of such multifactorial compounds present in this species endorses it as the potent therapeutic or prophylactic choice for several fatal diseases. Although ethnomedical applications served as a significant citation for pharmacology, the molecular mechanism has not been reviewed yet. The present paper provides a comprehensive review of research outcomes, pharmacology, toxicology, and molecular signaling of phytochemicals of E. prostrata species as a reference for relevant researchers. The study of bioactive compounds in crude extracts and fractions, the demonstration of primary mechanisms of pharmacology, along with the addition of toxicity, and clinical trials, should be conceded in depth. This review underlines the E. prostrata species that can be a promising phytomedicine since we are committed to excavating more intensely into their pharmacological role.
Collapse
Affiliation(s)
- Nirmala Kumari Yadav
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, 304022, Rajasthan, India
- Department of Pharmaceutical Sciences, Indira Gandhi University, Meerpur, Rewari, 122502, Haryana, India
| | - Rakesh Yadav
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, 304022, Rajasthan, India.
- National Forensic Sciences University, Tripura Campus, Agartala, 799001, Tripura, India.
| |
Collapse
|
6
|
Khumalo GP, Nguyen T, Van Wyk BE, Feng Y, Cock IE. Inhibition of pro-inflammatory cytokines by selected southern African medicinal plants in LPS-stimulated RAW 264.7 macrophages. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117268. [PMID: 37797874 DOI: 10.1016/j.jep.2023.117268] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/18/2023] [Accepted: 09/30/2023] [Indexed: 10/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bark is frequently used in southern African traditional medicine to treat inflammation, yet it remains to be rigorously examined for its immunological and anti-inflammatory activity. AIM OF THE STUDY Barks obtained from ten important and popular southern Africa plants were evaluated for their anti-inflammatory and immunomodulatory properties against the secretion of some pro-inflammatory cytokines (interleukin (IL)-1β, IL-6, tumour necrosis factor-α (TNF-α), and interferon-gamma (IFN-γ) as well as chemokines (monocyte chemoattractant protein 1 (MCP-1) and macrophage inflammatory protein (MIP)-2) in murine RAW 264.7 macrophages. MATERIALS AND METHODS The inhibitory effects of aqueous and ethanol extracts were determined using cytokine multiplex-bead assays in lipopolysaccharide (LPS)-stimulated and unstimulated RAW 264.7 cells. RESULTS Overall, the ethanol extracts were more potent cytokine inhibitors compared to the aqueous extracts. The LPS-stimulated cells treated with the ethanol extracts of Erythrina lysistemon Hutch., Pterocelastrus rostratus Walp. Syzygium cordatum Hochst. ex Krauss and Warburgia salutaris (G. Bertol.) Chiov., demonstrated significant (p < 0.005) inhibition up to 85% of IL-1β, IL-6, and TNF-α secretion compared to the LPS control. Additionally, P. rostratus and S. cordatum aqueous bark extracts substantially decreased the secretion of all the tested cytokines and chemokines. Chemical investigation of the S. cordatum extract resulted in the identification of four ellagic acid derivatives: ellagic acid 4-O-α-rhamnopyranoside (1), ellagic acid 4-O-α-4″-acetylrhamnopyranoside (2), 3-O-methylellagic acid 4'-O-α-3″-O-acetylrhamnopyranoside (3) and 3-O-methylellagic acid 4'-O-α-4″-O-acetylrhamnopyranoside (4), along with mixtures of ellagic acid 4-O-α-2″-acetylrhamnopyranoside (5), ellagic acid 4-O-α-3″-acetylrhamnopyranoside (6) and ellagic acid (7). Their structures were confirmed by mass spectrometry, NMR spectroscopy, and comparison with data from literature. CONCLUSION The cytokine inhibition properties of most of the medicinal plants screened herein are reported for the first time. Our results provide insights into the mechanism of action by which the selected southern African medicinal plants regulate inflammation.
Collapse
Affiliation(s)
- Gugulethu P Khumalo
- Centre for Planetary Health and Food Security, Nathan Campus, Griffith University, 170 Kessels Rd, Nathan, Queensland, 4111, Australia; School of Environment and Science, Nathan Campus, Griffith University, 170 Kessels Rd, Nathan, Queensland, 4111, Australia
| | - Thanh Nguyen
- Griffith Institute for Drug Discovery, Griffith University, 46 Don Young Rd, Nathan, Queensland, 4111, Australia
| | - Ben-Erik Van Wyk
- Department of Botany and Plant Biotechnology, University of Johannesburg, P.O. Box 524, Auckland Park 2006, Johannesburg, South Africa
| | - Yunjiang Feng
- School of Environment and Science, Nathan Campus, Griffith University, 170 Kessels Rd, Nathan, Queensland, 4111, Australia; Griffith Institute for Drug Discovery, Griffith University, 46 Don Young Rd, Nathan, Queensland, 4111, Australia
| | - Ian E Cock
- Centre for Planetary Health and Food Security, Nathan Campus, Griffith University, 170 Kessels Rd, Nathan, Queensland, 4111, Australia; School of Environment and Science, Nathan Campus, Griffith University, 170 Kessels Rd, Nathan, Queensland, 4111, Australia.
| |
Collapse
|
7
|
Shibata S, Kon S. Functional Ingredients Associated with the Prevention and Suppression of Locomotive Syndrome: A Review. Biol Pharm Bull 2024; 47:1978-1991. [PMID: 39617444 DOI: 10.1248/bpb.b24-00443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2025]
Abstract
In 2007, the Japanese Orthopaedic Association proposed the concept of locomotive syndrome, a comprehensive description of conditions involving the functional decline of the locomotor system. Locomotive syndrome includes bone-related diseases such as osteoporosis, joint cartilage and disc-related diseases such as osteoarthritis and lumbar spondylosis, and sarcopenia and locomotive syndrome-related diseases. If left untreated, these diseases are likely to reduce mobility, necessitating nursing care. To prevent the progression of locomotive syndrome, a daily exercise routine and well-balanced diet are important, in addition to recognizing one's own decline in mobility. Therefore, research on the effectiveness of functional ingredients in the prevention and suppression of locomotive syndrome progression is ongoing. In this review, we summarize the latest reports on the effectiveness of five functional ingredients, namely, epigallocatechin gallate, resveratrol, curcumin, ellagic acid, and carnosic acid, in the treatment of osteoarthritis, osteoporosis, and rheumatoid arthritis, which are considered representative diseases of the locomotive syndrome.
Collapse
Affiliation(s)
- Sachi Shibata
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University
| | - Shigeyuki Kon
- Department of Molecular Immunology, Faculty of Pharmaceutical Sciences, Fukuyama University
| |
Collapse
|
8
|
Ekowati J, Tejo BA, Maulana S, Kusuma WA, Fatriani R, Ramadhanti NS, Norhayati N, Nofianti KA, Sulistyowaty MI, Zubair MS, Yamauchi T, Hamid IS. Potential Utilization of Phenolic Acid Compounds as Anti-Inflammatory Agents through TNF-α Convertase Inhibition Mechanisms: A Network Pharmacology, Docking, and Molecular Dynamics Approach. ACS OMEGA 2023; 8:46851-46868. [PMID: 38107968 PMCID: PMC10720000 DOI: 10.1021/acsomega.3c06450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 12/19/2023]
Abstract
Inflammation is a dysregulated immune response characterized by an excessive release of proinflammatory mediators, such as cytokines and prostanoids, leading to tissue damage and various pathological conditions. Natural compounds, notably phenolic acid phytocompounds from plants, have recently garnered substantial interest as potential therapeutic agents to bolster well-being and combat inflammation recently. Based on previous research, the precise molecular mechanism underlying the anti-inflammatory activity of phenolic acids remains elusive. Therefore, this study aimed to predict the molecular mechanisms underpinning the anti-inflammatory properties of selected phenolic acid phytocompounds through comprehensive network pharmacology, molecular docking, and dynamic simulations. Network pharmacology analysis successfully identified TNF-α convertase as a potential target for anti-inflammatory purposes. Among tested compounds, chlorogenic acid (-6.90 kcal/mol), rosmarinic acid (-6.82 kcal/mol), and ellagic acid (-5.46 kcal/mol) exhibited the strongest binding affinity toward TNF-α convertase. Furthermore, phenolic acid compounds demonstrated molecular binding poses similar to those of the native ligand, indicating their potential as inhibitors of TNF-α convertase. This study provides valuable insights into the molecular mechanisms that drive the anti-inflammatory effects of phenolic compounds, particularly through the suppression of TNF-α production via TNF-α convertase inhibition, thus reinforcing their anti-inflammatory attributes.
