1
|
Manescu MD, Catalin B, Baldea I, Mateescu VO, Rosu GC, Boboc IKS, Istrate‐Ofiteru A, Liliac IM, Streba CT, Kumar‐Singh S, Pirici D. Aquaporin 4 modulation drives amyloid burden and cognitive abilities in an APPPS1 mouse model of Alzheimer's disease. Alzheimers Dement 2025; 21:e70164. [PMID: 40329616 PMCID: PMC12056304 DOI: 10.1002/alz.70164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/26/2025] [Accepted: 03/13/2025] [Indexed: 05/08/2025]
Abstract
INTRODUCTION Deficiency in the aquaporin-4 (AQP4) water channel has been linked to impaired amyloid beta (Aβ) clearance. However, a detailed morphopathological analysis of amyloid deposition following AQP4 therapeutic modulation remains unexplored. METHODS Two-month-old amyloid precursor protein presenilin 1 (APPPS1) mice were treated daily for 28 days with either the AQP4 facilitator N-(3-(Benzyloxy)pyridin-2-yl) benzene-sulfonamide (TGN-073) or the AQP4 inhibitor N-(1,3,4-thiadiazol-2-yl)pyridine-3-carboxamide dihydrochloride (TGN-020) (both at 200 mg/kg). Controls included vehicle-treated APPPS1 and WT C57BL/6J mice. Comprehensive histopathological, biochemical, and behavioral analyses were conducted. RESULTS Mice treated with AQP4 facilitator showed a significant reduction in total Aβ, fibrillar deposits, and soluble Aβ, while the AQP4 inhibitor caused a substantial increase in brain Aβ. AQP4-facilitator treatment also reduced Aβ40 levels and Aβ40/Aβ42 ratio, whereas the inhibitor treatment increased both Aβ40 and Aβ42. Additionally, facilitator-treated mice demonstrated reduced anxiety and improved memory performance. DISCUSSION These findings suggest that AQP4 modulation is a promising strategy to enhance Aβ clearance and a potential therapeutic target in Alzheimer's disease. HIGHLIGHTS Intramural periarterial drainage of the interstitial fluid mediated by aquaporin-4 (AQP4) is a key element that ensures clearance of catabolites/Aβ peptide from within the brain parenchyma. Inhibition of AQP4 in an APPPS1 mouse model of AD leads to increased amyloid deposition and deficient behavior compared to untreated transgenic animals. Pharmaceutical facilitation of AQP4 in the same APPPS1 mouse model leads to a massive decrease in amyloid burden and improves the behavioral performance of the animals compared to untreated control APPPS1 mice.
Collapse
Affiliation(s)
| | - Bogdan Catalin
- Department of PhysiologyUniversity of Medicine and Pharmacy of CraiovaCraiovaRomania
| | - Ioana Baldea
- Department of PhysiologyIuliu Haţieganu University of Medicine and PharmacyCluj‐NapocaRomania
| | | | | | | | | | - Ilona Mihaela Liliac
- Department of HistologyUniversity of Medicine and Pharmacy of CraiovaCraiovaRomania
| | - Costin Teodor Streba
- Department of PulmonologyUniversity of Medicine and Pharmacy of CraiovaCraiovaRomania
| | - Samir Kumar‐Singh
- Laboratory of Cell Biology and Histology, Molecular Pathology Group, Faculty of Medical and Health SciencesUniversity of AntwerpAntwerpBelgium
| | - Daniel Pirici
- Department of HistologyUniversity of Medicine and Pharmacy of CraiovaCraiovaRomania
| |
Collapse
|
2
|
The Water Transport System in Astrocytes–Aquaporins. Cells 2022; 11:cells11162564. [PMID: 36010640 PMCID: PMC9406552 DOI: 10.3390/cells11162564] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/26/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Highlights (AQPs) are transmembrane proteins responsible for fast water movement across cell membranes, including those of astrocytes. The expression and subcellular localization of AQPs in astrocytes are highly dynamic under physiological and pathological conditions. Besides their primary function in water homeostasis, AQPs participate in many ancillary functions including glutamate clearance in tripartite synapses and cell migration.
Abstract Astrocytes have distinctive morphological and functional characteristics, and are found throughout the central nervous system. Astrocytes are now known to be far more than just housekeeping cells in the brain. Their functions include contributing to the formation of the blood–brain barrier, physically and metabolically supporting and communicating with neurons, regulating the formation and functions of synapses, and maintaining water homeostasis and the microenvironment in the brain. Aquaporins (AQPs) are transmembrane proteins responsible for fast water movement across cell membranes. Various subtypes of AQPs (AQP1, AQP3, AQP4, AQP5, AQP8 and AQP9) have been reported to be expressed in astrocytes, and the expressions and subcellular localizations of AQPs in astrocytes are highly correlated with both their physiological and pathophysiological functions. This review describes and summarizes the recent advances in our understanding of astrocytes and AQPs in regard to controlling water homeostasis in the brain. Findings regarding the features of different AQP subtypes, such as their expression, subcellular localization, physiological functions, and the pathophysiological roles of astrocytes are presented, with brain edema and glioma serving as two representative AQP-associated pathological conditions. The aim is to provide a better insight into the elaborate “water distribution” system in cells, exemplified by astrocytes, under normal and pathological conditions.
Collapse
|
3
|
Abstract
Structurally, aquaporins (AQPs) are small channel proteins with monomers of ~ 30 kDa that are assembled as tetramers to form pores on cell membranes. Aquaporins mediate the conduction of water but at times also small solutes including glycerol across cell membranes and along osmotic gradients. Thirteen isoforms of AQPs have been reported in mammalian cells, and several of these are likely expressed in platelets. Osmotic swelling mediated by AQP1 sustains the calcium entry required for platelet phosphatidylserine exposure and microvesiculation, through calcium permeable stretch-activated or mechanosensitive cation channels. Notably, deletion of AQP1 diminishes platelet procoagulant membrane dynamics in vitro and arterial thrombosis in vivo, independent of platelet granule secretion and without affecting hemostasis. Water entry into platelets promotes procoagulant activity, and AQPs may also be critical for the initiation and progression of venous thrombosis. Platelet AQPs may therefore represent valuable targets for future development of a new class of antithrombotics, namely, anti-procoagulant antithrombotics, that are mechanistically distinct from current antithrombotics. However, the structure of AQPs does not make for easy targeting of these channels, hence they remain elusive drug targets. Nevertheless, thrombosis data in animal models provide compelling reasons to continue the pursuit of AQP-targeted antithrombotics. In this review, we discuss the role of aquaporins in platelet secretion, aggregation and procoagulation, the challenge of drugging AQPs, and the prospects of targeting AQPs for arterial and venous antithrombosis.
