1
|
El Bouchikhi I, El Otmani I, Ahakoud M, Kettani O, El Makhzen B, Yahyaoui G, Oumokhtar B, Ouldim K, El-Azami-El-Idrissi M, Achour S, Mahmoud M, Bouguenouch L. The first assessment of Angiotensin-Converting Enzyme 1 (ACE1) D/I polymorphism and demographic factors in association with COVID-19 outcomes in the Moroccan Population. Mol Biol Rep 2025; 52:109. [PMID: 39775335 DOI: 10.1007/s11033-024-10211-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 12/29/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND SARS-CoV-2 responsible for the COVID-19 pandemic, infiltrates the human body by binding to the ACE2 receptor in the respiratory system cell membranes, leading to severe lung tissue damage. An analog of ACE2, ACE1, has gained attention due to its well-known Deletion/Insertion (D/I) polymorphism, which seems to be associated with COVID-19 outcomes. This study aims to reveal the allelic and genotypic frequencies of the rs4646994 polymorphism in the Moroccan population and investigate the association between COVID-19 outcomes and both genotypic and demographic data. METHODS AND RESULTS We screened 162 Moroccan COVID-19 patients for the ACE1 gene D/I polymorphism using PCR amplification of the ACE1 polymorphic region within intron 16. Statistical analysis of the relationship between COVID-19 outcomes and each of the genetic and demographic data was performed using R software. The D allele was present in 74% of subjects. Homozygous (II) and heterozygous (DI) genotypes for the Insertion allele were present in 41.4% and 5.6% of patients, respectively. The median age in the COVID-19 'critical symptoms' category was significantly higher and gradually decreased with less severe symptoms. Similarly, males were significantly overrepresented in the 'critical symptoms' category, while females predominated in the 'mild symptoms' category. CONCLUSIONS The present study reports the prevalence of ACE1 D/I alleles for the first time in the Moroccan population and confirms the strong association of severe COVID-19 outcomes with male sex and older age. Moreover, this work is the first to explore the relationship between ACE1 D/I polymorphism and COVID-19 clinical outcomes in North African adults. The lack of a significant association may be due to cohort size or population-specific factors. A comprehensive investigation in a larger North African cohort is highly recommended.
Collapse
Affiliation(s)
- Ihssane El Bouchikhi
- Laboratory of Biomedical & Translational Research, Faculty of Medicine, Pharmacy and Dentistry of Fez, Sidi Mohamed Ben Abdellah University, BP 1893, Fez, 30070, Morocco.
- Medical Genetics & Oncogenetics Laboratory, Hassan II University Hospital, Sidi Harazem Road, Fez, 30000, Morocco.
- Multidisciplinary Laboratory of Research & Innovation, Polydisciplinary Faculty of Khouribga, Sultan Moulay Slimane University, Kouribga, 25000, Morocco.
| | - Ihsane El Otmani
- Laboratory of Biomedical & Translational Research, Faculty of Medicine, Pharmacy and Dentistry of Fez, Sidi Mohamed Ben Abdellah University, BP 1893, Fez, 30070, Morocco
- Medical Genetics & Oncogenetics Laboratory, Hassan II University Hospital, Sidi Harazem Road, Fez, 30000, Morocco
- Laboratory of Health Sciences & Technologies, Higher Institute for Health Sciences, Hassan First University, Settat, Morocco
| | - Mohamed Ahakoud
- Laboratory of Biomedical & Translational Research, Faculty of Medicine, Pharmacy and Dentistry of Fez, Sidi Mohamed Ben Abdellah University, BP 1893, Fez, 30070, Morocco
- Medical Genetics & Oncogenetics Laboratory, Hassan II University Hospital, Sidi Harazem Road, Fez, 30000, Morocco
| | - Oussama Kettani
- Laboratory of Biomedical & Translational Research, Faculty of Medicine, Pharmacy and Dentistry of Fez, Sidi Mohamed Ben Abdellah University, BP 1893, Fez, 30070, Morocco
- Medical Genetics & Oncogenetics Laboratory, Hassan II University Hospital, Sidi Harazem Road, Fez, 30000, Morocco
| | - Badreddine El Makhzen
- Laboratory of Biomedical & Translational Research, Faculty of Medicine, Pharmacy and Dentistry of Fez, Sidi Mohamed Ben Abdellah University, BP 1893, Fez, 30070, Morocco