Collapse
Affiliation(s)
- Juni Ekowati
- Department
of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Bimo Ario Tejo
- Department
of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
- Department
of Chemistry, Faculty of Science,, Universiti
Putra Malaysia, Serdang 43400, Malaysia
| | - Saipul Maulana
- Magister
Programe Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
- Department
of Pharmacy, Faculty of Mathematics and Natural Sciences, Tadulako University, Palu 94148, Indonesia
| | - Wisnu Ananta Kusuma
- Department
of Computer Science, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680, Indonesia
- Tropical
Biopharmaca Research Center, IPB University, Bogor 16128, Indonesia
| | - Rizka Fatriani
- Tropical
Biopharmaca Research Center, IPB University, Bogor 16128, Indonesia
| | | | - Norhayati Norhayati
- Magister
Programe Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Kholis Amalia Nofianti
- Department
of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Melanny Ika Sulistyowaty
- Department
of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Muhammad Sulaiman Zubair
- Department
of Pharmacy, Faculty of Mathematics and Natural Sciences, Tadulako University, Palu 94148, Indonesia
| | - Takayasu Yamauchi
- Faculty
of Pharmaceutical Sciences, Hoshi University, Tokyo 142-8501, Japan
| | - Iwan Sahrial Hamid
- Faculty
of Veterinary Medicine,Universitas Airlangga, Surabaya 60115, Indonesia
| |
Collapse
|
9
|
Jafari Karegar S, Aryaeian N, Hajiluian G, Suzuki K, Shidfar F, Salehi M, Ashtiani BH, Farhangnia P, Delbandi AA. Ellagic acid effects on disease severity, levels of cytokines and T-bet, RORγt, and GATA3 genes expression in multiple sclerosis patients: a multicentral-triple blind randomized clinical trial. Front Nutr 2023; 10:1238846. [PMID: 37794975 PMCID: PMC10546207 DOI: 10.3389/fnut.2023.1238846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/28/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is a chronic autoimmune disease. Ellagic acid is a natural polyphenol and affects the fate of neurons through its anti-inflammatory and antioxidant properties. The present study aimed to investigate ellagic acid effects on disease severity, the expression of involved genes in the pathogenesis of MS, and the levels of related cytokines. METHODS The present study was a triple-blind clinical trial. Eligible patients were randomly assigned to two groups: Ellagic acid (25 subjects) for 12 weeks, receiving 180 mg of Ellagic acid (Axenic, Australia) and the control group (25 subjects) receiving a placebo, before the main meals. Before and after the study, the data including general information, foods intake, physical activity, anthropometric data, expanded disability status scale (EDSS), general health questionnaire (GHQ) and pain rating index (PRI), fatigue severity scale (FSS) were assessed, as well as serum levels of interferon-gamma (IFNγ), interleukin-17 (IL-17), interleukin-4 (IL-4) and transforming growth factor-beta (TGF-β), nitric-oxide (NO) using enzyme-linked immunoassay (ELISA) method and expression of T-box transcription factor (Tbet), GATA Binding Protein 3 (GATA3), retinoic acid-related orphan receptor-γt (RORγt) and Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) genes were determined using Real-Time Quantitative Reverse Transcription PCR (RT-qPCR) method. FINDINGS Ellagic acid supplementation led to a reduction in IFNγ, IL-17, NO and increased IL-4 in the ellagic acid group, however in the placebo group no such changes were observed (-24.52 ± 3.79 vs. -0.05 ± 0.02, p < 0.01; -5.37 ± 0.92 vs. 2.03 ± 1.03, p < 0.01; -18.03 ± 1.02 vs. -0.06 ± 0.05, p < 0.01, 14.69 ± 0.47 vs. -0.09 ± 0.14, p < 0.01, respectively). Ellagic acid supplementation had no effect on TGF-β in any of the study groups (p > 0.05). Also, the Tbet and RORγt genes expression decreased, and the GATA3 gene expression in the group receiving ellagic acid compared to control group significantly increased (0.52 ± 0.29 vs. 1.51 ± 0.18, p < 0.01, 0.49 ± 0.18 vs. 1.38 ± 0.14, p < 0.01, 1.71 ± 0.39 vs. 0.27 ± 0.10, p < 0.01). Also, ellagic acid supplementation led to significant decrease in EDSS, FSS and GHQ scores (p < 0.05), and no significant changes observed in PRI score (p > 0.05). CONCLUSION Ellagic acid supplementation can improve the health status of MS patients by reduction of the inflammatory cytokines and Tbet and RORγt gene expression, and increment of anti-inflammatory cytokines and GATA3 gene expression.Clinical trial registration: (https://en.irct.ir/trial/53020), IRCT20120415009472N22.
Collapse
Affiliation(s)
- Sahar Jafari Karegar
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Naheed Aryaeian
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Ghazaleh Hajiluian
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | | | - Farzad Shidfar
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Salehi
- Department of Statistics, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | | | - Pooya Farhangnia
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali-Akbar Delbandi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Disease, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Tran TPN, Nguyen TT, Tran GB. Anti-Arthritis Effect of Ethanol Extract of Sacha Inchi ( Plukenetia volubilis L.) Leaves Against Complete Freund's Adjuvant-Induced Arthritis Model in Mice. Trop Life Sci Res 2023; 34:237-257. [PMID: 37860100 PMCID: PMC10583854 DOI: 10.21315/tlsr2023.34.3.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 04/10/2023] [Indexed: 10/21/2023] Open
Abstract
Sacha inchi (Plukenetia volubilis L.) is a well-known oleaginous plant used as food source and traditional medicine by indigenous people for a long time. This study was conducted to evaluate anti-arthritis effect of ethanol extract of Sacha inchi leaves and provide scientific evidence to develop the new anti-arthritis remedy from Sacha inchi. Rheumatoid arthritis model was established by injection of complete Freund's adjuvant into right hind footpads of mice and three doses of ethanol extract of Sacha inchi leaves (100, 200 and 300 mg/kg body weight) were used for treatment. The severity of arthritis was evaluated by measuring the ankle diameter and arthritic score, hematological and biochemical parameters (erythrocytes, leukocytes, lymphocytes, monocytes, granulocytes counts, erythrocyte sedimentation rate, C-reactive protein and rheumatoid factor). The pro-and anti-inflammatory cytokines (TNF-α, INF-γ, IL-1β, IL-6, and IL-10) and the histology change of joint were also examined. All three doses of extracts significantly alleviated ankle diameter and arthritic score. Furthermore, the extracts could ameliorate the alternation of inflammatory cytokines as well histological features of CFA-induced mice. The efficacy of extract dose of 300 mg/kg body weight is comparable with reference drug (Mobic, 0.2 mg/kg body weight). This study indicates Sacha inchi leaf extract as the promising remedy for treatment of arthritis.
Collapse
Affiliation(s)
- Thi Phuong Nhung Tran
- Department of Biotechnology, Institute of Biotechnology and Food Technology, Industrial University of Ho Chi Minh City, 12 Nguyen Van Bao Street, Go Vap District, Ho Chi Minh City, Vietnam
| | - Thi-Trang Nguyen
- Department of Food Science and Nutrition, Institute of Biotechnology and Food Technology, Industrial University of Ho Chi Minh City, 12 Nguyen Van Bao Street, Go Vap District, Ho Chi Minh City, Vietnam
| | - Gia-Buu Tran
- Faculty of Pharmacy, Ton Duc Thang University, 19, Nguyễn Hữu Thọ, Tân Hưng, Quận 7, Thành phố, Ho Chi Minh City, Vietnam
| |
Collapse
|
11
|
Muscadine Grape (Vitis rotundifolia) and Wine Polyphenols Alleviated Arthritis and Restored the Gut Microbial Composition in Mice. J Nutr Biochem 2023; 116:109311. [PMID: 36878329 DOI: 10.1016/j.jnutbio.2023.109311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 11/28/2022] [Accepted: 02/27/2023] [Indexed: 03/07/2023]
Abstract
This study aimed to investigate the effect of muscadine grape polyphenols (MGP) and muscadine wine polyphenols (MWP) on the onset and progression of arthritis in mice. Arthritis in male DBA/1J mice was induced by two intradermal injections of type II collagen. MGP or MWP (400 mg/kg) were orally gavaged to mice. MGP and MWP were found to delay the onset and reduce the severity and clinical symptoms of collagen induced arthritis (CIA) (p≤0.05). In addition, MGP and MWP significantly reduced the plasma concentration of TNF-α, IL-6, anti-collagen antibodies, and matrix metalloproteinase-3 in CIA mice. Based on nano CT and histological analysis, MGP and MWP reduced pannus formation, cartilage destruction, and bone erosion in CIA mice. Analysis of 16S ribosomal RNA revealed that arthritis in mice is associated with gut dysbiosis. MWP was more effective than MGP at alleviating such dysbiosis by shifting the microbiome composition towards the direction of healthy mice. Relative abundance of several genera of gut microbiome correlated with plasma inflammatory biomarkers and bone histology scores, suggesting they play a role in the development and progression of arthritis. This study suggests that muscadine grape or wine polyphenols can be used as a diet-based strategy to prevent and manage arthritis in humans.
