1
|
Yue H, Liu C, Han Y, Zhuang Z, Yu H, Wang Z, Sun C, Im WT, Jin F. Preparation of minor ginsenosides C-K and C-Mx from protopanaxadiol ginsenosides of American ginseng leaves by a enzyme from Aspergillus sp.agl-84 strain. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
2
|
Wang M, Li H, Liu W, Cao H, Hu X, Gao X, Xu F, Li Z, Hua H, Li D. Dammarane-type leads panaxadiol and protopanaxadiol for drug discovery: Biological activity and structural modification. Eur J Med Chem 2020; 189:112087. [PMID: 32007667 DOI: 10.1016/j.ejmech.2020.112087] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/14/2019] [Accepted: 01/20/2020] [Indexed: 12/13/2022]
Abstract
Based on the definite therapeutic benefits, such as neuroprotective, cardioprotective, anticancer, anti-diabetic and so on, the Panax genus which contains many valuable plants, including ginseng (Panax ginseng C.A. Meyer), notoginseng (Panax notoginseng) and American ginseng (Panax quinquefolius L.), attracts research focus. Actually, the biological and pharmacological effects of the Panax genus are mainly attributed to the abundant ginsenosides. However, the low membrane permeability and the gastrointestinal tract influence seriously limit the absorption and bioavailability of ginsenosides. The acid or base hydrolysates of ginsenosides, 20 (R,S)-panaxadiol and 20 (R,S)-protopanaxadiol showed improved bioavailability and diverse pharmacological activities. Moreover, relative stable skeletons and active hydroxyl group at C-3 position and other reactive sites are suitable for structural modification to improve biological activities. In this review, the pharmacological activities of panaxadiol, protopanaxadiol and their structurally modified derivatives are comprehensively summarized.
Collapse
Affiliation(s)
- Mingying Wang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, And School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Haonan Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, And School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Weiwei Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Hao Cao
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Xu Hu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, And School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Xiang Gao
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, And School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Fanxing Xu
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Zhanlin Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, And School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Huiming Hua
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, And School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Dahong Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, And School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China.
| |
Collapse
|
3
|
Siddiqi MZ, Srinivasan S, Park HY, Im WT. Exploration and Characterization of Novel Glycoside Hydrolases from the Whole Genome of Lactobacillus ginsenosidimutans and Enriched Production of Minor Ginsenoside Rg3( S) by a Recombinant Enzymatic Process. Biomolecules 2020; 10:biom10020288. [PMID: 32059542 PMCID: PMC7072194 DOI: 10.3390/biom10020288] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/29/2020] [Accepted: 02/07/2020] [Indexed: 12/16/2022] Open
Abstract
Background: Several studies have reported that ginsenoside Rg3(S) is effective in treating metastatic diseases, obesity, and various cancers, however, its presence in white ginseng cannot be estimated, and only a limited amount is present in red ginseng. Therefore, the use of recombinant glycosidases from a Generally Recognized As Safe (GRAS) host strain is a promising approach to enhance production of Rg3(S), which may improve nutritional activity, human health, and quality of life. Method: Lactobacillus ginsenosidimutans EMML 3041T, which was isolated from Korean fermented pickle (kimchi), presents ginsenoside-converting abilities. The strain was used to enrich the production of Rg3(S) by fermenting protopanaxadiol (PPD)-mix-type major ginsenosides (Rb1, Rb2, Rc, and Rd) in four different types of food-grade media (1, MRS; 2, Basel Food-Grade medium; 3, Basel Food-Grade medium-I, and 4, Basel Food-Grade medium-II). Due to its tendency to produce Rg3(S), the presence of glycoside hydrolase in Lactobacillus ginsenosidimutans was proposed, the whole genome was sequenced, and the probable glycoside hydrolase gene for ginsenoside conversion was cloned. Results: The L. ginsenosidimutans EMML 3041T strain was whole genome sequenced to identify the target genes. After genome sequencing, 12 sets of glycoside hydrolases were identified, of which seven sets (α,β-glucosidase and α,β-galactosidase) were cloned in Escherichia coli BL21 (DE3) using the pGEX4T-1 vector system. Among the sets of clones, only one clone (BglL.gin-952) showed ginsenoside-transforming abilities. The recombinant BglL.gin-952 comprised 952 amino acid residues and belonged to glycoside hydrolase family 3. The enzyme exhibited optimal activity at 55 °C and a pH of 7.5 and showed a promising conversion ability of major ginsenoside Rb1→Rd→Rg3(S). The recombinant enzyme (GST-BglL.gin-952) was used to mass produce Rg3(S) from major ginsenoside Rb1. Scale-up of production using 50 g of Rb1 resulted in 30 g of Rg3(S) with 74.3% chromatography purity. Conclusion: Our preliminary data demonstrated that this enzyme would be beneficial in the preparation of pharmacologically active minor ginsenoside Rg3(S) in the functional food and pharmaceutical industries.
