1
|
Jiang Z, Zhu X, Jiang H, Zhao D, Tian J. Relationship between prognostic nutritional index and asthma: a cross-sectional analysis. Front Nutr 2025; 12:1467270. [PMID: 39980673 PMCID: PMC11839445 DOI: 10.3389/fnut.2025.1467270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 01/29/2025] [Indexed: 02/22/2025] Open
Abstract
Background and objective Asthma is a chronic disease characterized by inflammation of the airways. The association between nutritional status, inflammation, and asthma has been well-documented, yet the relationship between the Prognostic Nutritional Index (PNI) and asthma remains unclear. This is a study to see whether there is a relationship between PNI and asthma prevalence. Methods The present study employed data from the National Health and Nutrition Examination Survey (NHANES) between 2017 and 2020, including a total of 7,869 adult participants were included in the analysis. Participants were categorized into four quartiles based on PNI levels. A multivariable regression model was employed for the purpose of evaluating the correlation between PNI and asthma. In order to ascertain the stability of the association across different populations, subgroup analyses were performed. Results Higher PNI levels were significantly associated with lower asthma prevalence. In the complete adjusted model, each additional unit of PNI was associated with a 3% reduction in the prevalence of asthma [0.97 (0.95, 0.99)]. Trend analysis indicated a significant negative correlation between PNI and asthma (p for trend = 0.0041). Subgroup analyses showed a consistent negative association across different populations. Conclusion The findings of our study indicated that lower PNI values were linked to an elevated odds prevalence of asthma. Early nutritional intervention and inflammation management in high-risk populations with low PNI may reduce the incidence and severity of asthma. Future prospective studies are needed to confirm this relationship.
Collapse
Affiliation(s)
- Zhimeng Jiang
- Graduate School of Hebei North University, Zhangjiakou, Hebei, China
- Department of Gastroenterology, Air Force Medical Center, Chinese People’s Liberation Army, Beijing, China
| | - Xingyu Zhu
- Graduate School of Hebei North University, Zhangjiakou, Hebei, China
- Department of Cardiovascular Medicine, Air Force Medical Center, Chinese People’s Liberation Army, Beijing, China
| | - Huixin Jiang
- Haiyuan College of Kunming Medical University, Kunming, Yunnan, China
| | - Donglin Zhao
- Graduate School of Hebei North University, Zhangjiakou, Hebei, China
- Department of Gastroenterology, Air Force Medical Center, Chinese People’s Liberation Army, Beijing, China
| | - Jianwei Tian
- Department of Cardiovascular Medicine, Air Force Medical Center, Chinese People’s Liberation Army, Beijing, China
| |
Collapse
|
2
|
Shin S, Jo H, Agura T, Jeong S, Ahn H, Pang S, Lee J, Park JH, Kim Y, Kang JS. Anti-Inflammatory Effects of Aptamin C in Pulmonary Fibrosis Induced by Bleomycin. Pharmaceuticals (Basel) 2024; 17:1577. [PMID: 39770419 PMCID: PMC11676684 DOI: 10.3390/ph17121577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/17/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: Vitamin C is a well-known antioxidant with antiviral, anticancer, and anti-inflammatory properties. However, its therapeutic applications are limited by rapid oxidation due to heat and light sensitivity. Aptamin C, which employs aptamers to bind vitamin C, has demonstrated enhanced stability and efficacy. This study investigates the potential of Aptamin C to inhibit the progression of pulmonary fibrosis, a prominent inflammatory lung disease with no effective treatment. Methods: Mice bearing bleomycin-induced pulmonary fibrosis were administered vitamin C or Aptamin C, and their weight changes and survival rates were monitored. Inflammatory cell infiltration was assessed in the bronchoalveolar lavage fluid (BALF), and the degree of alveolar fibrosis was measured by H&E and Masson's trichrome staining. To elucidate the mechanism of action of Aptamin C, Western blot analysis was performed in HaCaT and lung tissues from bleomycin-induced pulmonary fibrosis mice. Results: The Aptamin C-treated group showed a notably higher survival rate at 50%, whereas all subjects in the vitamin C-treated group died. Histological examination of lung tissue showed that inflammation was significantly suppressed in the Aptamin C-supplemented group compared to the vitamin C-supplemented group, with a 10% greater reduction in cell infiltrations, along with noticeably less tissue damage. Additionally, it was observed that Aptamin C increased SVCT-1 expression in the HaCaT cells and the lung tissues. Conclusions: Taken together, Aptamin C not only increases the stability of vitamin C but also induces an increase in SVCT-1 expression, facilitating greater vitamin C absorption into cells and tissues, thereby inhibiting the progression of symptoms and associated inflammatory responses in pulmonary fibrosis.