Collapse
Affiliation(s)
- Ejaife O Agbani
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Alastair W Poole
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, England, UK
| |
Collapse
|
4
|
Koike S, Tanaka Y, Morishita Y, Ishibashi K. Effects of osmolality on the expression of brain aquaporins in AQP11-null mice. Biochimie 2021; 188:2-6. [PMID: 33794341 DOI: 10.1016/j.biochi.2021.03.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 10/21/2022]
Abstract
Water transport in the brain is tightly controlled by blood-brain-barrier (BBB) composed of capillary endothelial cells expressing AQP1/AQP11 and glial foot processes expressing AQP4. Here we examined each AQP mRNA expression in acute hyponatremic and hypernatremic mouse models of wild type (WT) and AQP11 KO mice (KO). The expressions of AQP1, AQP4 and AQP11 mRNAs were quantified by real-time qRT-PCR analysis of whole brain RNA. Acute hyponatremia enhanced AQP4 expression without changing AQP1 expression in KO, whereas it did not change the expression of all AQPs in WT. On the other hand, acute hypernatremia increased AQP4 but decreased AQP1 expression by half in KO, whereas it decreased AQP1 and AQP11 by half without changing AQP4 expression in WT. Enhanced AQP4 expression by osmotic challenges with sodium in KO seems to be a compensation for the loss of AQP11. A stronger hypertonic stimulation with mannitol decreased all AQPs by 30-80% in WT. Since AQP4 plays an important role in the regulation of brain edema at BBB, the results suggest that AQP11 may also be involved in the osmotic regulation of the brain.
Collapse
Affiliation(s)
- Shin Koike
- Department of Analytical Chemistry, School of Pharmacy, Meiji Pharmaceutical University, Tokyo, Japan
| | - Yasuko Tanaka
- Department of Pathophysiology, School of Pharmacy, Meiji Pharmaceutical University, Tokyo, Japan
| | - Yoshiyuki Morishita
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Kenichi Ishibashi
- Department of Pathophysiology, School of Pharmacy, Meiji Pharmaceutical University, Tokyo, Japan.
| |
Collapse
|
5
|
Ludwig HC, Dreha-Kulaczewski S, Bock HC. Neurofluids-Deep inspiration, cilia and preloading of the astrocytic network. J Neurosci Res 2021; 99:2804-2821. [PMID: 34323313 DOI: 10.1002/jnr.24935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/15/2021] [Accepted: 07/13/2021] [Indexed: 01/20/2023]
Abstract
With the advent of real-time MRI, the motion and passage of cerebrospinal fluid can be visualized without gating and exclusion of low-frequency waves. This imaging modality gives insights into low-volume, rapidly oscillating cardiac-driven movement as well as sustained, high-volume, slowly oscillating inspiration-driven movement. Inspiration means a spontaneous or artificial increase in the intrathoracic dimensions independent of body position. Alterations in thoracic diameter enable the thoracic and spinal epidural venous compartments to be emptied and filled, producing an upward surge of cerebrospinal fluid inside the spine during inspiration; this surge counterbalances the downward pooling of venous blood toward the heart. Real-time MRI, as a macroscale in vivo observation method, could expand our knowledge of neurofluid dynamics, including how astrocytic fluid preloading is adjusted and how brain buoyancy and turgor are maintained in different postures and zero gravity. Along with these macroscale findings, new microscale insights into aquaporin-mediated fluid transfer, its sensing by cilia, and its tuning by nitric oxide will be reviewed. By incorporating clinical knowledge spanning several disciplines, certain disorders-congenital hydrocephalus with Chiari malformation, idiopathic intracranial hypertension, and adult idiopathic hydrocephalus-are interpreted and reviewed according to current concepts, from the basics of the interrelated systems to their pathology.
Collapse
Affiliation(s)
- Hans C Ludwig
- Division of Pediatric Neurosurgery, Department of Neurosurgery, University Medical Center Göttingen, Göttingen, Germany
| | - Steffi Dreha-Kulaczewski
- Division of Pediatric Neurology, Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, Göttingen, Germany
| | - Hans C Bock
- Division of Pediatric Neurosurgery, Department of Neurosurgery, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
6
|
Portela LM, Santos SA, Constantino FB, Camargo AC, Colombelli KT, Fioretto MN, Barquilha CN, Périco LL, Hiruma-Lima CA, Scarano WR, Zambrano E, Justulin LA. Increased oxidative stress and cancer biomarkers in the ventral prostate of older rats submitted to maternal malnutrition. Mol Cell Endocrinol 2021; 523:111148. [PMID: 33387600 DOI: 10.1016/j.mce.2020.111148] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/05/2020] [Accepted: 12/27/2020] [Indexed: 02/07/2023]
Abstract
The concept of Developmental Origins of Health and Disease (DOHaD) states that exposure to malnutrition early in life increase the incidence of non-communicable chronic diseases throughout the lifespan. In this study, a reduction in serum testosterone and an increase in estrogen levels were shown in older rats born to protein malnourished dams (6% protein in the diet) during gestation and lactation. Intraprostatic levels of reduced glutathione were decreased, while tissue expression of glutathione S-transferase pi and sulfiredoxin-1 were increased in these animals. Strong immunostaining for alfametilacil CoA racemase (AMACR), vascular endothelial growth factor-A (VEGF-A), and aquaporin-1 (AQP1) was also observed. In silico analysis confirmed commonly deregulated proteins in the ventral prostate of old rats and patients with prostate cancer. In conclusion, the increase in oxidative stress associated with an imbalance of sex hormones may contribute to prostate carcinogenesis in offspring, highlighting early-life malnutrition as a key risk factor for this malignance.