Collapse
Affiliation(s)
- Muhammad Zubair Siddiqi
- Department of Biotechnology, Hankyong National University, 327 Jungang-ro Anseong-si, Gyeonggi-do 17579, Korea;
- AceEMzyme Co., Ltd., Academic Industry Cooperation, 327 Jungang-ro Anseong-si, Gyeonggi-do Anseong-si, Gyeonggi-do 17579, Korea
| | - Sathiyaraj Srinivasan
- Department of Bio & Environmental Technology, Division of Environmental & Life Science, College of Natural Science, Seoul Women’s University, 623 Hwarangno, Nowon-gu, Seoul 139-774, Korea;
| | - Hye Yoon Park
- National Institute of Biological Resources, Incheon 22689, Korea;
| | - Wan-Taek Im
- Department of Biotechnology, Hankyong National University, 327 Jungang-ro Anseong-si, Gyeonggi-do 17579, Korea;
- AceEMzyme Co., Ltd., Academic Industry Cooperation, 327 Jungang-ro Anseong-si, Gyeonggi-do Anseong-si, Gyeonggi-do 17579, Korea
- Correspondence: ; Tel.: +82-31-6705335; Fax: +82-31-6705339
| |
Collapse
|
4
|
Siddiqi MZ, Hashmi MS, Oh JM, Chun S, Im WT. Identification of novel glycoside hydrolases via whole genome sequencing of Niabella ginsenosidivorans for production of various minor ginsenosides. 3 Biotech 2019; 9:258. [PMID: 31192083 DOI: 10.1007/s13205-019-1776-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/22/2019] [Indexed: 12/18/2022] Open
Abstract
In this study, many bacterial strains were screened for the production of minor ginsenosides, but based on conversion competence among the strains, the strain Niabella ginsenosidivorans BS26T has the good ginsenoside-transforming ability. Therefore, the strain BS26T was selected for complete genome sequence analysis to determine the target (glycoside hydrolase) functional genes. Whole genome analysis of strain BS26T showed 43 glycoside hydrolase genes in total. To determine the target functional gene, 12 sets of six different glycoside hydrolases (3 set of β-glucosidase; 3 set of trehalase; 3 set of arabinofuranosidase; 2 set of xylosidase; and one set of each α-galactosidase and α-fucosidase, respectively) were selected and cloned in E. coli BL21 (DE3) using the pGEX4T-1 vector and were characterized. Among these 12 sets of clones, only one, β-glucosidase (BglNg-767), showed ginsenoside conversion ability. The BglNg-767 comprised 767 amino acids and belonged to glycoside hydrolase family 3 (GH3). The recombinant GST-BglNg-767 was capable of altering the ginsenosides Rb1, Rd, and gypenoside XVII (Gyp-XVII) to F2; Rb2 to C-O; Rb3 to C-Mx1, and Rc to C-Mc1. Besides, complete genome sequence analysis of strain BS26T also indicates 30 endopeptidase genes, which may be responsible for self-hydrolysis of the proteins. Therefore, using SDS-PAGE analysis, we predict that the difference between the molecular weight of the expressed protein (around 90 kDa) and the predicted amino-acid sequence (102.7 kDa) is due to self-hydrolysis of the proteins.