Collapse
Affiliation(s)
- Seulgi Shin
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (S.S.); (H.J.); (T.A.); (S.J.); (H.A.); (S.P.); (Y.K.)
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 08826, Republic of Korea
- Department of Research and Development, N Therapeutics Co., Ltd., Seoul 08813, Republic of Korea
| | - Hyejung Jo
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (S.S.); (H.J.); (T.A.); (S.J.); (H.A.); (S.P.); (Y.K.)
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 08826, Republic of Korea
| | - Tomoyo Agura
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (S.S.); (H.J.); (T.A.); (S.J.); (H.A.); (S.P.); (Y.K.)
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 08826, Republic of Korea
| | - Seoyoun Jeong
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (S.S.); (H.J.); (T.A.); (S.J.); (H.A.); (S.P.); (Y.K.)
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 08826, Republic of Korea
| | - Hyovin Ahn
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (S.S.); (H.J.); (T.A.); (S.J.); (H.A.); (S.P.); (Y.K.)
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 08826, Republic of Korea
| | - Soyoung Pang
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (S.S.); (H.J.); (T.A.); (S.J.); (H.A.); (S.P.); (Y.K.)
| | - June Lee
- Nexmos, Inc., Yongin-si 168267, Republic of Korea; (J.L.); (J.-H.P.)
| | - Jeong-Ho Park
- Nexmos, Inc., Yongin-si 168267, Republic of Korea; (J.L.); (J.-H.P.)
| | - Yejin Kim
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (S.S.); (H.J.); (T.A.); (S.J.); (H.A.); (S.P.); (Y.K.)
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 08826, Republic of Korea
| | - Jae Seung Kang
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (S.S.); (H.J.); (T.A.); (S.J.); (H.A.); (S.P.); (Y.K.)
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 08826, Republic of Korea
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
3
|
Zajac D, Wojciechowski P. The Role of Vitamins in the Pathogenesis of Asthma. Int J Mol Sci 2023; 24:ijms24108574. [PMID: 37239921 DOI: 10.3390/ijms24108574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/27/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Vitamins play a crucial role in the proper functioning of organisms. Disturbances of their levels, seen as deficiency or excess, enhance the development of various diseases, including those of the cardiovascular, immune, or respiratory systems. The present paper aims to summarize the role of vitamins in one of the most common diseases of the respiratory system, asthma. This narrative review describes the influence of vitamins on asthma and its main symptoms such as bronchial hyperreactivity, airway inflammation, oxidative stress, and airway remodeling, as well as the correlation between vitamin intake and levels and the risk of asthma in both pre- and postnatal life.