Collapse
Affiliation(s)
- Luiz Mf Portela
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Sérgio Aa Santos
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Flavia B Constantino
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Ana Cl Camargo
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Ketlin T Colombelli
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Matheus N Fioretto
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Caroline N Barquilha
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Larissa L Périco
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil; Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Clélia A Hiruma-Lima
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Wellerson R Scarano
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Elena Zambrano
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Luís A Justulin
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil.
| |
Collapse
|
7
|
Jiang Y, Wang C, Ma R, Zhao Y, Ma X, Wan J, Li C, Chen F, Fang F, Li M. Aquaporin 1 mediates early responses to osmotic stimuli in endothelial cells via the calmodulin pathway. FEBS Open Bio 2021; 11:75-84. [PMID: 33125833 PMCID: PMC7780103 DOI: 10.1002/2211-5463.13020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/30/2020] [Accepted: 09/07/2020] [Indexed: 01/19/2023] Open
Abstract
The aquaporins (AQPs) are a family of integral membrane proteins which play critical roles in controlling transcellular water movement in various tissues throughout the body. AQP1 helps mediate the cellular response to osmotic stress and tissue water permeability. However, the mechanism by which AQP1 mediates changes in cell volume is not completely clear. Here, we investigated how AQP1 responds to and controls cell volume upon osmotic stimuli during the early phase after the immediate response. Cells overexpressing AQP1 were exposed to hypotonic or hypertonic medium in the presence or absence of staurosporine or W-7 hydrochloride, and fluorescence imaging was performed at 0, 5, 10, and 15 min later. Osmotic stimuli induced redistribution of AQP1 into the cell membrane, hypotonic stimuli caused cell enlargement, and hypertonic stimuli induced a reduction in cell size, which was blocked by T157A/T239A mutations. Changes in cell size induced by osmotic stimuli were blocked by an antagonist of calmodulin kinase, W-7 hydrochloride, but not by the PKC inhibitor staurosporine. These results suggest that calmodulin kinase regulates AQP1 activity during the early response to osmotic stimuli.
Collapse
Affiliation(s)
- Yong Jiang
- Department of Laboratory MedicineJilin Medical UniversityChina
| | - Chengqi Wang
- Department of Clinical MedicineJilin Medical UniversityChina
| | - Rui Ma
- Department of Laboratory MedicineJilin Medical UniversityChina
| | - Ying Zhao
- Department of CardiologyJilin Central HospitalChina
| | - Xinyue Ma
- Department of Laboratory MedicineJilin Medical UniversityChina
| | - Jiaxin Wan
- Department of Laboratory MedicineJilin Medical UniversityChina
| | - Chunxiang Li
- Department of Laboratory MedicineJilin Medical UniversityChina
| | - Fanghao Chen
- Department of Clinical MedicineJilin Medical UniversityChina
| | - Fang Fang
- Department of Laboratory MedicineJilin Medical UniversityChina
| | - Mingguang Li
- Department of Laboratory MedicineJilin Medical UniversityChina
| |
Collapse
|
8
|
General Study and Gene Expression Profiling of Endotheliocytes Cultivated on Electrospun Materials. MATERIALS 2019; 12:ma12244082. [PMID: 31817735 PMCID: PMC6947544 DOI: 10.3390/ma12244082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/20/2019] [Accepted: 12/03/2019] [Indexed: 12/27/2022]
Abstract
Endothelization of the luminal surface of vascular grafts is required for their long-term functioning. Here, we have cultivated human endothelial cells (HUVEC) on different 3D matrices to assess cell proliferation, gene expression and select the best substrate for endothelization. 3D matrices were produced by electrospinning from solutions of poly(D,L-lactide-co-glycolide) (PLGA), polycaprolactone (PCL), and blends of PCL with gelatin (Gl) in hexafluoroisopropanol. Structure and surface properties of 3D matrices were characterized by SEM, AFM, and sessile drop analysis. Cell adhesion, viability, and proliferation were studied by SEM, Alamar Blue staining, and 5-ethynyl-2’-deoxyuridine (EdU) assay. Gene expression profiling was done on an Illumina HiSeq 2500 platform. Obtained data indicated that 3D matrices produced from PCL with Gl and treated with glutaraldehyde provide the most suitable support for HUVEC adhesion and proliferation. Transcriptome sequencing has demonstrated a minimal difference of gene expression profile in HUVEC cultivated on the surface of these matrices as compared to tissue culture plastic, thus confirming these matrices as the best support for endothelization.
Collapse
|
9
|
Chen CY, Liao PL, Tsai CH, Chan YJ, Cheng YW, Hwang LL, Lin KH, Yen TL, Li CH. Inhaled gold nanoparticles cause cerebral edema and upregulate endothelial aquaporin 1 expression, involving caveolin 1 dependent repression of extracellular regulated protein kinase activity. Part Fibre Toxicol 2019; 16:37. [PMID: 31619255 PMCID: PMC6796418 DOI: 10.1186/s12989-019-0324-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 09/27/2019] [Indexed: 01/13/2023] Open
Abstract
Background Gold nanoparticles (Au-NPs) have extensive applications in electronics and biomedicine, resulting in increased exposure and prompting safety concerns for human health. After absorption, nanoparticles enter circulation and effect endothelial cells. We previously showed that exposure to Au-NPs (40–50 nm) collapsed endothelial tight junctions and increased their paracellular permeability. Inhaled nanoparticles have gained significant attention due to their biodistribution in the brain; however, little is known regarding their role in cerebral edema. The present study investigated the expression of aquaporin 1 (AQP1) in the cerebral endothelial cell line, bEnd.3, stimulated by Au-NPs. Results We found that treatment with Au-NPs induced AQP1 expression and increased endothelial permeability to water. Au-NP exposure rapidly boosted the phosphorylation levels of focal adhesion kinase (FAK) and AKT, increased the accumulation of caveolin 1 (Cav1), and reduced the activity of extracellular regulated protein kinases (ERK). The inhibition of AKT (GDC-0068) or FAK (PF-573228) not only rescued ERK activity but also prevented AQP1 induction, whereas Au-NP-mediated Cav1 accumulation remained unaltered. Neither these signaling molecules nor AQP1 expression responded to Au-NPs while Cav1 was silenced. Inhibition of ERK activity (U0126) remarkably enhanced Cav1 and AQP1 expression in bEnd.3 cells. These data demonstrate that Au-NP-mediated AQP1 induction is Cav1 dependent, but requires the repression on ERK activity. Mice receiving intranasally administered Au-NPs displayed cerebral edema, significantly augmented AQP1 protein levels; furthermore, mild focal lesions were observed in the cerebral parenchyma. Conclusions These data suggest that the subacute exposure of nanoparticles might induce cerebral edema, involving the Cav1 dependent accumulation on endothelial AQP1.