- Medical Genetics & Oncogenetics Laboratory, Hassan II University Hospital, Sidi Harazem Road, Fez, 30000, Morocco
| | - Ghita Yahyaoui
- Laboratory of Biomedical & Translational Research, Faculty of Medicine, Pharmacy and Dentistry of Fez, Sidi Mohamed Ben Abdellah University, BP 1893, Fez, 30070, Morocco
- Laboratory of Microbiology and Molecular Biology, CHU Hassan II, Fez, Morocco
| | - Bouchra Oumokhtar
- Human Pathologies, Biomedicine and Environment Laboratory, Faculty of Medicine and Pharmacy, Sidi Mohammed Ben Abdellah University, Fez, Morocco
| | - Karim Ouldim
- Laboratory of Biomedical & Translational Research, Faculty of Medicine, Pharmacy and Dentistry of Fez, Sidi Mohamed Ben Abdellah University, BP 1893, Fez, 30070, Morocco
- Medical Genetics & Oncogenetics Laboratory, Hassan II University Hospital, Sidi Harazem Road, Fez, 30000, Morocco
| | - Mohammed El-Azami-El-Idrissi
- Laboratory of Biomedical & Translational Research, Faculty of Medicine, Pharmacy and Dentistry of Fez, Sidi Mohamed Ben Abdellah University, BP 1893, Fez, 30070, Morocco
- Medical Genetics & Oncogenetics Laboratory, Hassan II University Hospital, Sidi Harazem Road, Fez, 30000, Morocco
| | - Sanae Achour
- Laboratory of Biomedical & Translational Research, Faculty of Medicine, Pharmacy and Dentistry of Fez, Sidi Mohamed Ben Abdellah University, BP 1893, Fez, 30070, Morocco
- Laboratory of Pharmacology and Toxicology, University Hospital Hassan II, Fez, Morocco
| | - Mustapha Mahmoud
- Laboratory of Biomedical & Translational Research, Faculty of Medicine, Pharmacy and Dentistry of Fez, Sidi Mohamed Ben Abdellah University, BP 1893, Fez, 30070, Morocco
- Laboratory of Microbiology and Molecular Biology, CHU Hassan II, Fez, Morocco
| | - Laila Bouguenouch
- Laboratory of Biomedical & Translational Research, Faculty of Medicine, Pharmacy and Dentistry of Fez, Sidi Mohamed Ben Abdellah University, BP 1893, Fez, 30070, Morocco
- Medical Genetics & Oncogenetics Laboratory, Hassan II University Hospital, Sidi Harazem Road, Fez, 30000, Morocco
| |
Collapse
|
2
|
Fajar JK, Tamara F, Putranto W, Prabowo NA, Harapan H. Insertion/deletion (I/D) polymorphisms of angiotensin-converting enzyme gene and their implications for susceptibility and severity of COVID-19: A systematic review and meta-analysis. NARRA J 2024; 4:e727. [PMID: 39816082 PMCID: PMC11731805 DOI: 10.52225/narra.v4i3.727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 12/12/2024] [Indexed: 01/18/2025]
Abstract
The insertion or deletion polymorphisms of the angiotensin-converting enzyme gene (ACE I/D) have been the subject of significant research related to coronavirus disease 2019 (COVID-19). Despite this, the findings have remained uncertain and debatable. The aim of this study was to determine the associations between the ACE I/D polymorphisms and the susceptibility as well as the severity of COVID-19. A meta-analysis study (PROSPERO: CRD42022384562) was conducted by searching the articles published on PubMed, Scopus, and Embase as of May 15, 2023. Information regarding the impact of ACE I/D variant on the susceptibility to COVID-19 and its severity was collected and analyzed utilizing the Mantel-Haenszel method with a random effects model or fixed effects model, depending on the presence or absence of heterogeneity. Out of 3,335 articles, 21 articles were included, of which 13 investigated the association between ACE I/D and the risk of COVID-19 infection and 18 of them examined its influence on disease severity. The D allele of ACE increased risk of COVID-19 infection (OR: 1.41; 95%CI: 1.08-1.85; p-Egger: 0.0676; p-Heterogeneity: <0.001; p=0.0120), while ACE I allele (OR: 0.71; 95%CI: 0.54-0.93; p-Egger: 0.0676; p-Heterogeneity: <0.001; p=0.012) and II genotype (OR: 0.55; 95%CI: 0.34-0.87; p-Egger: 0.200; p-Heterogeneity: <0.001; p=0.011) decreased the risk of infection. Additionally, there was a notable association between the ACE ID genotype and an elevated likelihood of experiencing severe COVID-19 within the Asian population (OR: 1.46; 95%CI: 1.15-1.84; p-Egger: 0.092; p-Heterogeneity: 0.116; p=0.002). The presence of ACE I/D polymorphisms significantly influences the likelihood of being susceptible to and experiencing the severity of COVID-19.