Collapse
Affiliation(s)
- Dominika Zajac
- Department of Respiration Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warszawa, Poland
| | - Piotr Wojciechowski
- Department of Respiration Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warszawa, Poland
| |
Collapse
|
4
|
Ghalibaf MHE, Kianian F, Beigoli S, Behrouz S, Marefati N, Boskabady M, Boskabady MH. The effects of vitamin C on respiratory, allergic and immunological diseases: an experimental and clinical-based review. Inflammopharmacology 2023; 31:653-672. [PMID: 36849854 PMCID: PMC9970132 DOI: 10.1007/s10787-023-01169-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 03/01/2023]
Abstract
Vitamin C is used in modern medicine supplements for treatment of various disorders associated with oxidative stress, inflammation and immune dysregulation. In this review article, experimental and clinical results regarding the effects of vitamin C on respiratory immunologic, and allergic diseases are reviewed. Various databases and appropriate keywords are used to search the effect of vitamin C on respiratory diseases until the end of May 2022. Books, theses and articles were included. These studies assessed the effects of vitamin C on respiratory disorders including asthma, chronic obstructive pulmonary disease (COPD), lung infection and lung cancer. Vitamin C showed relaxant effect on tracheal smooth muscle via various mechanisms. The preventive effects of vitamin C were mediated by antioxidant, immunomodulatory and anti-inflammatory mechanisms in the experimental animal models of different respiratory diseases. Some clinical studies also indicated the effect of vitamin C on lung cancer and lung infections. Therefore, vitamin C could be used a preventive and/or relieving therapy in respiratory diseases.
Collapse
Affiliation(s)
- Mohammad Hossein Eshaghi Ghalibaf
- Applied Biomedical Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Post Code 9177948564, IR, Iran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzaneh Kianian
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sima Beigoli
- Applied Biomedical Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Post Code 9177948564, IR, Iran
| | - Sepideh Behrouz
- Applied Biomedical Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Post Code 9177948564, IR, Iran
| | - Narges Marefati
- Department of Physiology and Medical Physics, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Marzie Boskabady
- Dental Materials Research Center and Department of Pediatric Dentistry, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pediatric Dentistry, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Post Code 9177948564, IR, Iran.
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Huang X, Zhang Y, Huang J, Gao W, Yongfang X, Zeng C, Gao C. The effect of FMT and vitamin C on immunity-related genes in antibiotic-induced dysbiosis in mice. PeerJ 2023; 11:e15356. [PMID: 37193034 PMCID: PMC10183171 DOI: 10.7717/peerj.15356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/14/2023] [Indexed: 05/18/2023] Open
Abstract
Antibiotics are double-edged swords. Although antibiotics are used to inhibit pathogenic bacteria, they also run the risk of destroying some of the healthy bacteria in our bodies. We examined the effect of penicillin on the organism through a microarray dataset, after which 12 genes related to immuno-inflammatory pathways were selected by reading the literature and validated using neomycin and ampicillin. The expression of genes was measured using qRT-PCR. Several genes were significantly overexpressed in antibiotic-treated mice, including CD74 and SAA2 in intestinal tissues that remained extremely expressed after natural recovery. Moreover, transplantation of fecal microbiota from healthy mice to antibiotic-treated mice was made, where GZMB, CD3G, H2-AA, PSMB9, CD74, and SAA1 were greatly expressed; however, SAA2 was downregulated and normal expression was restored, and in liver tissue, SAA1, SAA2, SAA3 were extremely expressed. After the addition of vitamin C, which has positive effects in several aspects, to the fecal microbiota transplantation, in the intestinal tissues, the genes that were highly expressed after the fecal microbiota transplantation effectively reduced their expression, and the unaffected genes remained normally expressed, but the CD74 gene remained highly expressed. In liver tissues, normally expressed genes were not affected, but the expression of SAA1 was reduced and the expression of SAA3 was increased. In other words, fecal microbiota transplantation did not necessarily bring about a positive effect of gene expression restoration, but the addition of vitamin C effectively reduced the effects of fecal microbiota transplantation and regulated the balance of the immune system.