Collapse
Affiliation(s)
- Ching-Yi Chen
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 110, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Po-Lin Liao
- School of Pharmacy, Taipei Medical University, Taipei, Taiwan.,Institute of Food Safety and Health Risk Assessment, School of Pharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Chi-Hao Tsai
- Institute of Food Safety and Health Risk Assessment, School of Pharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Yen-Ju Chan
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 110, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Wen Cheng
- School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Ling-Ling Hwang
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 110, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kuan-Hung Lin
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei city, Taiwan
| | - Ting-Ling Yen
- Department of Medical Research, Cathay General Hospital, Taipei, 22174, Taiwan
| | - Ching-Hao Li
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 110, Taiwan. .,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
10
|
Huang Y, Li SN, Zhou XY, Zhang LX, Chen GX, Wang TH, Xia QJ, Liang N, Zhang X. The Dual Role of AQP4 in Cytotoxic and Vasogenic Edema Following Spinal Cord Contusion and Its Possible Association With Energy Metabolism via COX5A. Front Neurosci 2019; 13:584. [PMID: 31258460 PMCID: PMC6587679 DOI: 10.3389/fnins.2019.00584] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 05/23/2019] [Indexed: 02/05/2023] Open
Abstract
Spinal cord edema, mainly including vasogenic and cytotoxic edema, influences neurological outcome after spinal cord contusion (SCC). Aquaporin 4 (AQP4) is the most ubiquitous water channel in the central nervous system (CNS), which is a rate-limiting factor in vasogenic edema expressing in brain injury, and it contributes to the formation of cytotoxic edema locating in astrocytes. However, little is known about the regulatory mechanism of AQP4 within vasogenic and cytotoxic edema in SCC, and whether the regulation mechanism of AQP4 is related to Cytochrome coxidase (COX5A) affecting energy metabolism. Therefore, the SCC model is established by Allen’s method, and the degree of edema and neuronal area is measured. The motor function of rats is evaluated by the Basso, Beattie, and Bresnahan (BBB) scoring system. Meanwhile, AQP4 and COX5A are detected by real-time quantitative PCR (qRT-PCR) and western blot (WB). The localization of targeted protein is exhibited by immunohistochemical staining (IHC) and immunofluorescence (IF). Additionally, the methodology of AQP4 lentivirus-mediated RNA interference (AQP4-RNAi) is used to reveal the effect on edema of SCC and the regulating molecular mechanism. Firstly, we observe that the tissue water content increases after SCC and decreases after the peak value of tissue water content at 3 days (P < 0.05) with abundant expression of AQP4 protein locating around vascular endothelial cells (VECs), which suggests that the increasing AQP4 promotes water reabsorption and improves vasogenic edema in the early stage of SCC. However, the neuronal area is larger than in the sham group in the 7 days (P < 0.05) with the total water content of spinal cord decrease. Meanwhile, AQP4 migrates from VECs to neuronal cytomembrane, which indicates that AQP4 plays a crucial role in aggravating the formation and development of cytotoxic edema in the middle stages of SCC. Secondly, AQP4-RNAi is used to elucidate the mechanism of AQP4 to edema of SCC. The neuronal area shrinks and the area of cytotoxic edema reduces after AQP4 downregulation. The BBB scores are significantly higher than in the vector group after AQP4-RNAi at 5, 7, and 14 (P < 0.05). There is a relationship between AQP4 and COX5A shown by bioinformatics analysis. After AQP4 inhibition, the expression of COX5A is significantly upregulated in the swelling astrocytes. Therefore, the inhibition of AQP4 expression reduces cytotoxic edema in SCC and improves motor function, which may be associated with upregulation of COX5A via affecting energy metabolism. Moreover, it is not clear how the inhibition of AQP4 directly causes the upregulation of COX5A.