Collapse
|
5
|
Xiao Y, Liu C, Im WT, Chen S, Zuo K, Yu H, Song J, Xu L, Yi TH, Jin F. Dynamic changes of multi-notoginseng stem-leaf ginsenosides in reaction with ginsenosidase type-I. J Ginseng Res 2019; 43:186-195. [PMID: 30976159 PMCID: PMC6437641 DOI: 10.1016/j.jgr.2017.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 06/05/2017] [Accepted: 10/11/2017] [Indexed: 10/29/2022] Open
Abstract
BACKGROUND Notoginseng stem-leaf (NGL) ginsenosides have not been well used. To improve their utilization, the biotransformation of NGL ginsenosides was studied using ginsenosidase type-I from Aspergillus niger g.848. METHODS NGL ginsenosides were reacted with a crude enzyme in the RAT-5D bioreactor, and the dynamic changes of multi-ginsenosides of NGL were recognized by HPLC. The reaction products were separated using a silica gel column and identified by HPLC and NMR. RESULTS All the NGL ginsenosides are protopanaxadiol-type ginsenosides; the main ginsenoside contents are 27.1% Rb3, 15.7% C-Mx1, 13.8% Rc, 11.1% Fc, 7.10% Fa, 6.44% C-Mc, 5.08% Rb2, and 4.31% Rb1. In the reaction of NGL ginsenosides with crude enzyme, the main reaction of Rb3 and C-Mx1 occurred through Rb3→C-Mx1→C-Mx; when reacted for 1 h, Rb3 decreased from 27.1% to 9.82 %, C-Mx1 increased from 15.5% to 32.3%, C-Mx was produced to 6.46%, finally into C-Mx and a small amount of C-K. When reacted for 1.5 h, all the Rb1, Rd, and Gyp17 were completely reacted, and the reaction intermediate F2 was produced to 8.25%, finally into C-K. The main reaction of Rc (13.8%) occurred through Rc→C-Mc1→C-Mc→C-K. The enzyme barely hydrolyzed the terminal xyloside on 3-O- or 20-O-sugar-moiety of the substrate; therefore, 9.43 g C-Mx, 6.85 g C-K, 4.50 g R7, and 4.71 g Fc (hardly separating from the substrate) were obtained from 50 g NGL ginsenosides by the crude enzyme reaction. CONCLUSION Four monomer ginsenosides were successfully produced and separated from NGL ginsenosides by the enzyme reaction.
Collapse
Affiliation(s)
- Yongkun Xiao
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Global Campus, Yongin, Republic of Korea
- College of Biotechnology, Dalian Polytechnic University, Dalian, China
- Tianjin Ginkingsen Health Co., Ltd., Tianjin, China
| | - Chunying Liu
- College of Biotechnology, Dalian Polytechnic University, Dalian, China
| | - Wan-Teak Im
- Department of Biotechnology, Hankyoung National University, Anseong, Republic of Korea
| | - Shuang Chen
- College of Biotechnology, Dalian Polytechnic University, Dalian, China
| | - Kangze Zuo
- College of Biotechnology, Dalian Polytechnic University, Dalian, China
| | - Hongshan Yu
- College of Biotechnology, Dalian Polytechnic University, Dalian, China
| | - Jianguo Song
- College of Biotechnology, Dalian Polytechnic University, Dalian, China
| | - Longquan Xu
- College of Biotechnology, Dalian Polytechnic University, Dalian, China
| | - Tea-Hoo Yi
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Global Campus, Yongin, Republic of Korea
| | - Fengxie Jin
- College of Biotechnology, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
6
|
Peng M, Yi YX, Zhang T, Ding Y, Le J. Stereoisomers of Saponins in Panax notoginseng (Sanqi): A Review. Front Pharmacol 2018; 9:188. [PMID: 29593531 PMCID: PMC5859349 DOI: 10.3389/fphar.2018.00188] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/19/2018] [Indexed: 12/05/2022] Open
Abstract
Panax notoginseng (Sanqi), a traditional Chinese medical drug which has been applied to medical use for over four centuries, contains high content of dammarane-type tetracyclic triterpenoid saponins. A number of stereoisomeric dammarane-type saponins exist in this precious herb, and some are particularly regarded as “biomarkers” in processed notoginseng. Contemporary researches have indicated that some saponin stereoisomers may show stereospecific pharmacological activities, such as anti-tumor, antioxidative, anti-photoaging, anti-inflammatory, antidiabetic, and neuro-protective activities, as well as stereoselective effects on ion channel current regulation, cardiovascular system, and immune system. The current review provides a comprehensive overview of chemical compositions of raw and processed P. notoginseng with a particular emphasis on saponin stereoisomers. Besides, the pharmacological and pharmacokinetic researches, as well as determination and biotechnological preparation methods of stereoisomeric saponins in notoginseng are discussed extensively.