Collapse
Affiliation(s)
- Xiaorong Huang
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Tele-communications, Chongqing, China
| | - Yv Zhang
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Tele-communications, Chongqing, China
| | - Junsong Huang
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Tele-communications, Chongqing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenli Gao
- Chongqing University of Posts and Telecommunications, Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing, China
| | - Xie Yongfang
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Tele-communications, Chongqing, China
| | - Chuisheng Zeng
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Tele-communications, Chongqing, China
| | - Chao Gao
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Tele-communications, Chongqing, China
| |
Collapse
|
6
|
Takkinsatian P, Mairiang D, Sangkanjanavanich S, Chiewchalermsri C, Tripipitsiriwat A, Sompornrattanaphan M. Dietary Factors Associated with Asthma Development: A Narrative Review and Summary of Current Guidelines and Recommendations. J Asthma Allergy 2022; 15:1125-1141. [PMID: 36046721 PMCID: PMC9420923 DOI: 10.2147/jaa.s364964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/15/2022] [Indexed: 11/24/2022] Open
Abstract
Asthma is a complex disease, caused by a combination of genetic and environmental factors. The prevalence of asthma is increasing too rapidly to be attributable to genetic factors alone. Thus, environmental factors are becoming increasingly recognized as the cause of asthma. Modifying these environmental factors may be a simple approach for asthma prevention. To date, dietary intervention is an interesting modifiable factor because it can be implemented at the population level. The modification of systemic inflammation, oxidation, and microbial composition might be a mechanistic basis for prevention. This review summarizes the mechanistic basis and evidence from clinical studies on the association between dietary factors and asthma development. We also summarize the recommendations from many organizations and regional guidelines to assist the practicing physician to improve patient care.
Collapse
Affiliation(s)
- Preyanit Takkinsatian
- Department of Pediatrics, Faculty of Medicine, Vajira Hospital, Navamindradhiraj University, Bangkok, Thailand
| | - Dara Mairiang
- Department of Pediatrics, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Sasipa Sangkanjanavanich
- Division of Allergy, Immunology, and Rheumatology, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Department of Medicine, Phyathai 2 International Hospital, Bangkok, Thailand
| | - Chirawat Chiewchalermsri
- Department of Medicine, Panyananthaphikkhu Chonprathan Medical Center, Srinakharinwirot University, Nonthaburi, Thailand
| | - Athiwat Tripipitsiriwat
- Division of Respiratory Disease and Tuberculosis, Department of Medicine, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Mongkhon Sompornrattanaphan
- Division of Allergy and Clinical Immunology, Department of Medicine, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
7
|
Allam VSRR, Chellappan DK, Jha NK, Shastri MD, Gupta G, Shukla SD, Singh SK, Sunkara K, Chitranshi N, Gupta V, Wich PR, MacLoughlin R, Oliver BGG, Wernersson S, Pejler G, Dua K. Treatment of chronic airway diseases using nutraceuticals: Mechanistic insight. Crit Rev Food Sci Nutr 2021; 62:7576-7590. [PMID: 33977840 DOI: 10.1080/10408398.2021.1915744] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Respiratory diseases, both acute and chronic, are reported to be the leading cause of morbidity and mortality, affecting millions of people globally, leading to high socio-economic burden for the society in the recent decades. Chronic inflammation and decline in lung function are the common symptoms of respiratory diseases. The current treatment strategies revolve around using appropriate anti-inflammatory agents and bronchodilators. A range of anti-inflammatory agents and bronchodilators are currently available in the market; however, the usage of such medications is limited due to the potential for various adverse effects. To cope with this issue, researchers have been exploring various novel, alternative therapeutic strategies that are safe and effective to treat respiratory diseases. Several studies have been reported on the possible links between food and food-derived products in combating various chronic inflammatory diseases. Nutraceuticals are examples of such food-derived products which are gaining much interest in terms of its usage for the well-being and better human health. As a consequence, intensive research is currently aimed at identifying novel nutraceuticals, and there is an emerging notion that nutraceuticals can have a positive impact in various respiratory diseases. In this review, we discuss the efficacy of nutraceuticals in altering the various cellular and molecular mechanisms involved in mitigating the symptoms of respiratory diseases.