Collapse
|
12
|
Shaban NS, Radi AM, Abdelgawad MA, Ghoneim MM, Al-Serwi RH, Hassan RM, Mohammed ET, Radi RA, Halfaya FM. Targeting Some Key Metalloproteinases by Nano-Naringenin and Amphora coffeaeformis as a Novel Strategy for Treatment of Osteoarthritis in Rats. Pharmaceuticals (Basel) 2023; 16:260. [PMID: 37259405 PMCID: PMC9959020 DOI: 10.3390/ph16020260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 02/01/2023] [Indexed: 02/22/2024] Open
Abstract
Osteoarthritis (OA) represents the highest degenerative disorder. Because cartilage erosion is a common pathological alteration in OA, targeting some key metalloproteinases such as MMP-3, ADAMTS-5 besides their inhibitor TIMP-3 by natural products, could be an effective strategy to protect against osteoarthritis. Forty female Wister rats were categorized into five equal groups. Control, osteoarthritic (OA) (monosodium iodoacetate (MIA) 2 mg/50 µL saline, single intra-articular injection), OA+ indomethacin (2 mg/kg/daily/orally), OA+ nano-naringenin (25 mg/kg/daily/orally), and OA+ Amphora coffeaeformis (772 mg/kg/daily/orally). Treatments were initiated on the 8th day after osteoarthritis induction and continued for 28 days thereafter. Finally, blood and knee joint samples were collected from all rats for biochemical and histopathological evaluations. The current study showed that MIA induced oxidative stress, which resulted in changes in the inflammatory joint markers associated with increased right knee diameter and higher clinical scores for lameness. Amphora coffeaeformis followed by nano-naringenin exhibited a potential anti-arthritic activity by reducing the concentrations of serum MMP-3, ADAMTS-5, and joint MDA and increasing the levels of serum TIMP-3 and joint GSH, similar to indomethacin. The histopathological results confirmed these outcomes. In conclusion, Amphora coffeaeformis and nano-naringenin can be considered as natural therapeutic agents for osteoarthritis owing to their antioxidant and anti-inflammatory activities.
Collapse
Affiliation(s)
- Nema S Shaban
- Department of Pharmacology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Abeer M Radi
- Department of Pharmacology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Mohamed A Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Aljouf 72341, Saudi Arabia
| | - Mohammed M Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Rasha Hamed Al-Serwi
- Department of Basic Dental Sciences, College of Dentistry, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Randa M Hassan
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Eman T Mohammed
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Rania A Radi
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Fatma M Halfaya
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| |
Collapse
|
13
|
Xiong H, Meng F, Luo M, Chen W, Tian J, Chen L, Ju Y, Mei Z. Anti-inflammatory and osteoprotective effects of Shi-Wei-Ru-Xiang pills on collagen-induced arthritis in rats via inhibiting MAPK and STAT3 pathways. JOURNAL OF ETHNOPHARMACOLOGY 2023; 300:115693. [PMID: 36075272 DOI: 10.1016/j.jep.2022.115693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 08/15/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shi-Wei-Ru-Xiang pills (SW) as a tradition Tibetan medicine has been clinically proved effective in rheumatoid arthritis (RA) treatment. However, the underlying mechanism of SW remains unclear. AIM OF THE STUDY This study aimed to investigate the anti-arthritic effect of SW and its possible mechanisms of action. MATERIALS AND METHODS A CIA rat model in vivo, and IL-1β-stimulated synoviocytes or chondrocytes and a co-culture system (IL-1β-stimulated synoviocytes/chondrocytes) in vitro were used to evaluate the effects of SW on the treatment of RA. Arthritic score, paw swelling rate, hematoxylin-eosin (HE) staining, and Safranin-O-Fast green (S-O) staining were used to evaluate the anti-arthritic activity of SW in CIA rats. TUNEL assay or flow cytometry were performed to measure chondrocytes apoptosis in vivo and invitro. The effects of SW on the expression and production of pro-inflammatory cytokines were assessed by qRT-PCR and Elisa. The inhibitory effects of SW on the phosphorylation of p38, Erk1/2, and STAT3 were analyzed by Western blot. RESULTS SW treatment significantly alleviated paw swelling, severity of arthritic and cartilage destruction in CIA rats. Moreover, SW decreased the expression of mRNAs of proinflammatory cytokines including TNF-α, IL-1β and IL-6 in the synovium, suppressed the production of these pro-inflammatory cytokines in serum and hind paws, downregulated the protein expression of p-p38, p-Erk1/2 and p-STAT3, and protected the chondrocytes apoptosis in CIA rats. Consistent with the results in vivo, SW also inhibited the activation of MAPK and STAT3 pathways, suppressed the expression of pro-inflammatory cytokines in IL-1β-stimulated synoviocytes, and attenuated chondrocytes apoptosis in IL-1β-stimulated chondrocytes. In the co-culture system, SW pre-treatment in IL-1β-stimulated synoviocytes exhibited inhibition of chondrocytes apoptosis, which was associated with attenuation of inflammation in synoviocytes. CONCLUSION These results suggested that the underlying mechanisms by which SW exerts its anti-arthritis effect may be related to the reduction of proinflammatory cytokine levels, inhibition of p38, Erk1/2 and STAT3 phosphorylation, and attenuating of chondrocyte apoptosis.
Collapse
Affiliation(s)
- Hui Xiong
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, China
| | - Fengping Meng
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, China
| | - Miao Luo
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, China
| | - Weiwu Chen
- Tibet Qizheng Tibetan Medicine Co.Ltd., Lasa, 850030, China
| | - Juan Tian
- Tibet Qizheng Tibetan Medicine Co.Ltd., Lasa, 850030, China
| | - Lunju Chen
- Tibet Qizheng Tibetan Medicine Co.Ltd., Lasa, 850030, China
| | - Yankun Ju
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, China
| | - Zhinan Mei
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, China; College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
14
|
Hydrolyzable Tannins in the Management of Th1, Th2 and Th17 Inflammatory-Related Diseases. Molecules 2022; 27:molecules27217593. [DOI: 10.3390/molecules27217593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/30/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Plants rich in hydrolyzable tannins were traditionally used all over the world for a variety of chronic inflammatory disorders, including arthritis, colitis, and dermatitis. However, the knowledge of their immunological targets is still limited though fundamental for their rational use in phytotherapy. The recent advances regarding the pathogenesis of inflammatory-based diseases represent an opportunity to elucidate the pharmacological mechanism of plant-derived metabolites with immunomodulatory activity. This review collects recent articles regarding the role of hydrolyzable tannins and their gut metabolites in Th1, Th2, and Th17 inflammatory responses. In line with the traditional use, rheumatoid arthritis (RA), inflammatory bowel diseases (IBDs), psoriasis, atopic dermatitis (AD), and asthma were the most investigated diseases. A substantial body of in vivo studies suggests that, beside innate response, hydrolyzable tannins may reduce the levels of Th-derived cytokines, including IFN-γ, IL-17, and IL-4, following oral administration. The mode of action is multitarget and may involve the impairment of inflammatory transcription factors (NF-κB, NFAT, STAT), enzymes (MAPKs, COX-2, iNOS), and ion channels. However, their potential impact on pathways with renewed interest for inflammation, such as JAK/STAT, or the modulation of the gut microbiota demands dedicate studies.
Collapse
|
15
|
Mass Spectrometric Identification of Licania rigida Benth Leaf Extracts and Evaluation of Their Therapeutic Effects on Lipopolysaccharide-Induced Inflammatory Response. Molecules 2022; 27:molecules27196291. [PMID: 36234829 PMCID: PMC9571113 DOI: 10.3390/molecules27196291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/23/2022] Open
Abstract
Licania rigida Benth has been evaluated as an alternative drug to treat diseases associated with inflammatory processes. This study evaluated the anti-inflammatory effects of aqueous and hydroalcoholic leaf extracts of L. rigida with inflammation induced by lipopolysaccharides in in vitro and in vivo inflammation models. The phytochemical profile of the extracts, analyzed by ultra-fast liquid chromatography coupled with tandem mass spectrometry, revealed the presence of gallic and ellagic acids in both extracts, whereas isovitexin, ferulate, bulky amino acids (e.g., phenylalanine), pheophorbide, lactic acid, and pyridoxine were detected in the hydroalcoholic extract. The extracts displayed the ability to modulate in vitro and in vivo inflammatory responses, reducing approximately 50% of pro-inflammatory cytokine secretion (TNF-α, IL-1β, and IL-6), and inhibiting both NO production and leukocyte migration by approximately 30 and 40% at 100 and 500 µg/mL, respectively. Overall, the results highlight and identify, for the first time, the ability of L. rigida leaf extract to modulate inflammatory processes. These data suggest that the leaf extracts of this plant have potential in the development of herbal formulations for the treatment of inflammation.
Collapse
|
16
|
Javed K, Rakha A, Butt MS, Faisal MN, Tariq U, Saleem M. Evaluating the anti-arthritic potential of walnut (Juglans regia L.) in FCA induced Sprague Dawley rats. J Food Biochem 2022; 46:e14327. [PMID: 35929358 DOI: 10.1111/jfbc.14327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/08/2022] [Accepted: 06/17/2022] [Indexed: 01/08/2023]
Abstract
Rheumatoid arthritis (RA) is an autoimmune progressive disease, associated with many pathophysiological consequences. Owing to the adverse effects and higher costs of pharmaceuticals, people are now looking for complementary and alternative remedies. In this milieu, the present study was designed to explore the therapeutic potential of walnuts against FCA-induced arthritis in rat models. Purposely, 50 Sprague Dawley rats were housed in a well-ventilated animal room and separated into 5 groups of 10 rats each. The rats were categorized as G0 (negative control), G1 (positive control, i.e., FCA induced untreated arthritic rats), G2 (arthritic rats treated with MTX), G3 (arthritic rats treated with walnut feed), and G4 (arthritic rats treated with walnut extract), with an efficacy trial lasting for 42 days. The physical analysis explicated that paw swelling was significantly improved by 10%-12.8% in treatment groups after the intervention when compared with positive control. Moreover, biochemical analyses revealed significantly lower levels of ESR, CRP, and RF in rats treated with walnut-based interventions when compared to positive control. ESR values were decreased by 62.4% and 69.92% in G3 and G4 , whereas CRP levels were improved by 56.20% and 77.78% in G3 and G4 when compared with G1 . Likewise, RF values decreased in G2 , G3 , and G4 by 64.71%, 55.88%, and 69.24%, respectively when compared to G1 . The histological examination demonstrated the potential role of walnut-based interventions in reducing the severity of disease by decreasing cell infiltration, bone erosion, and paw inflammation. Meanwhile, the gene expression analysis revealed that walnut-based interventions protected the paw joints from damage by downregulating the RANKL-OPG pathway. Conclusively, walnut feed and extract may serve as potent anti-arthritic interventions with no side effects. PRACTICAL APPLICATIONS: Plant-based therapeutics are effective in the prevention and management of various chronic diseases. The current research explored the anti-arthritic potential of walnuts. Walnut feed and extract effectively reduced the serum arthritic biomarkers as well as downregulated the genes involved in bone destruction. Thus, the inclusion of dietary ingredients having therapeutic potential such as walnuts may be synchronized in clinical practices to ameliorate arthritis.