Collapse
Affiliation(s)
- Ming Peng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Chemistry, Shanghai Institute for Food and Drug Control, Shanghai, China
| | - Ya X Yi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue Ding
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jian Le
- Department of Chemistry, Shanghai Institute for Food and Drug Control, Shanghai, China.,Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, China
| |
Collapse
|
7
|
Liu F, Ma N, Xia FB, Li P, He C, Wu Z, Wan JB. Preparative separation of minor saponins from Panax notoginseng leaves using biotransformation, macroporous resins, and preparative high-performance liquid chromatography. J Ginseng Res 2017; 43:105-115. [PMID: 30662299 PMCID: PMC6323246 DOI: 10.1016/j.jgr.2017.09.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 08/14/2017] [Accepted: 09/18/2017] [Indexed: 12/17/2022] Open
Abstract
Background Ginsenosides with less sugar moieties may exhibit the better adsorptive capacity and more pharmacological activities. Methods An efficient method for the separation of four minor saponins, including gypenoside XVII, notoginsenoside Fe, ginsenoside Rd2, and notoginsenoside Fd, from Panax notoginseng leaves (PNL) was established using biotransformation, macroporous resins, and subsequent preparative high-performance liquid chromatography. Results The dried PNL powder was immersed in the distilled water at 50°C for 30 min for converting the major saponins, ginsenosides Rb1, Rc, Rb2, and Rb3, to minor saponins, gypenoside XVII, notoginsenoside Fe, ginsenoside Rd2, and notoginsenoside Fd, respectively, by the enzymes present in PNL. The adsorption characteristics of these minor saponins on five types of macroporous resins, D-101, DA-201, DM-301, X-5, and S-8, were evaluated and compared. Among them, D-101 was selected due to the best adsorption and desorption properties. Under the optimized conditions, the fraction containing the four target saponins was separated by D-101 resin. Subsequently, the target minor saponins were individually separated and purified by preparative high-performance liquid chromatography with a reversed-phase column. Conclusion Our study provides a simple and efficient method for the preparation of these four minor saponins from PNL, which will be potential for industrial applications.
Collapse
Affiliation(s)
- Fang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Ni Ma
- Department of Product Development, Wenshan Sanqi Institute of Science and Technology, Wenshan University, Wenshan, Yunnan, China
| | - Fang-Bo Xia
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Chengwei He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Zhenqiang Wu
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.,Zhuhai UM Science & Technology Research Institute, Zhuhai, Guangdong, China
| |
Collapse
|
8
|
Kratz JM, Grienke U, Scheel O, Mann SA, Rollinger JM. Natural products modulating the hERG channel: heartaches and hope. Nat Prod Rep 2017; 34:957-980. [PMID: 28497823 PMCID: PMC5708533 DOI: 10.1039/c7np00014f] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review covers natural products modulating the hERG potassium channel. Risk assessment strategies, structural features of blockers, and the duality target/antitarget are discussed.
Covering: 1996–December 2016 The human Ether-à-go-go Related Gene (hERG) channel is a voltage-gated potassium channel playing an essential role in the normal electrical activity in the heart. It is involved in the repolarization and termination of action potentials in excitable cardiac cells. Mutations in the hERG gene and hERG channel blockage by small molecules are associated with increased risk of fatal arrhythmias. Several drugs have been withdrawn from the market due to hERG channel-related cardiotoxicity. Moreover, as a result of its notorious ligand promiscuity, this ion channel has emerged as an important antitarget in early drug discovery and development. Surprisingly, the hERG channel blocking profile of natural compounds present in frequently consumed botanicals (i.e. dietary supplements, spices, and herbal medicinal products) is not routinely assessed. This comprehensive review will address these issues and provide a critical compilation of hERG channel data for isolated natural products and extracts over the past two decades (1996–2016). In addition, the review will provide (i) a solid basis for the molecular understanding of the physiological functions of the hERG channel, (ii) the translational potential of in vitro/in vivo results to cardiotoxicity in humans, (iii) approaches for the identification of hERG channel blockers from natural sources, (iv) future perspectives for cardiac safety guidelines and their applications within phytopharmaceuticals and dietary supplements, and (v) novel applications of hERG channel modulation (e.g. as a drug target).