Collapse
Affiliation(s)
- Venkata Sita Rama Raju Allam
- Department of Medical Biochemistry and Microbiology, Biomedical Centre (BMC), Uppsala University, Uppsala, Sweden
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University (IMU), Kuala Lumpur, Malaysia
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, Uttar Pradesh, India
| | - Madhur D Shastri
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania, Australia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Jaipur, India
| | - Shakti D Shukla
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI), University of Newcastle, New Lambton Heights, Newcastle, New South Wales, Australia
| | - Sachin K Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Krishna Sunkara
- Emergency Clinical Management, Intensive Care Unit, John Hunter Hospital, Newcastle, New South Wales, Australia
| | - Nitin Chitranshi
- Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, New South Wales, Australia
| | - Vivek Gupta
- Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, New South Wales, Australia
| | - Peter R Wich
- School of Chemical Engineering, University of New South Wales, Sydney, New South Wales, Australia.,Centre for Nanomedicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Ronan MacLoughlin
- Aerogen, IDA Business Park, Dangan, Galway, Ireland.,School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland.,School of Pharmacy and Pharmaceutical Sciences, Trinity College, Dublin, Ireland
| | - Brian Gregory George Oliver
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, Australia.,Woolcock Institute of Medical Research, The University of Sydney, Sydney, Australia
| | - Sara Wernersson
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Gunnar Pejler
- Department of Medical Biochemistry and Microbiology, Biomedical Centre (BMC), Uppsala University, Uppsala, Sweden.,Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, Australia
| |
Collapse
|
8
|
Two known therapies could be useful as adjuvant therapy in critical patients infected by COVID-19. REVISTA ESPAÑOLA DE ANESTESIOLOGÍA Y REANIMACIÓN (ENGLISH EDITION) 2020. [PMCID: PMC7203037 DOI: 10.1016/j.redare.2020.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Pneumonia caused by coronavirus, which originated in Wuhan, China, in late 2019, has been spread around the world already becoming a pandemic. Unfortunately, there is not yet a specific vaccine or effective antiviral drug for treating COVID-19. Many of these patients deteriorate rapidly and require intubation and are mechanically ventilated, which is causing the collapse of the health system in many countries due to lack of ventilators and intensive care beds. In this document we review two simple adjuvant therapies to administer, without side effects, and low cost that could be useful for the treatment of acute severe coronavirus infection associated with acute respiratory syndrome (SARS-CoV-2). Vitamin C, a potent antioxidant, has emerged as a relevant therapy due to its potential benefits when administered intravenous. The potential effect of vitamin C in reducing inflammation in the lungs could play a key role in lung injury caused by coronavirus infection. Another potential effective therapy is ozone: it has been extensively studied and used for many years and its effectiveness has been demonstrated so far in multiples studies. Nevertheless, our goal is not to make an exhaustive review of these therapies but spread the beneficial effects themselves. Obviously clinical trials are necessaries, but due to the potential benefit of these two therapies we highly recommended to add to the therapeutic arsenal.
Collapse
|
9
|
Hernández A, Papadakos PJ, Torres A, González DA, Vives M, Ferrando C, Baeza J. Two known therapies could be useful as adjuvant therapy in critical patients infected by COVID-19. REVISTA ESPANOLA DE ANESTESIOLOGIA Y REANIMACION 2020; 67:245-252. [PMID: 32303365 PMCID: PMC7156242 DOI: 10.1016/j.redar.2020.03.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pneumonia caused by coronavirus, which originated in Wuhan, China, in late 2019, has been spread around the world already becoming a pandemic. Unfortunately, there is not yet a specific vaccine or effective antiviral drug for treating COVID-19. Many of these patients deteriorate rapidly and require intubation and are mechanically ventilated, which is causing the collapse of the health system in many countries due to lack of ventilators and intensive care beds. In this document we review two simple adjuvant therapies to administer, without side effects, and low cost that could be useful for the treatment of acute severe coronavirus infection associated with acute respiratory syndrome (SARS-CoV-2). VitaminC, a potent antioxidant, has emerged as a relevant therapy due to its potential benefits when administered intravenous. The potential effect of vitaminC in reducing inflammation in the lungs could play a key role in lung injury caused by coronavirus infection. Another potential effective therapy is ozone: it has been extensively studied and used for many years and its effectiveness has been demonstrated so far in multiples studies. Nevertheless, our goal is not to make an exhaustive review of these therapies but spread the beneficial effects themselves. Obviously clinical trials are necessaries, but due to the potential benefit of these two therapies we highly recommended to add to the therapeutic arsenal.