Collapse
Affiliation(s)
- Jonny K. Fajar
- Department of Internal Medicine, Rumah Sakit Universitas Brawijaya, Malang, Indonesia
| | - Fredo Tamara
- Division of Nephrology and Hypertension, Department of Internal Medicine, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia
| | - Wachid Putranto
- Division of Nephrology and Hypertension, Department of Internal Medicine, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia
| | - Nurhasan A. Prabowo
- Department of Internal Medicine, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia
| | - Harapan Harapan
- Medical Research Unit, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
| |
Collapse
|
3
|
Almeida SS, Gregnani MF, da Costa IMG, da Silva MM, Bub CB, Silvino VO, Martins DE, Wajchenberg M. ACE I/D polymorphism is a risk factor for the clinical severity of COVID-19 in Brazilian male patients. Mol Biol Rep 2024; 51:180. [PMID: 38252233 DOI: 10.1007/s11033-023-09189-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024]
Abstract
BACKGROUND The renin-angiotensin system is potentially involved in the pathogen-host interaction in the disease caused by SARS-CoV-2, since the angiotensin-converting enzyme (ACE) 2 serves as a receptor for the virus. The impact of the pandemic in specific regions and ethnic groups highlights the importance of investigating genetic factors that disrupt the balance of the system in response to SARS-CoV-2 infection, especially in genes with ethnic frequency variations. Therefore, this study aimed to evaluate the influence of the ACE I/D polymorphism on the incidence and severity of COVID-19 in a sample of the Brazilian population. METHODS AND RESULTS 70 severe cases and 355 mild cases patients were evaluated. DNA extraction was performed using a QIAamp DNA Blood Mini kit. Genotyping of ACE I/D polymorphism was performed. Clinical outcomes were obtained from the patients' records. We found an association between the ACE I/D polymorphism and the incidence or severity of COVID-19 in male participants. Moreover, we observed a relationship between severity and increasing age and body weight and a higher frequency of II genotype individuals among those who had a cough as their symptoms in mild patients. No differences were observed in leukocyte count or other parameters related to the inflammatory response in severe patients. CONCLUSIONS Our data showed the influence of the ACE I/D polymorphism on severity of COVID-19 in males, as well as on the occurrence of cough in patients with mild symptoms, with a higher incidence in those carrying the I allele.
Collapse
Affiliation(s)
- Sandro Soares Almeida
- Hospital Israelita Albert Einstein, São Paulo, Brazil.
- Department of Physical and Functional Performance, Universidade Ibirapuera, São Paulo, Brazil.
- Department of Obstetrics, Escola Paulista de Medicina, Universidade Federal de São Paulo - Unifesp, 875 Napoleão de Barros St, Vila Clementino, São Paulo, Brazil.
| | - Marcos Fernandes Gregnani
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo - Unifesp, São Paulo, Brazil
| | | | | | | | - Valmir Oliveira Silvino
- Department of Biophysics and Physiology, Nucleus of Study in Physiology Applied to Performance and Health (NEFADS), Federal University of Piaui, Teresina, Brazil
- Rede Nordeste de Biotecnologia (RENORBIO) Post-Graduation Program, Teresina, Brazil
| | | | | |
Collapse
|
4
|
Ren H, Lin Y, Huang L, Xu W, Luo D, Zhang C. Association of genetic polymorphisms with COVID-19 infection and outcomes: An updated meta-analysis based on 62 studies. Heliyon 2024; 10:e23662. [PMID: 38187247 PMCID: PMC10767390 DOI: 10.1016/j.heliyon.2023.e23662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 11/23/2023] [Accepted: 12/09/2023] [Indexed: 01/09/2024] Open
Abstract
Background The relationship between genetic polymorphisms and coronavirus disease 2019 (COVID-19) remains to be inconsistent. This meta-analysis aimed to provide an updated evaluation of the role of genetic polymorphisms in the infection, severity and mortality of COVID-19 based on all available published studies. Methods A systematic search was performed using six databases: PubMed, Embase, Web of Science, Cochrane Library, Chinese National Knowledge Infrastructure (CNKI) and Wanfang. Summary odds ratios (ORs) and corresponding 95 % confidence intervals (CIs) were used to calculate the genotypic comparison. All statistical analyses were conducted in Stata 12.0. Results A total of 62 studies with 19600 cases and 28899 controls was included in this meta-analysis. For COVID-19 infection, ACE Ins/Del polymorphism might be related with significantly decreased risk of COVID-19 infection under dominant, homozygote and allelic models. Meanwhile, the IFITM3 rs12252 and TMPRSS2 rs12329760 polymorphisms were significantly associated with the increased risk of COVID-19 infection under one or more models. Regarding COVID-19 severity, ACE2 rs2074192, ACE2 rs2106809, IFITM3 rs12252 and VDR rs1544410 polymorphisms might be related with significantly increased risk of COVID-19 severity in one or more models. Moreover, the analysis of TMPRSS2 rs2070788 indicated that a variant A allele decreased the risk of COVID-19 severity in recessive model. For COVID-19 mortality, the variant C allele of IFITM3 rs12252 polymorphism might be related with significantly increased risk of COVID-19 mortality under all genetic models. Conclusions This meta-analysis indicated that he infection, severity or mortality of COVID-19 were related to the above genetic polymorphisms, which might provide an important theoretical basis for understanding the clinical feature of COVID-19 disease.