Collapse
Affiliation(s)
- Komal Javed
- National Institute of Food Science and Technology, Faculty of Food Nutrition and Home Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan.,Department of Human Nutrition and Dietetics, Riphah International University Faisalabad, Faisalabad, Pakistan
| | - Allah Rakha
- National Institute of Food Science and Technology, Faculty of Food Nutrition and Home Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Masood Sadiq Butt
- National Institute of Food Science and Technology, Faculty of Food Nutrition and Home Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Naeem Faisal
- Institute of Pharmacy, Physiology, and Pharmacology, Faculty of Veterinary Science, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Urwa Tariq
- National Institute of Food Science and Technology, Faculty of Food Nutrition and Home Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan.,Department of Human Nutrition and Dietetics, Riphah International University Faisalabad, Faisalabad, Pakistan
| | - Makkia Saleem
- National Institute of Food Science and Technology, Faculty of Food Nutrition and Home Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
17
|
Aloke C, Ohanenye IC, Aja PM, Ejike CECC. Phytochemicals from medicinal plants from African forests with potentials in rheumatoid arthritis management. J Pharm Pharmacol 2022; 74:1205-1219. [PMID: 35788356 DOI: 10.1093/jpp/rgac043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 06/04/2022] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease characterized by inflammation, pain, and cartilage and bone damage. There is currently no cure for RA. It is however managed using nonsteroidal anti-inflammatory drugs, corticosteroids and disease-modifying anti-rheumatic drugs, often with severe side effects. Hidden within Africa's lush vegetation are plants with diverse medicinal properties including anti-RA potentials. This paper reviews the scientific literature for medicinal plants, growing in Africa, with reported anti-RA activities and identifies the most abundant phytochemicals deserving research attention. A search of relevant published scientific literature, using the major search engines, such as Pubmed/Medline, Scopus, Google Scholar, etc. was conducted to identify medicinal plants, growing in Africa, with anti-RA potentials. KEY FINDINGS Twenty plants belonging to 17 families were identified. The plants are rich in phytochemicals, predominantly quercetin, rutin, catechin, kaempferol, etc., known to affect some pathways relevant in RA initiation and progression, and therefore useful in its management. SUMMARY Targeted research is needed to unlock the potentials of medicinal plants by developing easy-to-use technologies for preparing medicines from them. Research attention should focus on how best to exploit the major phytochemicals identified in this review for the development of anti-RA 'green pharmaceuticals'.
Collapse
Affiliation(s)
- Chinyere Aloke
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, Alex Ekwueme Federal University, Ndufu-Alike, Ebonyi State, Nigeria.,Protein Structure-Function and Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Braamfontein 2050, Johannesburg, South Africa
| | - Ikenna C Ohanenye
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa Ontario Canada
| | - Patrick M Aja
- Department of Biochemistry, Faculty of Science, Ebonyi State University Abakaliki, Ebonyi State, Nigeria
| | - Chukwunonso E C C Ejike
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, Alex Ekwueme Federal University, Ndufu-Alike, Ebonyi State, Nigeria
| |
Collapse
|
18
|
Shahid A, Inam‐Ur‐Raheem M, Iahtisham‐Ul‐Haq , Nawaz MY, Rashid MH, Oz F, Proestos C, Aadil RM. Diet and lifestyle modifications: An update on non‐pharmacological approach in the management of osteoarthritis. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Arashi Shahid
- National Institute of Food Science and Technology University of Agriculture Faisalabad Pakistan
| | - Muhammad Inam‐Ur‐Raheem
- National Institute of Food Science and Technology University of Agriculture Faisalabad Pakistan
| | - Iahtisham‐Ul‐Haq
- Kauser Abdulla Malik School of Life Sciences Forman Christian College (A Chartered University) Punjab Pakistan
| | - Muhammad Yasir Nawaz
- Department of Pathology Faculty of Veterinary Science, University of Agriculture Faisalabad Faisalabad Pakistan
| | - Muhammad Hamdan Rashid
- National Institute of Food Science and Technology University of Agriculture Faisalabad Pakistan
| | - Fatih Oz
- Department of Food Engineering, Faculty of Agriculture Ataturk University Erzurum Turkey
| | - Charalampos Proestos
- Laboratory of Food Chemistry, Department of Chemistry National and Kapodistrian University of Athens Zografou Athens Greece
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology University of Agriculture Faisalabad Pakistan
| |
Collapse
|
19
|
Xiao S, Wang L, Han W, Gu L, Cui X, Wang C. Novel Deep Eutectic Solvent-Hydrogel Systems for Synergistic Transdermal Delivery of Chinese Herb Medicine and Local Treatments for Rheumatoid Arthritis. Pharm Res 2022; 39:2431-2446. [PMID: 35359240 DOI: 10.1007/s11095-022-03239-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/17/2022] [Indexed: 10/18/2022]
Abstract
In this study, a novel hydrogel system incorporating an amino acid-based deep eutectic solvent (DES) was prepared, and the skin-permeation enhancement of traditional Chinese herb medicine was evaluated using "sanwujiaowan" extract as the model formula. Briefly, a DES-extract complex was constructed by co-heating the herb formula extracts with the amino acid as the hydrogen receptor and citric acid as the hydrogen donor. The DES-extract complex demonstrated excellent dissolution and skin permeability of the complicated ingredients in the extracts. Consequently, the DES-extract complex was introduced to a hydrogel system, which showed better mechanical properties and viscoelasticity performance. Using a collagen-induced arthritis rat model, the DES-hydrogels exerted an enhanced therapeutic effect that significantly reduced the inflammatory response with systemic toxicity of the extracts. Therefore, our work suggests a novel strategy for synergistic transdermal delivery of Chinese herb medicine and local treatments for rheumatoid arthritis.
Collapse
Affiliation(s)
- Suyun Xiao
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China.,Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan, Province, Kunming, 650500, China
| | - Liyun Wang
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China.,Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan, Province, Kunming, 650500, China
| | - Wei Han
- School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Liyun Gu
- School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Xiuming Cui
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China. .,Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan, Province, Kunming, 650500, China.
| | - Chengxiao Wang
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China. .,Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan, Province, Kunming, 650500, China.
| |
Collapse
|
20
|
Kysielova H, Yampolska K, Dubrava T, Lutsenko O, Bondarovych M, Babenko N, Gaevska Y, Ostankov M, Goltsev A. Improvement of bone marrow mononuclear cells cryopreservation methods to increase the efficiency of dendritic cell production. Cryobiology 2022; 106:122-130. [PMID: 35245536 DOI: 10.1016/j.cryobiol.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 02/09/2022] [Accepted: 02/20/2022] [Indexed: 11/27/2022]
Abstract
Cryopreservation is now considered an integral part of the biotechnological process, exploiting different types of cells and tissues in clinical practice. Among them, dendritic cells (DCs) deserve special attention, notably the immature tolerogenic cells (tolDCs), which provide natural tolerance in humans and animals. High cryolability of tolDCs has necessitated the search for the methods that would provide cryopreservation of their precursors; those more resistant to negative effects of cryopreservation factors, in particular, bone marrow or peripheral blood mononuclear cells (MNCs). Based on this, the aim of our research was to optimize the cryopreservation conditions for mice bone marrow MNCs with further assessment of their ability to form tolDCs ex vivo. A cryopreservation mode for bone marrow MNCs has been developed which provides structural and functional completeness of tolDCs obtained from them ex vivo. The ability of DCs derived from cryopreserved MNCs by the developed mode to induce T-regulatory (FOXP3+) cells in vitro when co-cultured with CD4+-lymphocytes was shown.Tolerogenic properties of the DCs derived from cryopreserved MNCs are implemented by increasing the content of hsp70 heat shock proteins and the expression rate of glucocorticoid-induced leucine zipper (GILZ). DCs with increased tolerogenic activities, obtained by the developed cryopreservation regimen, can be used in treatment of autoimmune diseases. In this research we not only evaluated the qualitative characteristics and tolerogenic activity of DCs produced in vitro from cryopreserved MNCs, but also outlined the prospects of accumulating their reserves in low-temperature banks for clinical use.