Collapse
Affiliation(s)
- Jadel M Kratz
- Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090 Vienna, Austria.
| | | | | | | | | |
Collapse
|
9
|
Siddiqi MZ, Shafi SM, Im WT. Complete genome sequencing of Arachidicoccus ginsenosidimutans sp. nov., and its application for production of minor ginsenosides by finding a novel ginsenoside-transforming β-glucosidase. RSC Adv 2017. [DOI: 10.1039/c7ra02612a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel bacterial strain (BS20T), which has ginsenoside-transforming ability, was whole genome sequenced for the identification of a target gene.
Collapse
Affiliation(s)
- Muhammad Zubair Siddiqi
- Department of Biotechnology
- Hankyong National University
- Anseong-si
- Republic of Korea
- Center for Genetic Information
| | | | - Wan-Taek Im
- Department of Biotechnology
- Hankyong National University
- Anseong-si
- Republic of Korea
- Center for Genetic Information
| |
Collapse
|
10
|
Liu C, Zuo K, Yu H, Sun C, Zhang T, Xu L, Jin Y, Im WT, Jin F. Preparation of minor ginsenosides C-Mx and C-K from notoginseng leaf ginsenosides by a special ginsenosidase type-I. Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.10.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
11
|
Antidepressant-like effects of ginsenosides: A comparison of ginsenoside Rb3 and its four deglycosylated derivatives, Rg3, Rh2, compound K, and 20(S)-protopanaxadiol in mice models of despair. Pharmacol Biochem Behav 2015; 140:17-26. [PMID: 26528894 DOI: 10.1016/j.pbb.2015.10.018] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 10/29/2015] [Accepted: 10/30/2015] [Indexed: 11/21/2022]
Abstract
Ginsenoside Rb3 has been proved to have antidepressant-like effects, which possesses 1 xylose and 3 glucose moieties with 20(S)-protopanaxadiol (PPD) as the aglycone. However, it is commonly accepted that orally ingested ginsenosides can be deglycosylated or partially deglycosylated into active derivatives by the intestinal bacteria. To identify potential antidepressant drug candidates, we compared the antidepressant-like activities between ginsenoside Rb3 and its four deglycosylated derivatives, Rg3, Rh2, compound K (C-K), and PPD. Effects of acute (1-day), short chronic (7-days), and longer chronic treatments (14-days) with these ginsenosides (50 and 100mg/kg, p.o.) on the behavioral changes in the forced swim test (FST), tail suspension test (TST) and open field test were investigated. Serum corticosterone and adrenocorticotropic hormone (ACTH) levels and mouse brain monoamine neurotransmitters 5-HT, NA and DA levels were measured using commercially available competitive enzyme-linked immunosorbent assay (ELISA) kits. Interestingly, C-K showed antidepressant-like activities similar to that of Rb3, and Rg3 displayed antidepressant-like effects at lower dosage and faster time, indicating it has better effects than Rb3, whereas Rh2 and PPD failed to show any effect. Our results also showed, unlike the positive control fluoxetine, Rb3, Rg3 and C-K significantly increased the NA levels in the brain regions of mice exposed to FST but did not affect the 5-HT and DA levels. Moreover, treatment with Rg3 could reverse swim stress-induced increased levels of serum ACTH and corticosterone. These results suggest that C-K and Rg3 are the active deglycosylated derivatives, especially the latter compound, which is more potent than Rb3 and exerts antidepressant-like effects by regulating NA, ACTH and corticosterone levels.
Collapse
|
12
|
Helliwell RM, ShioukHuey CO, Dhuna K, Molero JC, Ye JM, Xue CC, Stokes L. Selected ginsenosides of the protopanaxdiol series are novel positive allosteric modulators of P2X7 receptors. Br J Pharmacol 2015; 172:3326-40. [PMID: 25752193 DOI: 10.1111/bph.13123] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 02/02/2015] [Accepted: 02/26/2015] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND AND PURPOSE The P2X7 receptor is an ATP-gated ion channel predominantly expressed in immune cells and plays a key role in inflammatory processes. Ginseng is a well-known Chinese herb with both pro- and anti-inflammatory properties and many of its actions have been ascribed to constituent ginsenosides. We screened a number of ginsenoside compounds for pharmacological activity at P2X7 receptors, that might contribute to the reported immunomodulatory actions of ginseng. EXPERIMENTAL APPROACH We used several assays to measure responses of P2X7 receptors, ATP-mediated dye uptake, intracellular calcium measurement and whole-cell patch-clamp recordings. HEK-293 cells stably expressing human P2X7 receptors were used in addition to mouse macrophages endogenously expressing P2X7 receptors. KEY RESULTS Four ginsenosides of the protopanaxdiol series, Rb1, Rh2, Rd and the metabolite compound K (CK) potentiated the dye uptake responses of P2X7 receptors, whereas other ginsenosides tested were ineffective (1-10 μM). The potentiation was rapid in onset, required a threshold concentration of ATP (>50 μM) and had an EC50 of 1.08 μM. CK markedly enhanced ATP-activated P2X7 currents, probably via an extracellular site of action. One of the consequences of this potentiation effect is a sustained rise in intracellular Ca(2+) that could account for the decrease in cell viability in mouse macrophages after a combination of 500 μM ATP and 10 μM CK that are non-toxic when applied alone. CONCLUSIONS AND IMPLICATIONS This study identifies selected ginsenosides as novel potent allosteric modulators of P2X7 channels that may account for some of the reported immune modulatory actions of protopanaxdiol ginsenosides in vivo.