Collapse
Affiliation(s)
- Hongyue Ren
- Department of Basic Medicine, Zhangzhou Health Vocational College, Zhangzhou 363000, Fujian Province, China
| | - Yanyan Lin
- Department of Basic Medicine, Zhangzhou Health Vocational College, Zhangzhou 363000, Fujian Province, China
| | - Lifeng Huang
- Department of Basic Medicine, Zhangzhou Health Vocational College, Zhangzhou 363000, Fujian Province, China
| | - Wenxin Xu
- Department of Medical Technology/Collaborative Innovation Center for Translation Medical Testing and Application Technology, Zhangzhou Health Vocational College, Zhangzhou 363000, Fujian Province, China
| | - Deqing Luo
- Department of Orthopaedic Surgery, Dongnan Hospital of Xiamen University, School of Medicine, Xiamen University, Zhangzhou 363000, Fujian Province, China
| | - Chunbin Zhang
- Department of Medical Technology/Collaborative Innovation Center for Translation Medical Testing and Application Technology, Zhangzhou Health Vocational College, Zhangzhou 363000, Fujian Province, China
| |
Collapse
|
5
|
Pecoraro V, Cuccorese M, Trenti T. Genetic polymorphisms of ACE1, ACE2, IFTM3, TMPRSS2 and TNFα genes associated with susceptibility and severity of SARS-CoV-2 infection: a systematic review and meta-analysis. Clin Exp Med 2023; 23:3251-3264. [PMID: 37055652 PMCID: PMC10101542 DOI: 10.1007/s10238-023-01038-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/01/2023] [Indexed: 04/15/2023]
Abstract
BACKGROUND Some human polymorphisms of ACE1, ACE2, IFITM3, TMPRSS2 and TNFα genes may have an effect on the susceptibility to SARS-CoV-2 infection and increase the risk to develop severe COVID-19. We conducted a systematic review of current evidence to investigate the association of genetic variants of these genes with the susceptibility to virus infection and patient prognosis. METHODS We systematically searched Medline, Embase and The Cochrane Library for articles published until May 2022, and included observational studies covering genetic association of ACE1, ACE2, IFITM3, TMPRSS2 and TNFα genes with COVID-19 susceptibility or prognosis. We evaluated the methodological quality of included studies, and pooled data as convenient in meta-analysis (MA). Odds ratio (OR) values and 95% confidence intervals were calculated. RESULTS We included 35 studies (20 on ACE, 5 each on IFITM3, TMPRSS2, TNFα), enrolling 21,452 participants, of them 9401 were COVID-19 confirmed cases. ACE1 rs4646994 and rs1799752, ACE2 rs2285666, TMPRSS2 rs12329760, IFITM3 rs12252 and TNFα rs1800629 were identifies as common polymorphisms. Our MA showed an association between genetic polymorphisms and susceptibility to SARS-CoV-2 infection for IFITM3 rs12252 CC (OR 5.67) and CT (OR 1.64) genotypes. Furthermore, MA uncovered that both ACE DD (OR 1.27) and IFITM3 CC (OR 2.26) genotypes carriers had a significantly increased risk of developing severe COVID-19. DISCUSSION These results provide a critical evaluation of genetic polymorphisms as predictors in SARS-CoV-2 infection. ACE1 DD and IFITM3 CC polymorphisms would lead to a genetic predisposition for severe lung injury in patients with COVID-19.