Collapse
Affiliation(s)
- Yuan Huang
- Clinical Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Sheng-Nan Li
- Center for Experimental Technology of Preclinical Medicine, Chengdu Medical College, Chengdu, China
| | - Xiu-Ya Zhou
- Center for Experimental Technology of Preclinical Medicine, Chengdu Medical College, Chengdu, China
| | | | - Gang-Xian Chen
- Center for Experimental Technology of Preclinical Medicine, Chengdu Medical College, Chengdu, China
| | - Ting-Hua Wang
- Institute of Neuroscience, Kunming Medical University, Kunming, China.,Institute of Neurological Diseases, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qing-Jie Xia
- Institute of Neurological Diseases, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Nan Liang
- Center for Experimental Technology of Preclinical Medicine, Chengdu Medical College, Chengdu, China
| | - Xiao Zhang
- Center for Experimental Technology of Preclinical Medicine, Chengdu Medical College, Chengdu, China
| |
Collapse
|
11
|
Tong F, Zou Y, Liang Y, Lei H, Lopsong T, Liu Y, Le Grange JM, He G, Zhou Y. The Water Diffusion of Brain Following Hypoglycemia in Rats – A Study with Diffusion Weighted Imaging and Neuropathologic Analysis. Neuroscience 2019; 409:58-68. [DOI: 10.1016/j.neuroscience.2019.04.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 01/26/2023]
|
12
|
Colombelli KT, Santos SAA, Camargo ACL, Constantino FB, Barquilha CN, Rinaldi JC, Felisbino SL, Justulin LA. Impairment of microvascular angiogenesis is associated with delay in prostatic development in rat offspring of maternal protein malnutrition. Gen Comp Endocrinol 2017; 246:258-269. [PMID: 28041790 DOI: 10.1016/j.ygcen.2016.12.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 12/13/2016] [Accepted: 12/28/2016] [Indexed: 10/20/2022]
Abstract
Experimental data demonstrated the negative impact of maternal protein malnutrition (MPM) on rat prostate development, but the mechanism behind the impairment of prostate growth has not been well understood. Male Sprague Dawley rats, borned to dams fed a normal protein diet (CTR group, 17% protein diet), were compared with those borned from dams fed a low protein diet (6% protein diet) during gestation (GLP group) or gestation and lactation (GLLP). The ventral prostate lobes (VP) were removed at post-natal day (PND) 10 and 21, and analyzed via different methods. The main findings were low birth weight, a reduction in ano-genital distance (AGD, a testosterone-dependent parameter), and an impairment of prostate development. A delay in prostate morphogenesis was associated with a reduced testosterone levels and angiogenic process through downregulation of aquaporin-1 (AQP-1), insulin/IGF-1 axis and VEGF signaling pathway. Depletion of the microvascular network, which occurs in parallel to the impairment of proliferation and differentiation of the epithelial cells, affects the bidirectional flux between blood vessels impacting prostatic development. In conclusion, our data support the hypothesis that a reduction in microvascular angiogenesis, especially in the subepithelial compartment, is associated to the impairment of prostate morphogenesis in the offspring of MPM dams.
Collapse
Affiliation(s)
- Ketlin T Colombelli
- Department of Morphology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Sérgio A A Santos
- Department of Morphology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Ana C L Camargo
- Department of Morphology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Flávia B Constantino
- Department of Morphology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Caroline N Barquilha
- Department of Morphology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Jaqueline C Rinaldi
- Department of Morphology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Sérgio L Felisbino
- Department of Morphology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Luis A Justulin
- Department of Morphology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil.
| |
Collapse
|
13
|
Jiang Y, Liu H, Liu WJ, Tong HB, Chen CJ, Lin FG, Zhuo YH, Qian XZ, Wang ZB, Wang Y, Zhang P, Jia HL. Endothelial Aquaporin-1 (AQP1) Expression Is Regulated by Transcription Factor Mef2c. Mol Cells 2016; 39:292-298. [PMID: 26923194 PMCID: PMC4844935 DOI: 10.14348/molcells.2016.2223] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 11/25/2015] [Accepted: 11/26/2015] [Indexed: 11/30/2022] Open
Abstract
Aquaporin 1 (AQP1) is expressed in most microvasculature endothelial cells and forms water channels that play major roles in a variety of physiologic processes. This study aimed to delineate the transcriptional regulation of AQP1 by Mef2c in endothelial cells. Mef2c cooperated with Sp1 to activate human AQP1 transcription by binding to its proximal promoter in human umbilical cord vein endothelial cells (HUVEC). Over-expression of Mef2c, Sp1, or Mef2c/Sp1 increased HUVEC migration and tube-forming ability, which can be abolished AQP1 knockdown. These data indicate that AQP1 is a direct target of Mef2c in regulating angiogenesis and vasculogenesis of endothelial cells.
Collapse
Affiliation(s)
- Yong Jiang
- Medical Examination College, Jilin Medical University, People’s
Republic of China
| | - He Liu
- Medical Examination College, Jilin Medical University, People’s
Republic of China
| | - Wen-jing Liu
- Medical Examination College, Jilin Medical University, People’s
Republic of China
| | - Hai-bin Tong
- Life Science Research Center, Beihua University, Jilin, People’s
Republic of China
| | - Chang-jun Chen
- Medical Examination College, Jilin Medical University, People’s
Republic of China
| | - Fu-gui Lin
- Medical Examination College, Jilin Medical University, People’s
Republic of China
| | - Yan-hang Zhuo
- Medical Examination College, Jilin Medical University, People’s
Republic of China
| | - Xiao-zhen Qian
- Medical Examination College, Jilin Medical University, People’s
Republic of China
| | - Zeng-bin Wang
- Medical Examination College, Jilin Medical University, People’s
Republic of China
| | - Yu Wang
- Medical Examination College, Jilin Medical University, People’s
Republic of China
| | - Peng Zhang
- Medical Examination College, Jilin Medical University, People’s
Republic of China
| | - Hong-liang Jia
- Medical Examination College, Jilin Medical University, People’s
Republic of China
| |
Collapse
|
14
|
Jia SW, Liu XY, Wang SC, Wang YF. Vasopressin Hypersecretion-Associated Brain Edema Formation in Ischemic Stroke: Underlying Mechanisms. J Stroke Cerebrovasc Dis 2016; 25:1289-300. [PMID: 27068863 DOI: 10.1016/j.jstrokecerebrovasdis.2016.02.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 01/21/2016] [Accepted: 02/01/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Brain edema formation is a major cause of brain damages and the high mortality of ischemic stroke. The aim of this review is to explore the relationship between ischemic brain edema formation and vasopressin (VP) hypersecretion in addition to the oxygen and glucose deprivation and the ensuing reperfusion injury. METHODS Pertinent studies involving ischemic stroke, brain edema formation, astrocytes, and VP were identified by a search of the PubMed and the Web of Science databases in January 2016. Based on clinical findings and reports of animal experiments using ischemic stroke models, this systematic review reanalyzes the implication of individual reports in the edema formation and then establishes the inherent links among them. RESULTS This systematic review reveals that cytotoxic edema and vasogenic brain edema in classical view are mainly under the influence of a continuous malfunction of astrocytic plasticity. Adaptive VP secretion can modulate membrane ion transport, water permeability, and blood-brain barrier integrity, which are largely via changing astrocytic plasticity. Maladaptive VP hypersecretion leads to disruptions of ion and water balance across cell membranes as well as the integrity of the blood-brain barrier. This review highlights our current understandings of the cellular mechanisms underlying ischemic brain edema formation and its association with VP hypersecretion. CONCLUSIONS VP hypersecretion promotes brain edema formation in ischemic stroke by disrupting hydromineral balance in the neurovascular unit; suppressing VP hypersecretion has the potential to alleviate ischemic brain edema.