Collapse
Affiliation(s)
- H Kysielova
- Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine 23, Pereyaslavska str., Kharkiv, 61016, Ukraine.
| | - K Yampolska
- Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine 23, Pereyaslavska str., Kharkiv, 61016, Ukraine
| | - T Dubrava
- Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine 23, Pereyaslavska str., Kharkiv, 61016, Ukraine
| | - O Lutsenko
- Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine 23, Pereyaslavska str., Kharkiv, 61016, Ukraine
| | - M Bondarovych
- Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine 23, Pereyaslavska str., Kharkiv, 61016, Ukraine
| | - N Babenko
- Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine 23, Pereyaslavska str., Kharkiv, 61016, Ukraine
| | - Yu Gaevska
- Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine 23, Pereyaslavska str., Kharkiv, 61016, Ukraine
| | - M Ostankov
- Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine 23, Pereyaslavska str., Kharkiv, 61016, Ukraine
| | - A Goltsev
- Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine 23, Pereyaslavska str., Kharkiv, 61016, Ukraine
| |
Collapse
|
21
|
Sharifi-Rad J, Quispe C, Castillo CMS, Caroca R, Lazo-Vélez MA, Antonyak H, Polishchuk A, Lysiuk R, Oliinyk P, De Masi L, Bontempo P, Martorell M, Daştan SD, Rigano D, Wink M, Cho WC. Ellagic Acid: A Review on Its Natural Sources, Chemical Stability, and Therapeutic Potential. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3848084. [PMID: 35237379 PMCID: PMC8885183 DOI: 10.1155/2022/3848084] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/31/2022] [Indexed: 12/18/2022]
Abstract
Ellagic acid (EA) is a bioactive polyphenolic compound naturally occurring as secondary metabolite in many plant taxa. EA content is considerable in pomegranate (Punica granatum L.) and in wood and bark of some tree species. Structurally, EA is a dilactone of hexahydroxydiphenic acid (HHDP), a dimeric gallic acid derivative, produced mainly by hydrolysis of ellagitannins, a widely distributed group of secondary metabolites. EA is attracting attention due to its antioxidant, anti-inflammatory, antimutagenic, and antiproliferative properties. EA displayed pharmacological effects in various in vitro and in vivo model systems. Furthermore, EA has also been well documented for its antiallergic, antiatherosclerotic, cardioprotective, hepatoprotective, nephroprotective, and neuroprotective properties. This review reports on the health-promoting effects of EA, along with possible mechanisms of its action in maintaining the health status, by summarizing the literature related to the therapeutic potential of this polyphenolic in the treatment of several human diseases.
Collapse
Affiliation(s)
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, Iquique 1110939, Chile
| | | | - Rodrigo Caroca
- Biotechnology and Genetic Engineering Group, Science and Technology Faculty, Universidad del Azuay, Av. 24 de Mayo 7-77, Cuenca, Ecuador
- Universidad del Azuay, Grupos Estratégicos de Investigación en Ciencia y Tecnología de Alimentos y Nutrición Industrial (GEICA-UDA), Av. 24 de Mayo 7-77, Apartado 01.01.981, Cuenca, Ecuador
| | - Marco A. Lazo-Vélez
- Universidad del Azuay, Grupos Estratégicos de Investigación en Ciencia y Tecnología de Alimentos y Nutrición Industrial (GEICA-UDA), Av. 24 de Mayo 7-77, Apartado 01.01.981, Cuenca, Ecuador
| | | | | | - Roman Lysiuk
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Petro Oliinyk
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Luigi De Masi
- National Research Council (CNR), Institute of Biosciences and Bioresources (IBBR), Via Università 133, 80055 Portici, Naples, Italy
| | - Paola Bontempo
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, 4070386 Concepción, Chile
| | - Sevgi Durna Daştan
- Department of Biology, Faculty of Science, Sivas Cumhuriyet University, 58140 Sivas, Turkey
- Beekeeping Development Application and Research Center, Sivas Cumhuriyet University, 58140 Sivas, Turkey
| | - Daniela Rigano
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano, 49 80131 Naples, Italy
| | - Michael Wink
- Heidelberg University, Institute of Pharmacy and Molecular Biotechnology, INF 329, D-69120 Heidelberg, Germany
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
22
|
Liu C, Fan F, Zhong L, Su J, Zhang Y, Tu Y. Elucidating the material basis and potential mechanisms of Ershiwuwei Lvxue Pill acting on rheumatoid arthritis by UPLC-Q-TOF/MS and network pharmacology. PLoS One 2022; 17:e0262469. [PMID: 35130279 PMCID: PMC8820630 DOI: 10.1371/journal.pone.0262469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/23/2021] [Indexed: 11/18/2022] Open
Abstract
Ershiwuwei Lvxue Pill (ELP, མགྲིན་མཚལ་ཉེར་ལྔ།), a traditional Tibetan medicine preparation, has been used hundreds of years for the clinical treatment of rheumatoid arthritis (RA) in the highland region of Tibet, China. Nevertheless, its chemical composition and therapeutic mechanism are unclear. This study aimed to uncover the potentially effective components of ELP and the pharmacological mechanisms against RA by combing UPLC-Q-TOF/MS and network pharmacology. In this study, 96 compounds of ELP were identified or tentatively characterized based on UPLC-Q-TOF/MS analysis. Then, a total of 22 potential bioactive compounds were screened by TCMSP with oral bioavailability and drug-likeness. Preliminarily, 10 crucial targets may be associated with RA through protein-protein interaction network analysis. The functional enrichment analysis indicated that ELP exerted anti-RA effects probably by synergistically regulating many biological pathways, such as PI3K-Akt, Cytokine-cytokine receptor interaction, JAK-STAT, MAPK, TNF, and Toll-like receptor signaling pathway. In addition, good molecular docking scores were highlighted between five promising bioactive compounds (ellagic acid, quercetin, kaempferol, galangin, coptisine) and five core targets (PTGS2, STAT3, VEGFA, MAPK3, TNF). Overall, ELP can exert its anti-RA activity via multicomponent, multitarget, and multichannel mechanisms of action. However, further studies are needed to validate the biological processes and effect pathways of ELP.
Collapse
Affiliation(s)
- Chuan Liu
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Fangfang Fan
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lu Zhong
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinsong Su
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Zhang
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ya Tu
- Development Research Center of Traditional Chinese Medicine, China Academy of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
23
|
Xiang Q, Li M, Wen J, Ren F, Yang Z, Jiang X, Chen Y. The bioactivity and applications of pomegranate peel extract: A review. J Food Biochem 2022; 46:e14105. [PMID: 35128669 DOI: 10.1111/jfbc.14105] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 12/13/2022]
Abstract
Pomegranate peel (PP) is a by-product in the processing of pomegranate products, which is usually discarded as a waste. However, a large number of researches have shown that pomegranate peel extract (PPE) is rich in a variety of phenolic substances, among which ellagic acid (EA), as one of the main active components, has significant biological activities, such as anti-oxidation, anti-tumor, anti-inflammatory, neuroprotection, anti-viral, and anti-bacterial. We analyzed the mechanism of EA's biological activity, and discussed its application in the food industry, for instance, food preservation, food additives, and functional foods. Combined with the research status of PPE, we discussed the limitations and development potential of PPE, in order to provide theoretical reference and scientific basis for the development and utilization of pomegranate by-products. PRACTICAL APPLICATIONS: Pomegranate peel (PP), the inedible part of the fruit, is usually treated as waste. In recent years, researchers have been committed to exploring various bioactive ingredients in PP and exploring its potential benefits to human health, which has far-reaching significance. In this paper, the chemical constituents of polyphenols in PP were reviewed, mainly focusing on the biological activity and mechanism of ellagic acid (EA). We reviewed the applications and invention patents of pomegranate peel extract (PPE) in food field, including food preservation, food additive, and functional foods, providing reference for the recycling and reuse of PP.
Collapse
Affiliation(s)
- Qiwen Xiang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Meifeng Li
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiayu Wen
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fajian Ren
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhou Yang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xingyue Jiang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Chen
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
24
|
SANTOS SOBRINHO ELIANEM, SANTOS HÉRCULESO, MARTINS ERNANER, FONSECA FRANCINESOUZAALVESDA, FARIAS LUCYANAC, AGUILAR CHARLESM, PEREIRA ULISSESA, NICOLAU JUNIOR NILSON, GOMES MATHEUSS, SOUZA CINTYANDE, RAVNJAK JOÃOMATHEUSA, PORTO RAPHAELR, ALMEIDA ANNACHRISTINADE. Protein-coding gene interaction network prediction of bioactive plant compound action against SARS-CoV-2: a novel hypothesis using bioinformatics analysis. AN ACAD BRAS CIENC 2022; 94:e20201380. [DOI: 10.1590/0001-3765202220201380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 03/23/2021] [Indexed: 11/23/2022] Open
|
25
|
Nirwana I, Munadziroh E, Yuliati A, Fadhila AI, Nurliana, Wardhana AS, Shariff KA, Surboyo MDC. Ellagic acid and hydroxyapatite promote angiogenesis marker in bone defect. J Oral Biol Craniofac Res 2022; 12:116-120. [PMID: 34840942 PMCID: PMC8605383 DOI: 10.1016/j.jobcr.2021.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/19/2021] [Accepted: 11/08/2021] [Indexed: 11/20/2022] Open
Abstract
The combination of hydroxyapatite and the herbal extract ellagic acid is expected to accelerate the bone healing process (osteogenesis) due to the extract's anti-inflammatory and antioxidant properties. The osteogenesis process is closely associated with angiogenesis markers, such as fibroblast growth factor 2 (FGF-2), vascular endothelial growth factor (VEGF) and alkali phosphatase (ALP). The objective of this study is to analyse the combination of ellagic acid and hydroxyapatite to promote FGF-2, VEGF and ALP expression as angiogenesis markers in a bone defect model. The research sample comprised 30 male Wistar rats with a defect introduced on the left femur; these were divided into three groups for treatment with ellagic acid and hydroxyapatite, hydroxyapatite and polyethylene glycol (PEG) (control). On days 7 and 14 days after treatment, the Wistar rats were euthanised, and the femoral bone tissue was removed for the immunohistochemical analysis of FGF-2, VEGF and ALP expression. FGF-2 and ALP expression increased in the group treated with ellagic acid and hydroxyapatite on days 7 and 14 post treatment (p < 0.05), and there was an increase in VEGF expression on day 7 post treatment (p < 0.05). The combination of ellagic acid and hydroxyapatite promoted FGF-2, VEGF and ALP expression as angiogenesis markers in the bone defect model.