Collapse
Affiliation(s)
- Valentina Pecoraro
- Department of Laboratory Medicine and Pathology, Azienda USL of Modena, Modena, Italy
| | - Michela Cuccorese
- Department of Laboratory Medicine and Pathology, Azienda USL of Modena, Modena, Italy
| | - Tommaso Trenti
- Department of Laboratory Medicine and Pathology, Azienda USL of Modena, Modena, Italy
| |
Collapse
|
6
|
Neves RL, Branquinho J, Arata JG, Bittencourt CA, Gomes CP, Riguetti M, da Mata GF, Fernandes DE, Icimoto MY, Kirsztajn GM, Pesquero JB. ACE2, ACE, DPPIV, PREP and CAT L enzymatic activities in COVID-19: imbalance of ACE2/ACE ratio and potential RAAS dysregulation in severe cases. Inflamm Res 2023; 72:1719-1731. [PMID: 37537367 DOI: 10.1007/s00011-023-01775-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/07/2023] [Accepted: 07/27/2023] [Indexed: 08/05/2023] Open
Abstract
OBJECTIVE AND DESIGN Circulating enzymatic activity and RAAS regulation in severe cases of COVID-19 remains unclear, therefore we measured the serum activity of several proteases as potential targets to control the SARS-CoV-2 infection. MATERIAL OR SUBJECTS 152 patients with COVID-19-like symptoms were grouped according to the severity of symptoms (COVID-19 negative, mild, moderate and severe). METHODS Serum samples of COVID-19 patients and controls were subjected to biochemical analysis and enzymatic assays of ACE2, ACE, DPPIV, PREP and CAT L. One-way ANOVA and multivariate logistic regression analysis were used. Statistical significance was accepted at p < 0.05. RESULTS We detected a positive correlation among comorbidities, higher C-reactive protein (CRP) and D-dimer levels with disease severity. Enzymatic assays revealed an increase in serum ACE2 and CAT L activities in severe COVID-19 patients, while ACE, DPPIV and PREP activities were significantly reduced. Notably, analysis of ACE2/ACE activity ratio suggests a possible imbalance of ANG II/ANG(1-7) ratio, in a positive association with the disease severity. CONCLUSION Our findings reveal a correlation between proteases activity and the severity of COVID-19. These enzymes together contribute to the activation of pro-inflammatory pathways, trigger a systemic activation of inflammatory mediators, leading to a RAAS dysregulation and generating a significant damage in several organs, contributing to poor outcomes of severe cases.
Collapse
Affiliation(s)
- Raquel Leão Neves
- Department of Biophysics, Center for Research and Molecular Diagnostic of Genetic Diseases, Federal University of São Paulo, São Paulo, Brazil
| | - Jéssica Branquinho
- Department of Biophysics, Center for Research and Molecular Diagnostic of Genetic Diseases, Federal University of São Paulo, São Paulo, Brazil
| | - Júlia Galanakis Arata
- Department of Biophysics, Center for Research and Molecular Diagnostic of Genetic Diseases, Federal University of São Paulo, São Paulo, Brazil
| | - Clarissa Azevedo Bittencourt
- Department of Biophysics, Center for Research and Molecular Diagnostic of Genetic Diseases, Federal University of São Paulo, São Paulo, Brazil
| | - Caio Perez Gomes
- Department of Biophysics, Center for Research and Molecular Diagnostic of Genetic Diseases, Federal University of São Paulo, São Paulo, Brazil
| | - Michelle Riguetti
- Division of Nephrology, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Gustavo Ferreira da Mata
- Division of Nephrology, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | | | | | | | - João Bosco Pesquero
- Department of Biophysics, Center for Research and Molecular Diagnostic of Genetic Diseases, Federal University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
7
|
Gupta K, Kaur G, Pathak T, Banerjee I. Systematic review and meta-analysis of human genetic variants contributing to COVID-19 susceptibility and severity. Gene 2022; 844:146790. [PMID: 35987511 PMCID: PMC9384365 DOI: 10.1016/j.gene.2022.146790] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/25/2022] [Accepted: 08/05/2022] [Indexed: 12/12/2022]
Abstract