Collapse
Affiliation(s)
- Shu-Wei Jia
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Xiao-Yu Liu
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Stephani C Wang
- Department of Surgery, Albany Medical Center, Albany, New York
| | - Yu-Feng Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China.
| |
Collapse
|
15
|
QIN LIJUAN, JIA YONGSEN, ZHANG YIBING, WANG YINHUAN. Interleukin-1β induces the upregulation of caveolin-1 expression in a rat brain tumor model. Biomed Rep 2016; 4:433-436. [PMID: 27073627 PMCID: PMC4812313 DOI: 10.3892/br.2016.618] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 02/18/2016] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to investigate the expression of caveolin-1 in rat brain glioma tissue, and to determine whether interleukin-1β (IL-1β) has a role in this process. Using glioma cells, a tumor-burdened rat model was established, and the expression of caveolin-1 protein in the tumor sites was significantly increased following intracarotid infusion of IL-1β (3.7 ng/kg/min), as indicated by western blot analysis. The maximum value of the caveolin-1 expression was observed in tumor-burdened rats after 60 min of IL-1β perfusion, and which was significantly enhanced by vascular endothelial growth factor (VEGF). In addition, VEGF also significantly increased IL-1β-induced blood tumor barrier (BTB) permeability. The results suggest that the IL-1β-induced BTB permeability increase may be associated with the expression of caveolin-1 protein, and VEGF may be involved in this process.
Collapse
Affiliation(s)
- LI-JUAN QIN
- Department of Physiology, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China
| | - YONG-SEN JIA
- Department of Chinese Medicine, College of Traditional Chinese Medicine, North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China
| | - YI-BING ZHANG
- Department of Physiology, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China
| | - YIN-HUAN WANG
- Department of Physiology, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China
| |
Collapse
|
16
|
Kaur C, Rathnasamy G, Ling EA. The Choroid Plexus in Healthy and Diseased Brain. J Neuropathol Exp Neurol 2016; 75:198-213. [DOI: 10.1093/jnen/nlv030] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
17
|
miR-320a affects spinal cord edema through negatively regulating aquaporin-1 of blood-spinal cord barrier during bimodal stage after ischemia reperfusion injury in rats. BMC Neurosci 2016; 17:10. [PMID: 26850728 PMCID: PMC4744445 DOI: 10.1186/s12868-016-0243-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 01/25/2016] [Indexed: 01/19/2023] Open
Abstract
Background Spinal cord edema is a serious complication and pathophysiological change after ischemia reperfusion (IR) injury. It has been demonstrated closely associated with bimodal disruption of blood–spinal cord barrier (BSCB) in our previous work. Aquaporin (AQP)1 plays important but contradictory roles in water homeostasis. Recently, microRNAs (miRs) effectively regulate numerous target mRNAs during ischemia. However, whether miRs are able to protect against dimodal disruption of BSCB by regulating perivascular AQP1 remains to be elucidated.
Results Spinal water content and EB extravasation were suggested as a bimodal distribution in directly proportion to AQP1, since all maximal changes were detected at 12 and 48 h after reperfusion. Further TEM and double immunofluorescence showed that former disruption of BSCB at 12 h was attributed to cytotoxic edema by up-regulated AQP1 expressions in astrocytes, whereas the latter at 48 h was mixed with vasogenic edema with both endothelial cells and astrocytes involvement. Microarray analysis revealed that at 12 h post-injury, ten miRs were upregulated (>2.0 fold) and seven miRs were downregulated (<0.5 fold) and at 48 h, ten miRs were upregulated and eleven were downregulated compared to Sham-operated controls. Genomic screening and luciferase assays identified that miR-320a was a potential modulator of AQP1 in spinal cord after IR in vitro. In vivo, compared to rats in IR and negative control group, intrathecal infusion of miR-320a mimic attenuated IR-induced lower limb motor function deficits and BSCB dysfunction as decreased EB extravasation and spinal water content through down-regulating AQP1 expressions, whereas pretreated with miR-320a AMO reversed above effects.
Conclusion These findings indicate miR-320a directly and functionally affects spinal cord edema through negatively regulating AQP1 of BSCB after IR.
Collapse
|
18
|
Henker C, Kriesen T, Fürst K, Goody D, Glass Ä, Pützer BM, Piek J. Effect of 10 different polymorphisms on preoperative volumetric characteristics of glioblastoma multiforme. J Neurooncol 2015; 126:585-92. [PMID: 26603163 DOI: 10.1007/s11060-015-2005-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 11/19/2015] [Indexed: 01/09/2023]
Abstract
There is a distinct diversity between the appearance of every glioblastoma multiforme (GBM) on pretreatment magnetic resonance imaging (MRI) with a potential impact on clinical outcome and survival of the patients. The object of this study was to determine the impact of 10 different single nucleotide polymorphisms (SNPs) on various volumetric parameters in patients harboring a GBM. We prospectively analyzed 20 steroid-naïve adult patients who had been treated for newly diagnosed GBM. The volumetry was performed using MRI with the help of a semiautomated quantitative software measuring contrast enhancing tumor volume including necrosis, central necrosis alone and peritumoral edema (PTE). We calculated ratios between the tumor volume and edema (ETR), respectively necrosis (NTR). SNP analysis was done using genomic DNA extracted from peripheral blood genotyped via PCR and sequencing. There was a strong correlation between tumor volume and PTE (p < 0.001), necrosis (p < 0.001) and NTR (p = 0.003). Age and sex had no influence on volumetric data. The Aquaporin 4-31G > A SNP had a significant influence on the ETR (p = 0.042) by decreasing the measured edema compared with the tumor volume. The Interleukin 8-251A > T SNP was significantly correlated with an increased tumor (p = 0.048), PTE (p = 0.033) and necrosis volume (p = 0.028). We found two SNPs with a distinct impact on pretreatment tumor characteristics, presenting a potential explanation for the individual diversity of GBM appearance on MRI and influence on survival.