Collapse
Affiliation(s)
- A Hernández
- Director Anaesthesia & ICU, Grupo Policlínica, Ibiza, Islas Baleares, España.
| | - P J Papadakos
- Director Critical Care Medicine, University of Rochester, Professor Anesthesia, Surgery, Neurology, and Neurosurgery, Rochester, Nueva York, Estados Unidos
| | - A Torres
- Senior Consultant in Respiratory and Intensive Care Unit, Servei de Pneumologia, Hospital Clínic, Universitat de Barcelona. IDIBAPS, CIBERES, ICREA, Barcelona, España
| | - D A González
- Consultant in Anaesthesia & ICU, Clínica Universitaria de Navarra, Pamplona, España
| | - M Vives
- Consultant in Anaesthesia & ICU, Hospital Universitari Dr. Josep Trueta, Girona, España
| | - C Ferrando
- Head of Surgical Intensive Care Unit, Hospital Clínic, Universitat de Barcelona. CIBERES, Barcelona, España
| | - J Baeza
- Vice president World Federation of Ozone Therapy. Presidente de la Sociedad Española de Ozonoterapia. Profesor de Anatomía humana, Facultad de Medicina, Universidad de Valencia, Valencia, España
| |
Collapse
|
10
|
Kianian F, Karimian SM, Kadkhodaee M, Takzaree N, Seifi B, Adeli S, Harati E, Sadeghipour HR. Combination of ascorbic acid and calcitriol attenuates chronic asthma disease by reductions in oxidative stress and inflammation. Respir Physiol Neurobiol 2019; 270:103265. [PMID: 31404684 DOI: 10.1016/j.resp.2019.103265] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 07/24/2019] [Accepted: 08/02/2019] [Indexed: 11/29/2022]
Abstract
Airway inflammation and oxidative stress are the two major characteristics of asthma pathogenesis. Therefore, this study evaluated the protective effects of ascorbic acid in combination with calcitriol on the oxidative damages and inflammation in asthma model. All animals, except in the control group, were sensitized and challenged with ovalbumin. One day after the last challenge, samples of bronchoalveolar lavage fluid was collected for the assessment of total white blood cell counts and differential count of white blood cell and plasma was used for the measurement of pro-oxidant/antioxidant balance level. Lung tissue samples were also stored for examining peribronchial inflammatory cell infiltration, phosphorylated nuclear factor-kappa B expression and measurement of malondialdehyde level. Induction of asthma caused significant increases in total white blood cell counts, percentage of neutrophils and eosinophils and a decrease in the percentage of lymphocytes. Moreover, asthma resulted in significant increases of peribronchial inflammatory cell infiltration, phosphorylated nuclear factor-kappa B expression and malondialdehyde level. However, no significant changes were observed in pro-oxidant/antioxidant balance level with the induction of asthma. Co-administration of low doses of ascorbic acid and calcitriol returned all to the levels measured before sensitization and challenge. Combination of low doses of ascorbic acid with calcitriol improves mouse asthma model by a possible additive effects through the decrease of oxidative stress and inflammation.