The COVID-19 pandemic has spawned global health crisis of unprecedented magnitude, claiming millions of lives and pushing healthcare systems in many countries to the brink. Among several factors that contribute to an increased risk of COVID-19 and progression to exacerbated manifestations, host genetic landscape is increasingly being recognized as a critical determinant of susceptibility/resistance to infection and a prognosticator of clinical outcomes in infected individuals. Recently, several case-control association studies investigated the influence of human gene variants on COVID-19 susceptibility and severity to identify the culpable mutations. However, a comprehensive synthesis of the recent advances in COVID-19 host genetics research was lacking, and the inconsistent findings of the association studies required reliable evaluation of the strength of association with greater statistical power. In this study, we embarked on a systematic search of all possible reports of genetic association with COVID-19 till April 07, 2022, and performed meta-analyses of all the genetic polymorphisms that were examined in at least three studies. After identifying a total of 84 studies that investigated the association of 130 polymorphisms in 61 genes, we performed meta-analyses of all the eligible studies. Seven genetic polymorphisms involving 15,550 cases and 444,007 controls were explored for association with COVID-19 susceptibility, of which, ACE1 I/D rs4646994/rs1799752, APOE rs429358, CCR5 rs333, and IFITM3 rs12252 showed increased risk of infection. Meta-analyses of 11 gene variants involving 6702 patients with severe COVID-19 and 8640 infected individuals with non-severe manifestations revealed statistically significant association of ACE2 rs2285666, ACE2 rs2106809, ACE2 rs2074192, AGTR1 rs5186, and TNFA rs1800629 with COVID-19 severity. Overall, our study presents a synthesis of evidence on all the genetic determinants implicated in COVID-19 to date, and provides evidence of correlation between the above polymorphisms with COVID-19 susceptibility and severity.
Collapse
Affiliation(s)
| | | | | | - Indranil Banerjee
- Cellular Virology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali (IISER Mohali), Sector 81, S.A.S Nagar, Mohali 140306, India.
| |
Collapse
|
8
|
Ishak A, Mehendale M, AlRawashdeh MM, Sestacovschi C, Sharath M, Pandav K, Marzban S. The association of COVID-19 severity and susceptibility and genetic risk factors: A systematic review of the literature. Gene 2022; 836:146674. [PMID: 35714803 PMCID: PMC9195407 DOI: 10.1016/j.gene.2022.146674] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/27/2022] [Accepted: 06/10/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND COVID-19 is associated with several risk factors such as distinct ethnicities (genetic ancestry), races, sexes, age, pre-existing comorbidities, smoking, and genetics. The authors aim to evaluate the correlation between variability in the host genetics and the severity and susceptibility towards COVID-19 in this study. METHODS Following the PRISMA guidelines, we retrieved all the relevant articles published until September 15, 2021, from two online databases: PubMed and Scopus. FINDINGS High-risk HLA haplotypes, higher expression of ACE polymorphisms, and several genes of cellular proteases such as TMPRSS2, FURIN, TLL-1 increase the risk of susceptibility and severity of COVID-19. In addition, upregulation of several genes encoding for both innate and acquired immune systems proteins, mainly CCR5, IFNs, TLR, DPPs, and TNF, positively correlate with COVID-19 severity. However, reduced expression or polymorphisms in genes affecting TLR and IFNλ increase COVID-19 severity. CONCLUSION Higher expression, polymorphisms, mutations, and deletions of several genes are linked with the susceptibility, severity, and clinical outcomes of COVID-19. Early treatment and vaccination of individuals with genetic predisposition could help minimize the severity and mortality associated with COVID-19.
Collapse
Affiliation(s)
- Angela Ishak
- Department of Research & Academic Affairs, Larkin Community Hospital, South Miami, Florida, USA.
| | - Meghana Mehendale
- Department of Research & Academic Affairs, Larkin Community Hospital, South Miami, Florida, USA
| | - Mousa M AlRawashdeh
- Department of Research & Academic Affairs, Larkin Community Hospital, South Miami, Florida, USA; European University Cyprus - School of Medicine, Nicosia, Cyprus
| | - Cristina Sestacovschi
- Department of Research & Academic Affairs, Larkin Community Hospital, South Miami, Florida, USA
| | - Medha Sharath
- Department of Research & Academic Affairs, Larkin Community Hospital, South Miami, Florida, USA; Bangalore Medical College and Research Institute, Bangalore, Karnataka, India
| | - Krunal Pandav
- Department of Research & Academic Affairs, Larkin Community Hospital, South Miami, Florida, USA
| | - Sima Marzban
- Department of Research & Academic Affairs, Larkin Community Hospital, South Miami, Florida, USA
| |
Collapse
|