Collapse
Affiliation(s)
- Christian Henker
- Department of Neurosurgery, University Hospital Rostock, Schillingallee 35, 18057, Rostock, Germany.
| | - Thomas Kriesen
- Department of Neurosurgery, University Hospital Rostock, Schillingallee 35, 18057, Rostock, Germany
| | - Katharina Fürst
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Schillingallee 69, 18057, Rostock, Germany
| | - Deborah Goody
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Schillingallee 69, 18057, Rostock, Germany
| | - Änne Glass
- Institute for Biostatistics and Informatics in Medicine, Rostock University Medical Center, Ernst-Heydemann-Str. 8, 18057, Rostock, Germany
| | - Brigitte M Pützer
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Schillingallee 69, 18057, Rostock, Germany
| | - Jürgen Piek
- Department of Neurosurgery, University Hospital Rostock, Schillingallee 35, 18057, Rostock, Germany
| |
Collapse
|
19
|
Jiang Y, Wang HY, Zheng S, Mu SQ, Ma MN, Xie X, Zhang YY, Zhang CX, Cai JH. Cardioprotective effect of valsartan in mice with short-term high-salt diet by regulating cardiac aquaporin 1 and angiogenic factor expression. Cardiovasc Pathol 2015; 24:224-229. [PMID: 25659450 DOI: 10.1016/j.carpath.2014.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 12/11/2014] [Accepted: 12/19/2014] [Indexed: 11/22/2022] Open
Abstract
Hypertension is the most common risk factor for various cardiovascular and cerebrovascular diseases that affects approximately 61 million, or 25% of the population in United States. The dietary salt intake is one of the most important but modifiable factors for hypertension. In the current study, we aim to elucidate the role of aquaporin 1 in high-salt-induced hypertension and cardiac injuries and whether angiotensin II receptor blocker valsartan could ameliorate the effect of high salt on blood pressure. Mice were fed with normal diet, high-salt diet in the presence or absence of valsartan for 4 weeks. The body weight gain, feeding behavior, blood pressure, and cardiac pathology changes were monitored after 4 weeks. The expression of aquaporin 1, vascular endothelial growth factor, transforming growth factor β1, and basic fibroblast growth factor were analyzed using quantitative real-time polymerase chain reaction, Western blot, and immunohistochemical staining. Valsartan partially reversed the effects of high-salt diet on hypertension, cardiac injuries such as fibrosis and inflammatory cell infiltration, and inhibition of aquaporin 1 and angiogenic factors; valsartan alone did not exert such effects. The current data demonstrated that the reduction of cardiac aquaporin 1 and angiogenic factor expression level might be associated with high-salt-induced hypertension and cardiac injuries in mice, which could be ameliorated by angiotensin II receptor blocker treatment.
Collapse
Affiliation(s)
- Yong Jiang
- Laboratory Medical College, Jilin Medical College, Jilin, PR China.
| | - Hui-Yan Wang
- Laboratory Medical College, Jilin Medical College, Jilin, PR China
| | - Sheng Zheng
- Department of Applied Chemistry and Biological Engineering, Northeast Dianli University, Jilin, PR China
| | - Shang-Qiang Mu
- Department of Surgery, Jilin Medical College, Jilin, PR China
| | - Meng-Ni Ma
- Laboratory Medical College, Jilin Medical College, Jilin, PR China
| | - Xin Xie
- Laboratory Medical College, Jilin Medical College, Jilin, PR China
| | - Yang-Yang Zhang
- Laboratory Medical College, Jilin Medical College, Jilin, PR China
| | - Chun-Xue Zhang
- Laboratory Medical College, Jilin Medical College, Jilin, PR China
| | - Jian-Hui Cai
- Department of Surgery, Jilin Medical College, Jilin, PR China.
| |
Collapse
|
20
|
Assentoft M, Larsen BR, MacAulay N. Regulation and Function of AQP4 in the Central Nervous System. Neurochem Res 2015; 40:2615-27. [PMID: 25630715 DOI: 10.1007/s11064-015-1519-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 01/08/2015] [Accepted: 01/12/2015] [Indexed: 01/09/2023]
Abstract
Aquaporin 4 (AQP4) is the predominant water channel in the mammalian brain and is mainly expressed in the perivascular glial endfeet at the brain-blood interface. Based on studies on AQP4(-/-) mice, AQP4 has been assigned physiological roles in stimulus-induced K(+) clearance, paravascular fluid flow, and brain edema formation. Conflicting data have been presented on the role of AQP4 in K(+) clearance and associated extracellular space shrinkage and on the stroke-induced alterations of AQP4 expression levels during edema formation, raising questions about the functional importance of AQP4 in these (patho)physiological aspects. Phosphorylation-dependent gating of AQP4 has been proposed as a regulatory mechanism for AQP4-mediated osmotic water transport. This paradigm was, however, recently challenged by experimental evidence and molecular dynamics simulations. Regulatory patterns and physiological roles for AQP4 thus remain to be fully explored.
Collapse
Affiliation(s)
- Mette Assentoft
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, Bldg. 12.6, 2200, Copenhagen, Denmark
| | - Brian Roland Larsen
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, Bldg. 12.6, 2200, Copenhagen, Denmark
| | - Nanna MacAulay
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, Bldg. 12.6, 2200, Copenhagen, Denmark.