Collapse
Affiliation(s)
- R M Helliwell
- School of Health Sciences, Health Innovations Research Institute, RMIT University, Melbourne, Victoria, Australia
| | - C O ShioukHuey
- School of Medical Sciences, Health Innovations Research Institute, RMIT University, Melbourne, Victoria, Australia
| | - K Dhuna
- School of Medical Sciences, Health Innovations Research Institute, RMIT University, Melbourne, Victoria, Australia
| | - J C Molero
- School of Health Sciences, Health Innovations Research Institute, RMIT University, Melbourne, Victoria, Australia
| | - J-M Ye
- School of Health Sciences, Health Innovations Research Institute, RMIT University, Melbourne, Victoria, Australia
| | - C C Xue
- School of Health Sciences, Health Innovations Research Institute, RMIT University, Melbourne, Victoria, Australia
| | - L Stokes
- School of Medical Sciences, Health Innovations Research Institute, RMIT University, Melbourne, Victoria, Australia.,School of Pharmacy, University of East Anglia, Norwich, UK
| |
Collapse
|
13
|
Liu CY, Zhou RX, Sun CK, Jin YH, Yu HS, Zhang TY, Xu LQ, Jin FX. Preparation of minor ginsenosides C-Mc, C-Y, F2, and C-K from American ginseng PPD-ginsenoside using special ginsenosidase type-I from Aspergillus niger g.848. J Ginseng Res 2014. [PMID: 26199553 PMCID: PMC4506373 DOI: 10.1016/j.jgr.2014.12.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Background Minor ginsenosides, those having low content in ginseng, have higher pharmacological activities. To obtain minor ginsenosides, the biotransformation of American ginseng protopanaxadiol (PPD)-ginsenoside was studied using special ginsenosidase type-I from Aspergillus niger g.848. Methods DEAE (diethylaminoethyl)-cellulose and polyacrylamide gel electrophoresis were used in enzyme purification, thin-layer chromatography and high performance liquid chromatography (HPLC) were used in enzyme hydrolysis and kinetics; crude enzyme was used in minor ginsenoside preparation from PPD-ginsenoside; the products were separated with silica-gel-column, and recognized by HPLC and NMR (Nuclear Magnetic Resonance). Results The enzyme molecular weight was 75 kDa; the enzyme firstly hydrolyzed the C-20 position 20-O-β-D-Glc of ginsenoside Rb1, then the C-3 position 3-O-β-D-Glc with the pathway Rb1→Rd→F2→C-K. However, the enzyme firstly hydrolyzed C-3 position 3-O-β-D-Glc of ginsenoside Rb2 and Rc, finally hydrolyzed 20-O-L-Ara with the pathway Rb2→C-O→C-Y→C-K, and Rc→C-Mc1→C-Mc→C-K. According to enzyme kinetics, Km and Vmax of Michaelis–Menten equation, the enzyme reaction velocities on ginsenosides were Rb1 > Rb2 > Rc > Rd. However, the pure enzyme yield was only 3.1%, so crude enzyme was used for minor ginsenoside preparation. When the crude enzyme was reacted in 3% American ginseng PPD-ginsenoside (containing Rb1, Rb2, Rc, and Rd) at 45°C and pH 5.0 for 18 h, the main products were minor ginsenosides C-Mc, C-Y, F2, and C-K; average molar yields were 43.7% for C-Mc from Rc, 42.4% for C-Y from Rb2, and 69.5% for F2 and C-K from Rb1 and Rd. Conclusion Four monomer minor ginsenosides were successfully produced (at low-cost) from the PPD-ginsenosides using crude enzyme.