Collapse
Affiliation(s)
- Intan Nirwana
- Department of Dental Material, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, 60132, Indonesia
| | - Elly Munadziroh
- Department of Dental Material, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, 60132, Indonesia
| | - Anita Yuliati
- Department of Dental Material, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, 60132, Indonesia
| | - Azalia Izzah Fadhila
- Bachelor of Dental Science, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, 60132, Indonesia
| | - Nurliana
- Bachelor of Dental Science, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, 60132, Indonesia
| | - Agung Satria Wardhana
- Department of Dental Material, Faculty of Dentistry, Universitas Lambung Mangkurat, Banjarmasin, Indonesia
| | - Khairul Anuar Shariff
- Department of Dental Material, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, 60132, Indonesia
- Biomaterial Niche Area, School of Material and Mineral Resource Enginering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Pulang Pinang, Malaysia
| | | |
Collapse
|
26
|
Song H, Wu H, Dong J, Huang S, Ye J, Liu R. Ellagic Acid Alleviates Rheumatoid Arthritis in Rats through Inhibiting MTA1/HDAC1-Mediated Nur77 Deacetylation. Mediators Inflamm 2021; 2021:6359652. [PMID: 34924813 PMCID: PMC8677414 DOI: 10.1155/2021/6359652] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 11/18/2021] [Indexed: 12/29/2022] Open
Abstract
Ellagic acid (EA) was reported to play protective roles in rheumatoid arthritis (RA). It was found that the level of metastasis-associated gene 1 (MTA1)/histone deacetylase 1 (HDAC1) protein complex was downregulated by polyphenols in several human disorders. Notably, inhibition of MTA1 or HDAC1 has anti-inflammatory effects on RA. Therefore, our study is aimed at investigating whether EA prevents RA progression through regulating the MTA1/HDAC1 complex. Herein, the human fibroblast-like synoviocyte (FLS) cell line MH7A was treated with TNF-α to induce an inflammation model in vitro and then incubated with different concentrations of EA. Western blot analysis showed that EA reduced MTA1 expression in a dose-dependent manner in MH7A cells. Then, TNF-α-treated MH7A cells were incubated with EA alone or together with MTA1 overexpression plasmid (pcDNA-MTA1), and we found that EA inhibited proliferation, inflammation cytokine levels, and oxidative stress marker protein levels and promoted apoptosis in MH7A cells, while MTA1 overexpression abolished these effects. Moreover, coimmunoprecipitation assay verified the interaction between MTA1 and HDAC1. EA downregulated the MTA1/HDAC1 complex in MH7A cells. MTA1 knockdown inhibited proliferation, inflammation, and oxidative stress and promoted apoptosis in MH7A cells, while HDAC1 overexpression reversed these effects. Moreover, chromatin immunoprecipitation assay indicated that EA inhibited HDAC1-mediated Nur77 deacetylation. Rescue experiments demonstrated that Nur77 knockdown reversed the effects of EA on MH7A cell biological behaviors. Additionally, EA treatment attenuated arthritis index, paw swelling, synovial hyperplasia, and inflammation in collagen-induced arthritis (CIA) rats. In conclusion, EA inhibited proliferation, inflammation, and oxidative stress and promoted apoptosis in MH7A cells and alleviated the severity of RA in CIA rats though downregulating MTA1/HDAC1 complex and promoting HDAC1 deacetylation-mediated Nur77 expression.
Collapse
Affiliation(s)
- Huanjin Song
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Hao Wu
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Jun Dong
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Sihua Huang
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Jintao Ye
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Ruoxi Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| |
Collapse
|
27
|
Senobari Z, Karimi G, Jamialahmadi K. Ellagitannins, promising pharmacological agents for the treatment of cancer stem cells. Phytother Res 2021; 36:231-242. [PMID: 34697838 DOI: 10.1002/ptr.7307] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 12/19/2022]
Abstract
Human tumors comprise subpopulations of cells called cancer stem cells (CSCs) that possess stemness properties. CSCs can initiate tumors and cause recurrence, metastasis and are also responsible for chemo- and radio-resistance. CSCs may use signaling pathways similar to normal stem cells, including Notch, JAK/STAT, Wnt and Hedgehog pathways. Ellagitannins (ETs) are a broad group of substances with chemopreventive and anticancer activities. The antitumor activity of ETs and their derivatives are mainly related to their antiinflammatory capacity. They are therefore able to modulate secretory growth factors and pro-inflammatory mediators such as IL-6, TGF-β, TNF-α, IL-1β and IFN-γ. Evidence suggests that ETs display their anticancer effect by targeting CSCs and disrupting stem cell signaling. However, there are still few studies in this field. Therefore, high-quality studies are needed to firmly establish the clinical efficacy of the ETs on CSCs. This paper reviews the structures, sources and pharmacokinetics of ETs. It also focuses on the function of ETs and their effects on CSCs-related cytokines and the relationship between ETs and signaling pathways in CSCs.
Collapse
Affiliation(s)
- Zohre Senobari
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khadijeh Jamialahmadi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
28
|
Carey AN, Pintea GI, Van Leuven S, Gildawie KR, Squiccimara L, Fine E, Rovnak A, Harrington M. Red raspberry ( Rubus ideaus) supplementation mitigates the effects of a high-fat diet on brain and behavior in mice. Nutr Neurosci 2021; 24:406-416. [PMID: 31328696 DOI: 10.1080/1028415x.2019.1641284] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
OBJECTIVES Research has shown that berries may have the ability to reverse, reduce, or slow the progression of behavioral dysfunction associated with aging and neurodegenerative disease. In contrast, high-energy and high-fat diets (HFD) may result in behavioral deficits like those seen in aging animals. This research examined whether red raspberry (Rubus ideaus) mitigates the effects of HFD on mouse brain and behavior. METHODS Eight-week-old mice consumed a HFD (60% calories from fat) or a control diet (CD) with and without 4% freeze-dried red raspberry (RB). Behavioral tests and biochemical assays of brain tissue and serum were conducted. RESULTS After 12 weeks on the diets, mice fed CD and HFD had impaired novel object recognition, but mice on the RB-supplemented diets did not. After approximately 20 weeks on the diets, mice fed HFD + RB had shorter latencies to find the escape hole in the Barnes maze than the HFD-fed mice. Interleukin (IL)-6 was significantly elevated in the cortex of mice fed HFD; while mice fed the CD, CD + RB, and HFD + RB did not show a similar elevation. There was also evidence of increased brain-derived neurotrophic factor (BDNF) in the brains of mice fed RB diets. This reduction in IL-6 and increase in BDNF may contribute to the preservation of learning and memory in HFD + RB mice. CONCLUSION This study demonstrates that RB may protect against the effects HFD has on brain and behavior; however, further research with human subjects is needed to confirm these benefits.