| |
Collapse
|
21
|
Qiu B, Li X, Sun X, Wang Y, Jing Z, Zhang X, Wang Y. Overexpression of aquaporin‑1 aggravates hippocampal damage in mouse traumatic brain injury models. Mol Med Rep 2014; 9:916-22. [PMID: 24430824 DOI: 10.3892/mmr.2014.1899] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 01/10/2014] [Indexed: 11/05/2022] Open
Abstract
'Secondary insult' following primary traumatic brain injury (TBI), including ischemia and edema, may aggravate brain impairments and affect the outcomes. The hippocampus is particularly sensitive to ischemia or edema due to its selective vulnerability, as neural cells of the hippocampus may be more prone to abnormal function or cell death in response to ischemia and edema. Aquaporin‑1 (AQP‑1) was reported to be associated with cerebral edema; however, the expression and role of AQP‑1 in hippocampal edema following TBI have seldom been investigated. In the current study, BALB/c mouse closed craniocerebral injury models were established and the changes of AQP‑1 expression in hippocampi of mouse models following TBI were investigated. Neurological function and edema formation of the models were evaluated and the apoptotic hippocampal cells were then stained in situ and detected, followed by determination of AQP‑1 expression in the hippocampus using immunohistochemistry and western blot analysis. As a result, the majority of mice in the TBI group were severely injured and hippocampal edema was confirmed. The apoptotic cells increased significantly in the hippocampi of mice in the TBI group compared with those in the sham group (P<0.01) and the apoptotic rate increased gradually in a time‑dependent manner. The expression levels of AQP‑1 in the hippocampi of mice were markedly higher in the TBI group than in the sham group (P<0.05) at various time points and AQP‑1 expression levels peaked one day following TBI. These results indicate that upregulation of AQP‑1 may participate in edema formation and delayed cell death of the hippocampus following TBI and may also be a novel therapeutic target to protect the hippocampus from secondary injury following TBI.
Collapse
Affiliation(s)
- Bo Qiu
- Department of Neurosurgery, First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xinguo Li
- Department of Neurosurgery, First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xiyang Sun
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, P.R. China
| | - Yong Wang
- Department of Neurosurgery, First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Zhitao Jing
- Department of Neurosurgery, First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xu Zhang
- Liaoning Centers for Diseases Control and Prevention, Shenyang, Liaoning 110005, P.R. China
| | - Yunjie Wang
- Department of Neurosurgery, First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
22
|
Yi SS, Kim HJ, Do SG, Lee YB, Ahn HJ, Hwang IK, Yoon YS. Arginine vasopressin (AVP) expressional changes in the hypothalamic paraventricular and supraoptic nuclei of stroke-prone spontaneously hypertensive rats. Anat Cell Biol 2012; 45:114-20. [PMID: 22822466 PMCID: PMC3398173 DOI: 10.5115/acb.2012.45.2.114] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 05/29/2012] [Accepted: 05/30/2012] [Indexed: 12/02/2022] Open
Abstract
Arginine vasopressin (AVP) is a neuropeptide with vasoconstrictive, antidiuretic, cardiovascular regulative and hepatic glycogenolysis effects, that also affects other behaviors including modulating learning. A number of studies on AVP regulation have been conducted in various metabolic diseases (disorders). In this study, the immunoreactivities of AVP in the paraventricular nucleus (PVN) and supraoptic nucleus (SON) and mRNA expressions in the hypothalamus were investigated by immunohistochemistry and quantitative real-time PCR (RT-qPCR) in stroke-prone spontaneously hypertensive rats at different ages (i.e., at postnatal months [PM] 1, 8, and 12). Blood glucose levels in the PM 8 group were higher than in the other groups. However, cresyl violet positive neurons were detected in the PVN and SON of all animals, and numbers of cresyl violet positive neurons were similar in all aged groups. In addition, AVP immunoreactivity was detected in the PVN and SON of all age groups, and AVP immunoreactivity and mRNA expression levels were found to be increased in proportion to age by immunohistochemistry and RT-qPCR. These results suggest that the diabetic condition is temporally generated after hypertension has developed. Furthermore, our findings suggest that increased AVP expressions in the hypothalamic PVN and SON are associated with hypertension by age.
Collapse
Affiliation(s)
- Sun Shin Yi
- Department of Biomedical Laboratory Science, College of Biomedical Sciences, Soonchunhyang University, Asan, Korea
| | | | | | | | | | | | | |
Collapse
|
23
|
Brites D. The evolving landscape of neurotoxicity by unconjugated bilirubin: role of glial cells and inflammation. Front Pharmacol 2012; 3:88. [PMID: 22661946 PMCID: PMC3361682 DOI: 10.3389/fphar.2012.00088] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 04/23/2012] [Indexed: 12/13/2022] Open
Abstract
Unconjugated hyperbilirubinemia is a common condition in the first week of postnatal life. Although generally harmless, some neonates may develop very high levels of unconjugated bilirubin (UCB), which may surpass the protective mechanisms of the brain in preventing UCB accumulation. In this case, both short-term and long-term neurodevelopmental disabilities, such as acute and chronic UCB encephalopathy, known as kernicterus, or more subtle alterations defined as bilirubin-induced neurological dysfunction (BIND) may be produced. There is a tremendous variability in babies' vulnerability toward UCB for reasons not yet explained, but preterm birth, sepsis, hypoxia, and hemolytic disease are comprised as risk factors. Therefore, UCB levels and neurological abnormalities are not strictly correlated. Even nowadays, the mechanisms of UCB neurotoxicity are still unclear, as are specific biomarkers, and little is known about lasting sequelae attributable to hyperbilirubinemia. On autopsy, UCB was shown to be within neurons, neuronal processes, and microglia, and to produce loss of neurons, demyelination, and gliosis. In isolated cell cultures, UCB was shown to impair neuronal arborization and to induce the release of pro-inflammatory cytokines from microglia and astrocytes. However, cell dependent sensitivity to UCB toxicity and the role of each nerve cell type remains not fully understood. This review provides a comprehensive insight into cell susceptibilities and molecular targets of UCB in neurons, astrocytes, and oligodendrocytes, and on phenotypic and functional responses of microglia to UCB. Interplay among glia elements and cross-talk with neurons, with a special emphasis in the UCB-induced immunostimulation, and the role of sepsis in BIND pathogenesis are highlighted. New and interesting data on the anti-inflammatory and antioxidant activities of different pharmacological agents are also presented, as novel and promising additional therapeutic approaches to BIND.
Collapse
Affiliation(s)
- Dora Brites
- Neuron Glia Biology in Health and Disease Unit, Research Institute for Medicines and Pharmaceutical Sciences, Faculty of Pharmacy, University of Lisbon Lisbon, Portugal
| |
Collapse
|