Collapse
Affiliation(s)
- Farzaneh Kianian
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Morteza Karimian
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehri Kadkhodaee
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasrin Takzaree
- Department of Anatomy and Histology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Behjat Seifi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Soheila Adeli
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Harati
- Iranian Center of Neurological Research, Neuroscience Institute, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Sadeghipour
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Berthon BS, Wood LG. Nutrition and respiratory health--feature review. Nutrients 2015; 7:1618-43. [PMID: 25751820 PMCID: PMC4377870 DOI: 10.3390/nu7031618] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 02/15/2015] [Accepted: 02/15/2015] [Indexed: 01/08/2023] Open
Abstract
Diet and nutrition may be important modifiable risk factors for the development, progression and management of obstructive lung diseases such as asthma and chronic obstructive pulmonary disease (COPD). This review examines the relationship between dietary patterns, nutrient intake and weight status in obstructive lung diseases, at different life stages, from in-utero influences through childhood and into adulthood. In vitro and animal studies suggest important roles for various nutrients, some of which are supported by epidemiological studies. However, few well-designed human intervention trials are available to definitively assess the efficacy of different approaches to nutritional management of respiratory diseases. Evidence for the impact of higher intakes of fruit and vegetables is amongst the strongest, yet other dietary nutrients and dietary patterns require evidence from human clinical studies before conclusions can be made about their effectiveness.
Collapse
Affiliation(s)
- Bronwyn S Berthon
- Centre for Asthma and Respiratory Diseases, Level 2, Hunter Medical Research Institute, University of Newcastle, Lot 1 Kookaburra Circuit, New Lambton Heights, NSW 2305, Australia.
| | - Lisa G Wood
- Centre for Asthma and Respiratory Diseases, Level 2, Hunter Medical Research Institute, University of Newcastle, Lot 1 Kookaburra Circuit, New Lambton Heights, NSW 2305, Australia.
| |
Collapse
|
12
|
Bansal P, Saw S, Govindaraj D, Arora N. Intranasal administration of a combination of choline chloride, vitamin C, and selenium attenuates the allergic effect in a mouse model of airway disease. Free Radic Biol Med 2014; 73:358-65. [PMID: 24905385 DOI: 10.1016/j.freeradbiomed.2014.05.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Revised: 05/01/2014] [Accepted: 05/07/2014] [Indexed: 02/07/2023]
Abstract
Respiratory allergic disease is an inflammatory condition accompanied by oxidative stress. Supplementation of an anti-inflammatory agent with antioxidants may have a therapeutic effect. In this study, the effects of choline chloride in combination with antioxidants were evaluated via the intranasal route in a mouse model of allergic airway disease. Balb/c mice were sensitized on days 0, 7, and 14 and challenged on days 25-30 with cockroach extract (CE) and with a booster challenge on day 38. They were treated with choline chloride (ChCl; 1mg/kg), vitamin C (Vit C; 308.33 mg/kg), and selenium (Se; 1mg/kg) alone or in combination via the intranasal route on days 31, 33, 35, 37, and 39. The mice were sacrificed on day 40 to collect blood, bronchoalveolar lavage fluid, lungs, and spleen. Mice immunized with CE showed a significant increase in airway hyperresponsiveness (AHR), lung inflammation, Th2 cytokines, and the oxidative stress markers intracellular reactive oxygen species and 8-isoprostanes compared to the phosphate-buffered saline control group. A significant decrease was observed in these parameters with all the treatments (p<0.01). The highest decrease was noticed in the ChCl+Vit C+Se-treated group, with AHR decreased to the normal level. This group also showed the highest decrease in airway inflammation (p<0.001), IL-4 and IL-5 (p<0.001), IgE and IgG1 (p<0.001), NF-κB (p<0.001), and 8-isoprostane levels (p<0.001). Glutathione peroxidase activity, which was decreased significantly in CE-immunized mice, was restored to normal levels in this group (p<0.001). IL-10 level was decreased in CE-immunized mice and was restored to normal by combination treatment. The combination treatment induced FOXP3(+) cells in splenocyte culture, responsible for the upregulation of IL-10. In conclusion, the combination of choline chloride, vitamin C, and selenium via the intranasal route reduces AHR, inflammation, and oxidative stress, probably by causing IL-10 production by FOXP3(+) cells, and possesses therapeutic potential against allergic airway disease.