Collapse
Affiliation(s)
- Amanda N Carey
- Department of Psychology, College of Natural, Behavioral and Health Sciences, Simmons University (formerly Simmons College), Boston, MA, USA
| | - Giulia I Pintea
- Department of Psychology, College of Natural, Behavioral and Health Sciences, Simmons University (formerly Simmons College), Boston, MA, USA
| | - Shelby Van Leuven
- Department of Psychology, College of Natural, Behavioral and Health Sciences, Simmons University (formerly Simmons College), Boston, MA, USA
| | - Kelsea R Gildawie
- Department of Psychology, College of Natural, Behavioral and Health Sciences, Simmons University (formerly Simmons College), Boston, MA, USA
| | - Laura Squiccimara
- Department of Psychology, College of Natural, Behavioral and Health Sciences, Simmons University (formerly Simmons College), Boston, MA, USA
| | - Elizabeth Fine
- Department of Psychology, College of Natural, Behavioral and Health Sciences, Simmons University (formerly Simmons College), Boston, MA, USA
| | - Abigail Rovnak
- Department of Psychology, College of Natural, Behavioral and Health Sciences, Simmons University (formerly Simmons College), Boston, MA, USA
| | - Mark Harrington
- Department of Psychology, College of Natural, Behavioral and Health Sciences, Simmons University (formerly Simmons College), Boston, MA, USA
| |
Collapse
|
29
|
Lin C, Zou Z, Lei Z, Wang L, Song Y. Fluorescent metal-organic frameworks MIL-101(Al)-NH 2 for rapid and sensitive detection of ellagic acid. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 242:118739. [PMID: 32717527 DOI: 10.1016/j.saa.2020.118739] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/10/2020] [Accepted: 07/12/2020] [Indexed: 06/11/2023]
Abstract
Ellagic acid (EA) is a symmetric natural phenol bioactive compound present in fruits and nuts, and has attracted substantial interest worldwide owing to its beneficial health effects. Here, the exploration of luminescent metal-organic frameworks (MOFs) of MIL-101(Al)-NH2 (MIL = Materials of Institute Lavoisier) for rapid and sensitive sensing of EA in aqueous solution was reported initially. The porous MIL-101(Al)-NH2 MOFs was synthesized by solvent-thermal method with inexpensive 2-aminoterephthalic acid and aluminum salt, which exhibited uniform spherical crystals (~340 nm) and specific mesoporous structure (3.2 nm). The fluorescence intensity of MIL-101(Al)-NH2 at 425 nm showed a good linear relationship with EA concentration in the range of 0.15-100 μM. The detection limit was as low as 43.8 nM, the rapid response time was within 2 min, and the cost of detection was low. In addition, the "turn off" fluorescence probe could be utilized for visual detection of EA according to the color change under the UV lamp. Based on the Stern-Volmer equation, the quenching constants was decreased with the rise of temperature, which indicated that the probable quenching mechanism was static quenching. The nanoprobe was successfully used to detect EA in the cherry and serum samples. MIL-101(Al)-NH2 represents the first instance of MOFs-based fluorescent probe in EA detection. This work not only enriches the detection method of EA, but also expands the potential application of MIL MOFs in small molecules.
Collapse
Affiliation(s)
- Chunhua Lin
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, China; National Monosaccharide Chemical Synthesis Engineering Research Center, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, China.
| | - Zhifeng Zou
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, China
| | - Zhiwei Lei
- National Monosaccharide Chemical Synthesis Engineering Research Center, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, China
| | - Li Wang
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, China
| | - Yonghai Song
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, China
| |
Collapse
|
30
|
Kiasalari Z, Afshin-Majd S, Baluchnejadmojarad T, Azadi-Ahmadabadi E, Esmaeil-Jamaat E, Fahanik-Babaei J, Fakour M, Fereidouni F, Ghasemi-Tarie R, Jalalzade-Ogvar S, Khodashenas V, Sanaierad A, Zahedi E, Roghani M. Ellagic acid ameliorates neuroinflammation and demyelination in experimental autoimmune encephalomyelitis: Involvement of NLRP3 and pyroptosis. J Chem Neuroanat 2020; 111:101891. [PMID: 33217488 DOI: 10.1016/j.jchemneu.2020.101891] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 11/07/2020] [Accepted: 11/14/2020] [Indexed: 10/23/2022]
Abstract
Multiple sclerosis (MS) is presented as the most common autoimmune and demyelinating neurological disorder with incapacitating complications and with no definite therapy. Most treatments for MS mainly focus on attenuation of its severity and recurrence. To model MS reliably to study pathogenesis and efficacy of possible chemicals, experimental autoimmune encephalomyelitis (EAE) condition is induced in rodents. Ellagic acid is a neuroprotective polyphenol that can protect against demyelination. This study was planned and conducted to assess its possible beneficial effect in MOG-induced EAE model of MS with emphasis on uncovering its modes of action. Ellagic acid was given p.o. (at doses of 10 or 50 mg/kg/day) after development of clinical signs of MS to C57BL/6 mice immunized with MOG35-55. Results showed that ellagic acid can ameliorate severity of the disease and partially restore tissue level of TNFα, IL-6, IL-17A and IL-10. Besides, ellagic acid lowered tissue levels of NLRP3 and caspase 1 in addition to its mitigation of neuroinflammation, demyelination and axonal damage in spinal cord specimens of EAE group. As well, ellagic acid treatment prevented reduction of MBP and decreased GFAP and Iba1 immunoreactivity. Taken together, ellagic acid can decrease severity of EAE via amelioration of astrogliosis, astrocyte activation, demyelination, neuroinflammation and axonal damage that is partly related to its effects on NLRP3 inflammasome and pyroptotic pathway.
Collapse
Affiliation(s)
- Zahra Kiasalari
- Neurophysiology Research Center, Shahed University, Tehran, Iran
| | | | | | | | | | - Javad Fahanik-Babaei
- School of Medicine, Iran University of Medical Sciences and Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Marzieh Fakour
- Department of Physiology, School of Medicine, Shahed University, Tehran, Iran
| | - Farzane Fereidouni
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Vahid Khodashenas
- Department of Physiology, School of Medicine, Shahed University, Tehran, Iran
| | - Ashkan Sanaierad
- Department of Physiology, School of Medicine, Shahed University, Tehran, Iran
| | - Elham Zahedi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Roghani
- Neurophysiology Research Center, Shahed University, Tehran, Iran.
| |
Collapse
|
31
|
Guo Y, Zhao W. Hydrothermal synthesis of highly fluorescent nitrogen-doped carbon quantum dots with good biocompatibility and the application for sensing ellagic acid. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 240:118580. [PMID: 32554263 DOI: 10.1016/j.saa.2020.118580] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/18/2020] [Accepted: 06/05/2020] [Indexed: 05/25/2023]
Abstract
Blue emissive nitrogen-doped carbon quantum dots (N-CQDs) with a high quantum yield as high as 84.79% were successfully synthesized via the hydrothermal treatment of citric acid and diethylenetriamine in one pot. The as-prepared N-CQDs displayed excellent stability in high-salt conditions, good photostability, promising the N-CQDs as potential probes for selectively detecting ellagic acid with a linear range of 0.01-50 μM on the basis of inner filter effect. And the hydroponics experiment of gardenia with N-CQDs suggested the good biocompatibility of the N-CQDs, indicating the potential applications in biomedical fields.
Collapse
Affiliation(s)
- Yongming Guo
- Reading Academy, NUIST-UoR International Research Institute, Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Wei Zhao
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| |
Collapse
|
32
|
Azouz AA, Saleh E, Abo-Saif AA. Aliskiren, tadalafil, and cinnamaldehyde alleviate joint destruction biomarkers; MMP-3 and RANKL; in complete Freund's adjuvant arthritis model: Downregulation of IL-6/JAK2/STAT3 signaling pathway. Saudi Pharm J 2020; 28:1101-1111. [PMID: 32922141 PMCID: PMC7474170 DOI: 10.1016/j.jsps.2020.07.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/28/2020] [Indexed: 12/29/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune inflammatory disease, which is accompanied by progressive joint damage and disability. The intolerability of conventional antirheumatic drugs by some patients necessitates the search for effective antirheumatic agents having better tolerability. In the current work, we aimed to investigate the efficacy of cinnamaldehyde, tadalafil, and aliskiren as potential antirheumatic candidates and to explore their modulatory effects on joint destruction, inflammatory response, and intracellular signaling. Arthritis was induced in female Wistar rats by complete Freund's adjuvant (CFA) 0.4 ml s.c. on days 1, 4, and 7. Treated groups received their respective drugs, starting from day 13, daily for 3 weeks. Methotrexate and prednisolone were the standard antirheumatic drugs, while cinnamaldehyde, tadalafil, and aliskiren were the test agents. Treatment with cinnamaldehyde, tadalafil, or aliskiren reduced serum levels of rheumatoid factor, and pro-inflammatory cytokines; tumor necrosis factor-alpha and interleukin-6 (IL-6), along with elevated level of IL-10 which is an anti-inflammatory cytokine. Besides, cartilage and bone destruction biomarkers; matrix metalloproteinase-3 (MMP-3) and receptor activator of nuclear factor-kappa B ligand (RANKL); were significantly reduced after treatment with the test agents, which was further confirmed by histopathological investigation. The elevated protein expressions of phosphorylated-Janus kinase 2 (p-JAK2), phosphorylated-signal transducer and activator of transcription 3 (p-STAT3), and inducible nitric oxide synthase (iNOS) in articular tissue were markedly attenuated after treatment with cinnamaldehyde, tadalafil, or aliskiren, while that of endothelial nitric oxide synthase (eNOS) was greatly enhanced. In addition, oxidative stress and inflammatory markers such as malondialdehyde, nitric oxide, and myeloperoxidase were reduced in joint tissue after treatment with the test agents, while glutathione content was elevated. Furthermore, the renin inhibitor aliskiren produced effects close to those of the normal and methotrexate, the gold standard antirheumatic drug, in most of the measured parameters. Collectively, these findings led to the assumption that the downregulation of IL-6/JAK2/STAT3 signaling by cinnamaldehyde, tadalafil, and aliskiren could alleviate joint destruction by MMP-3 and RANKL, reduce iNOS, and enhance eNOS expressions. Moreover, aliskiren could be a promising therapeutic agent for RA, because of its ability to normalize most of the measured parameters after CFA-induced arthritis.