Collapse
Affiliation(s)
- Chun-Ying Liu
- College of Biotechnology, Dalian Polytechnic University, Dalian, People's Republic of China ; Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University, Changchun, People's Republic of China
| | - Rui-Xin Zhou
- College of Biotechnology, Dalian Polytechnic University, Dalian, People's Republic of China
| | - Chang-Kai Sun
- Institute for Brain Disorders, Dalian Medical University, Dalian, People's Republic of China
| | - Ying-Hua Jin
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University, Changchun, People's Republic of China
| | - Hong-Shan Yu
- College of Biotechnology, Dalian Polytechnic University, Dalian, People's Republic of China
| | - Tian-Yang Zhang
- College of Biotechnology, Dalian Polytechnic University, Dalian, People's Republic of China
| | - Long-Quan Xu
- College of Biotechnology, Dalian Polytechnic University, Dalian, People's Republic of China
| | - Feng-Xie Jin
- College of Biotechnology, Dalian Polytechnic University, Dalian, People's Republic of China
| |
Collapse
|
14
|
Du J, Cui CH, Park SC, Kim JK, Yu HS, Jin FX, Sun C, Kim SC, Im WT. Identification and characterization of a ginsenoside-transforming β-glucosidase from Pseudonocardia sp. Gsoil 1536 and its application for enhanced production of minor ginsenoside Rg2(S). PLoS One 2014; 9:e96914. [PMID: 24911166 PMCID: PMC4049585 DOI: 10.1371/journal.pone.0096914] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 04/14/2014] [Indexed: 11/25/2022] Open
Abstract
The ginsenoside Rg2(S), which is one of the pharmaceutical components of ginseng, is known to have neuroprotective, anti-inflammation, and anti-diabetic effects. However, the usage of ginsenoside Rg2(S) is restricted owing to the small amounts found in white and red ginseng. To enhance the production of ginsenoside Rg2(S) as a 100 gram unit with high specificity, yield, and purity, an enzymatic bioconversion method was developed to adopt the recombinant glycoside hydrolase (BglPC28), which is a ginsenoside-transforming recombinant β-glucosidase from Pseudonocardia sp. strain Gsoil 1536. The gene, termed bglPC28, encoding β-glucosidase (BglPC28) belonging to the glycoside hydrolase family 3 was cloned. bglPC28 consists of 2,232 bp (743 amino acid residues) with a predicted molecular mass of 78,975 Da. This enzyme was overexpressed in Escherichia coli BL21(DE3) using a GST-fused pGEX 4T-1 vector system. The optimum conditions of the recombinant BglPC28 were pH 7.0 and 37°C. BglPC28 can effectively transform the ginsenoside Re to Rg2(S); the Km values of PNPG and Re were 6.36±1.10 and 1.42±0.13 mM, respectively, and the Vmax values were 40.0±2.55 and 5.62±0.21 µmol min−1 mg−1 of protein, respectively. A scaled-up biotransformation reaction was performed in a 10 L jar fermenter at pH 7.0 and 30°C for 12 hours with a concentration of 20 mg/ml of ginsenoside Re from American ginseng roots. Finally, 113 g of Rg2(S) was produced from 150 g of Re with 84.0±1.1% chromatographic purity. These results suggest that this enzymatic method could be usefully exploited in the preparation of ginsenoside Rg2(S) in the cosmetics, functional food, and pharmaceutical industries.