Collapse
Affiliation(s)
- Preeti Bansal
- Allergy and Immunology Section, Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology, Delhi 110007, India; Department of Biotechnology, University of Pune, Ganeshkhind, Pune 411 007, India
| | - Sanjay Saw
- Allergy and Immunology Section, Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology, Delhi 110007, India; Department of Biotechnology, University of Pune, Ganeshkhind, Pune 411 007, India
| | - Dhanapal Govindaraj
- Allergy and Immunology Section, Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology, Delhi 110007, India
| | - Naveen Arora
- Allergy and Immunology Section, Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology, Delhi 110007, India.
| |
Collapse
|
13
|
Abstract
Diet changes can partly explain the high burden of asthma in industrialised nations. Findings from experimental studies have stimulated many observational studies of the association between vitamins (A, C, D, and E) or nutrients acting as methyl donors (folate, vitamin B12, and choline) and asthma. However, observational studies are susceptible to several sources of bias; well conducted randomised controlled trials (RCTs) are the gold standard to establish whether diet has an effect on asthma. Evidence from observational studies and a few RCTs strongly justifies ongoing and future RCTs in three areas: vitamin D for the prevention or treatment of asthma, choline supplementation as adjuvant treatment for asthma, and vitamin E to prevent the detrimental effects of air pollution in patients with asthma. At present, insufficient evidence exists to recommend supplementation with any vitamin or nutrient acting as a methyl donor to prevent or treat asthma.
Collapse
|
14
|
Seo JH, Kwon SO, Lee SY, Kim HY, Kwon JW, Kim BJ, Yu J, Kim HB, Kim WK, Jang GC, Song DJ, Shim JY, Oh SY, Hong SJ. Association of antioxidants with allergic rhinitis in children from seoul. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2012; 5:81-7. [PMID: 23450181 PMCID: PMC3579096 DOI: 10.4168/aair.2013.5.2.81] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 05/11/2012] [Accepted: 06/26/2012] [Indexed: 01/25/2023]
Abstract
Purpose The prevalence of allergic diseases has risen over the last few decades. Many factors, including environmental factors such as those related to diet, have been considered. Among dietary factors, intake of antioxidant-related nutrients has been associated with the risk of allergic disease. We investigated the association of antioxidant nutritional status with allergic rhinitis (AR) in Korean schoolchildren aged 6-12 years. Methods Subjects were 4,554 children in Seoul, Korea. The risk of allergic disease was measured using the Korean version of the International Study of Asthma and Allergies in Childhood, and dietary intake was measured by a semi-quantitative food frequency questionnaire. Intake of vitamins A (including retinol and β-carotene), C, and E was used in the analysis. Results Vitamin C intake was negatively associated with an increased risk of current symptoms (adjusted odds ratio, 0.886; 95% confidence interval, 0.806-0.973). There was no association between AR and intake of vitamin A, retinol, β-carotene, or vitamin E. Total serum IgE level and sensitization to allergen did not differ according to nutrient intake. Conclusions The group of children with increased vitamin C consumption had fewer AR symptoms, despite the lack of a difference in total serum IgE level or allergen sensitization. These findings suggest that nutrient intake, especially that of vitamin C, influences AR symptoms.
Collapse
Affiliation(s)
- Ju-Hee Seo
- Department of Pediatrics, Korea Cancer Center Hospital, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Daidzein attenuates inflammation and exhibits antifibrotic effect against Bleomycin-induced pulmonary fibrosis in Wistar rats. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.bionut.2011.09.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|