Collapse
Key Words
- Aliskiren
- CFA, complete Freund's adjuvant
- CFA-induced arthritis
- DMARD, disease-modifying antirheumatic drug
- GSH, reduced glutathione
- H&E, hematoxylin and eosin
- IL-10, interleukin-10
- IL-6, interleukin-6
- IL-6/JAK2/STAT3 signaling
- JAK2, Janus kinase 2
- MDA, malondialdehyde
- MMP-3
- MMP-3, matrix metalloproteinase-3
- MPO, myeloperoxidase
- NO, nitric oxide
- PDE, phosphodiesterase
- RA, rheumatoid arthritis
- RANKL
- RANKL, receptor activator of nuclear factor-kappa B ligand
- RAS, renin angiotensin system
- STAT3, signal transducer and activator of transcription 3
- TNF-α, tumor necrosis factor-alpha
- eNOS, endothelial nitric oxide synthase
- iNOS, inducible nitric oxide synthase
Collapse
Affiliation(s)
- Amany A Azouz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Esraa Saleh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt.,Operations Pharmacy, General Fayoum Hospital, Fayoum, Egypt
| | - Ali A Abo-Saif
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| |
Collapse
|
33
|
Christman LM, Gu L. Efficacy and mechanisms of dietary polyphenols in mitigating rheumatoid arthritis. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
34
|
Rusu ME, Simedrea R, Gheldiu AM, Mocan A, Vlase L, Popa DS, Ferreira IC. Benefits of tree nut consumption on aging and age-related diseases: Mechanisms of actions. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
35
|
Fikry EM, Gad AM, Eid AH, Arab HH. Caffeic acid and ellagic acid ameliorate adjuvant-induced arthritis in rats via targeting inflammatory signals, chitinase-3-like protein-1 and angiogenesis. Biomed Pharmacother 2019. [DOI: https://doi.org/10.1016/j.biopha.2018.12.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
36
|
Fikry EM, Gad AM, Eid AH, Arab HH. Caffeic acid and ellagic acid ameliorate adjuvant-induced arthritis in rats via targeting inflammatory signals, chitinase-3-like protein-1 and angiogenesis. Biomed Pharmacother 2019; 110:878-886. [PMID: 30562713 DOI: 10.1016/j.biopha.2018.12.041] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/21/2018] [Accepted: 12/07/2018] [Indexed: 02/05/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory arthropathy that principally attacks the joints. The present study aimed to explore the potential anti-arthritic effects of caffeic acid and ellagic acid in adjuvant-induced arthritis, compared to celecoxib. The current study also explored the underlying molecular mechanisms e.g., pro-inflammatory signals including chitinase-3-like protein-1 (CHI3L1); a glycoprotein that correlates with RA joint destruction besides angiogenesis, oxidative stres and apoptosis. Interestingly, caffeic and ellagic acids attenuated the severity of arthritis with comparable efficacy to celecoxib. Both agents effectively mitigated paw edema and inflammatory cell infiltration and protected the joint tissues against pannus formation along with cartilage and bone destruction. Notably, they also lowered the paw expression of NF-κB and the downstream effector CHI3L1 and its synthesis inducer IL-1β. They also lowered the levels of the tissue remodeling factor MMP-9 and the angiogenic signal VEGF in rat paws. Both agents also suppressed serum oxidative stress via diminishing lipid peroxides and nitric oxide together with augmentation of reduced glutathione in arthritic animals. Regarding apoptosis, they attenuated paw caspase-3 levels, favoring cell survival. Together, these favorable findings may advocate the use of caffeic and ellagic acids as adjunct modalities for the management of RA to mitigate joint damage.
Collapse
Affiliation(s)
- Ebtehal Mohammad Fikry
- Department of Pharmacology, National Organization for Drug Control and Research, NODCAR, Giza, Egypt
| | - Amany M Gad
- Department of Pharmacology, National Organization for Drug Control and Research, NODCAR, Giza, Egypt
| | - Ahmed H Eid
- Department of Pharmacology, National Organization for Drug Control and Research, NODCAR, Giza, Egypt
| | - Hany H Arab
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Biochemistry Division and GTMR Unit, Department of Pharmacology and Toxicology, Faculty of Pharmacy, Taif University, Taif, Saudi Arabia.
| |
Collapse
|
37
|
Akhtar S, Ismail T, Layla A. Pomegranate Bioactive Molecules and Health Benefits. BIOACTIVE MOLECULES IN FOOD 2019. [DOI: 10.1007/978-3-319-78030-6_78] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
38
|
Rahimi VB, Askari VR, Mousavi SH. Ellagic acid reveals promising anti-aging effects against d-galactose-induced aging on human neuroblastoma cell line, SH-SY5Y: A mechanistic study. Biomed Pharmacother 2018; 108:1712-1724. [DOI: 10.1016/j.biopha.2018.10.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/28/2018] [Accepted: 10/04/2018] [Indexed: 01/05/2023] Open
|
39
|
Ara T, Nakatani S, Kobata K, Sogawa N, Sogawa C. The Biological Efficacy of Natural Products against Acute and Chronic Inflammatory Diseases in the Oral Region. MEDICINES 2018; 5:medicines5040122. [PMID: 30428613 PMCID: PMC6313758 DOI: 10.3390/medicines5040122] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/08/2018] [Accepted: 11/08/2018] [Indexed: 01/31/2023]
Abstract
The oral inflammatory diseases are divided into two types: acute and chronic inflammatory diseases. In this review, we summarize the biological efficacy of herbal medicine, natural products, and their active ingredients against acute and chronic inflammatory diseases in the oral region, especially stomatitis and periodontitis. We review the effects of herbal medicines and a biscoclaurin alkaloid preparation, cepharamthin, as a therapy against stomatitis, an acute inflammatory disease. We also summarize the effects of herbal medicines and natural products against periodontitis, a chronic inflammatory disease, and one of its clinical conditions, alveolar bone resorption. Recent studies show that several herbal medicines such as kakkonto and ninjinto reduce LPS-induced PGE2 production by human gingival fibroblasts. Among herbs constituting these herbal medicines, shokyo (Zingiberis Rhizoma) and kankyo (Zingiberis Processum Rhizoma) strongly reduce PGE2 production. Moreover, anti-osteoclast activity has been observed in some natural products with anti-inflammatory effects used against rheumatoid arthritis such as carotenoids, flavonoids, limonoids, and polyphenols. These herbal medicines and natural products could be useful for treating oral inflammatory diseases.
Collapse
Affiliation(s)
- Toshiaki Ara
- Department of Dental Pharmacology, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri 399-0781, Japan.
| | - Sachie Nakatani
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan.
| | - Kenji Kobata
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan.
| | - Norio Sogawa
- Department of Dental Pharmacology, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri 399-0781, Japan.
| | - Chiharu Sogawa
- Department of Dental Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama 700-8525, Japan.
| |
Collapse
|
40
|
de Camargo AC, Schwember AR, Parada R, Garcia S, Maróstica MR, Franchin M, Regitano-d'Arce MAB, Shahidi F. Opinion on the Hurdles and Potential Health Benefits in Value-Added Use of Plant Food Processing By-Products as Sources of Phenolic Compounds. Int J Mol Sci 2018; 19:E3498. [PMID: 30404239 PMCID: PMC6275048 DOI: 10.3390/ijms19113498] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 12/23/2022] Open
Abstract
Plant foods, their products and processing by-products are well recognized as important sources of phenolic compounds. Recent studies in this field have demonstrated that food processing by-products are often richer sources of bioactive compounds as compared with their original feedstock. However, their final application as a source of nutraceuticals and bioactives requires addressing certain hurdles and challenges. This review discusses recent knowledge advances in the use of plant food processing by-products as sources of phenolic compounds with special attention to the role of genetics on the distribution and biosynthesis of plant phenolics, as well as their profiling and screening, potential health benefits, and safety issues. The potentialities in health improvement from food phenolics in animal models and in humans is well substantiated, however, considering the emerging market of plant food by-products as potential sources of phenolic bioactives, more research in humans is deemed necessary.
Collapse
Affiliation(s)
- Adriano Costa de Camargo
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Casilla 306-22, Santiago, Chile.
- Department of Food Science and Technology, Londrina State University, Londrina 86051-990, Parana State, Brazil.
- Department of Agri-Food Industry, Food & Nutrition, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba 13418-900, São Paulo State, Brazil.
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| | - Andrés R Schwember
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Casilla 306-22, Santiago, Chile.
| | - Roberto Parada
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Casilla 306-22, Santiago, Chile.
| | - Sandra Garcia
- Department of Food Science and Technology, Londrina State University, Londrina 86051-990, Parana State, Brazil.
| | - Mário Roberto Maróstica
- Department of Food and Nutrition, University of Campinas-UNICAMP, Campinas 13083-862, São Paulo State, Brazil.
| | - Marcelo Franchin
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas, Piracicaba 13414-903, São Paulo State, Brazil.
| | - Marisa Aparecida Bismara Regitano-d'Arce
- Department of Agri-Food Industry, Food & Nutrition, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba 13418-900, São Paulo State, Brazil.
| | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| |
Collapse
|
41
|
Ahmed OM, Soliman HA, Mahmoud B, Gheryany RR. Ulva lactuca hydroethanolic extract suppresses experimental arthritis via its anti-inflammatory and antioxidant activities. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2017. [DOI: 10.1016/j.bjbas.2017.04.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|