Collapse
Affiliation(s)
- Juan Du
- KAIST Institute for Biocentury, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon, Republic of Korea
- College of Biotechnology, Dalian Polytechnic University, Ganjingzi-qu, Dalian, P. R. China
| | - Chang-Hao Cui
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon, Republic of Korea
| | - Sung Chul Park
- Intelligent Synthetic Biology Center, Yuseong-gu, Daejeon, Republic of Korea
| | - Jin-Kwang Kim
- KAIST Institute for Biocentury, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon, Republic of Korea
| | - Hong-Shan Yu
- College of Biotechnology, Dalian Polytechnic University, Ganjingzi-qu, Dalian, P. R. China
| | - Feng-Xie Jin
- College of Biotechnology, Dalian Polytechnic University, Ganjingzi-qu, Dalian, P. R. China
| | - Changkai Sun
- Institute for Brain Disorders, Dalian Medical University, Dalian, P.R. China
| | - Sun-Chang Kim
- KAIST Institute for Biocentury, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon, Republic of Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon, Republic of Korea
- Intelligent Synthetic Biology Center, Yuseong-gu, Daejeon, Republic of Korea
| | - Wan-Taek Im
- Department of Biotechnology, Hankyoung National University, Chungang-no Anseong-si, Republic of Korea
- * E-mail:
| |
Collapse
|
15
|
Choi SH, Lee BH, Kim HJ, Jung SW, Hwang SH, Nah SY. Differential effects of ginsenoside metabolites on slowly activating delayed rectifier K(+) and KCNQ1 K(+) channel currents. J Ginseng Res 2013; 37:324-31. [PMID: 24198658 PMCID: PMC3818959 DOI: 10.5142/jgr.2013.37.324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 05/27/2013] [Accepted: 05/27/2013] [Indexed: 11/18/2022] Open
Abstract
Channels formed by the co-assembly of the KCNQ1 subunit and the mink (KCNE1) subunit underline the slowly activating delayed rectifier K+ channels (IKs) in the heart. This K+ channel is one of the main pharmacological targets for the development of drugs against cardiovascular disease. Panax ginseng has been shown to exhibit beneficial cardiovascular effects. In a previous study, we showed that ginsenoside Rg3 activates human KCNQ1 K+ channel currents through interactions with the K318 and V319 residues. However, little is known about the effects of ginsenoside metabolites on KCNQ1 K+ alone or the KCNQ1 + KCNE1 K+ (IKs) channels. In the present study, we examined the effect of protopanaxatriol (PPT) and compound K (CK) on KCNQ1 K+ and IKs channel activity expressed in Xenopus oocytes. PPT more strongly inhibited the IKs channel currents than the currents of KCNQ1 K+ alone in concentration- and voltage-dependent manners. The IC50 values on IKs and KCNQ1 alone currents for PPT were 5.18±0.13 and 10.04±0.17 μM, respectively. PPT caused a leftward shift in the activation curve of IKs channel activity, but minimally affected KCNQ1 alone. CK exhibited slight inhibition on IKs and KCNQ1 alone K+ channel currents. These results indicate that ginsenoside metabolites show limited effects on IKs channel activity, depending on the structure of the ginsenoside metabolites.
Collapse
Affiliation(s)
- Sun-Hye Choi
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul 143-701, Korea
| | | | | | | | | | | |
Collapse
|
16
|
Shin TJ, Hwang SH, Choi SH, Lee BH, Kang J, Kim HJ, Zukin RS, Rhim H, Nah SY. Effects of protopanaxatriol-ginsenoside metabolites on rat N-methyl-d-aspartic Acid receptor-mediated ion currents. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2012; 16:113-8. [PMID: 22563256 PMCID: PMC3339286 DOI: 10.4196/kjpp.2012.16.2.113] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Revised: 02/17/2012] [Accepted: 02/28/2012] [Indexed: 11/15/2022]
Abstract
Ginsenosides are low molecular weight glycosides found in ginseng that exhibit neuroprotective effects through inhibition of N-methyl-D-aspartic acid (NMDA) receptor channel activity. Ginsenosides, like other natural compounds, are metabolized by gastric juices and intestinal microorganisms to produce ginsenoside metabolites. However, little is known about how ginsenoside metabolites regulate NMDA receptor channel activity. In the present study, we investigated the effects of ginsenoside metabolites, such as compound K (CK), protopanaxadiol (PPD), and protopanaxatriol (PPT), on oocytes that heterologously express the rat NMDA receptor. NMDA receptor-mediated ion current (INMDA) was measured using the 2-electrode voltage clamp technique. In oocytes injected with cRNAs encoding NMDA receptor subunits, PPT, but not CK or PPD, reversibly inhibited INMDA in a concentration-dependent manner. The IC50 for PPT on INMDA was 48.1±4.6 µM, was non-competitive with NMDA, and was independent of the membrane holding potential. These results demonstrate the possibility that PPT interacts with the NMDA receptor, although not at the NMDA binding site, and that the inhibitory effects of PPT on INMDA could be related to ginseng-mediated neuroprotection.
Collapse
Affiliation(s)
- Tae-Joon Shin
- Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul 143-701, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|