1
|
Lebedev S, Kazakova T, Marshinskaia O. Influence of feed supplementation with probiotic and organic form of zinc on functional status of broiler chickens. Open Vet J 2024; 14:2181-2191. [PMID: 39553764 PMCID: PMC11563634 DOI: 10.5455/ovj.2024.v14.i9.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/07/2024] [Indexed: 11/19/2024] Open
Abstract
Background The increase in the intensity of agricultural production is associated with the action of various stress factors on the organism of birds, which can lead to negative consequences. Prevention of the development of stress conditions in farm birds, particularly broiler chickens, in industrial production, is the most important task facing scientists and practitioners. Aim The objective of this study was to investigate the effect of a combined probiotic preparation and zinc glycinate on the indicators of immunity, biochemical parameters, and antioxidant status. Methods The study was conducted on broilers of Arbor Acres cross: the birds in the negative control group received a balanced feed mixture, a mineral and vitamin premix without zinc; the positive control group treated with an injection of cyclophosphamide and received the balanced feed with the mineral and vitamin premix without zinc; in experimental group I, broilers was treated with the injection of cyclophosphamide and received balanced feed, probiotic and zinc glycinate; in experimental group II, broilers received balanced feed, probiotic and zinc glycinate. At the end of the experiment, some blood from the wing vein was collected for evaluation of hematological and biochemical blood parameters using automatic morphological and biochemical analyzers, evaluation of immune status by enzyme immunoassay, and antioxidant status by colorimetric method. Results It was found that the developed strategy nutrition leveled the effects of immunosuppression - there was an increase in the level of lymphocytes, interleukin-4, and interleukin-10; the level of cholesterol, triglycerides, glucose, and total protein (TP) tended to the control values; there was a significant increase in serum interleukin-2 and interferon gamma; increase in TP on the background of triglycerides decreased in broilers of experimental group II. An increase in the activity of superoxide dismutase and catalase against the background of a decrease in the level of malonic dialdehyde was revealed in the experimental groups. Conclusion The developed strategy of broiler chicken nutrition can be used for the successful protection of birds from immunodeficiency states, improvement of antioxidant status, and maintenance of complete protein and lipid metabolism.
Collapse
Affiliation(s)
- Svyatoslav Lebedev
- Federal Research Center of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, Orenburg, Russia
| | - Tatiana Kazakova
- Federal Research Center of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, Orenburg, Russia
| | - Olga Marshinskaia
- Federal Research Center of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, Orenburg, Russia
| |
Collapse
|
2
|
Jeon K, Song M, Lee J, Oh H, Song D, Chang S, An J, Cho H, Park S, Kim H, Cho J. Effects of single and complex probiotics in growing-finishing pigs and swine compost. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2024; 66:763-780. [PMID: 39165745 PMCID: PMC11331375 DOI: 10.5187/jast.2024.e88] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/02/2023] [Accepted: 08/11/2023] [Indexed: 08/22/2024]
Abstract
This study was conducted to supplement single and complex probiotics to investigate the effect on growing-finishing pigs and compost. In experiment 1, the 64 crossbred ([Landrace × Yorkshire] × Duroc) pigs with an initial body weight of 18.75 ± 0.33 kg and a birth of 63 days were assigned to a completely randomized four treatment groups based on the initial body weight (4 pigs in a pen with 4 replicate pens for each treatment). For 13 weeks, the dietary treatments were provided: 1) Control (CON; basal diet), 2) T1 (CON + 0.2% Bacillus subtilis), 3) T2 (CON + 0.2% Saccharomyces cerevisiae), 4) T3 (CON + 0.2% Bacillus subtilis + 0.2% Saccharomyces cerevisiae). In experiment 2, the pig manure was obtained from Chungbuk National University (Cheongju, Korea) swine farm. For 12 weeks, the supplementary treatments were provided: 1) CON, non-additive compost; 2) T1, spray Bacillus subtilis 10 g per 3.306 m2; 3) T2, spray Bacillus subtilis 40 g per 3.306 m2; 4) T3, spray Saccharomyces cerevisiae 10 g per 3.306 m2; 5) T4: spray Saccharomyces cerevisiae 40 g per 3.306 m2; 6) T5, spray Bacillus subtilis 5 g + Saccharomyces cerevisiae 5 g per 3.306 m2; 7) T6, spray Saccharomyces subtilis 20 g + S. cerevisiae 20 g per 3.306 m2 and there were 6 replicates each treatment. In experiment 1, During the overall experimental period, T3 showed significantly improved (p < 0.05) feed conversion ratio and average daily gain compared to other groups. In average maturity score, T3 showed significantly higher (p < 0.05) than other groups. Supplementing complex probiotics group improved (p < 0.05) H2S emissions and fecal microflora compared to the non-supplementing group. In experiment 2, additive probiotics groups had no effect (p > 0.05) on moisture content than the non-additive group at 9 and 12 weeks. T6 showed a significantly improved (p < 0.05) average maturity score at all periods and ammonia emissions at 1 week and 4 weeks compared to other groups. In summary, supplementation complex probiotics induced positive effects on both pigs and compost.
Collapse
Affiliation(s)
- Kyeongho Jeon
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| | - Minho Song
- Department of Animal Science and
Biotechnology, Chungnam National University, Daejeon 34134,
Korea
| | - Jihwan Lee
- Department of Poultry Science, University
of Georgia (UGA), Athens, GA 30602, USA
| | - Hanjin Oh
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| | - Dongcheol Song
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| | - Seyeon Chang
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| | - Jaewoo An
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| | - Hyunah Cho
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| | - Sehyun Park
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| | - Hyeunbum Kim
- Department of Animal Resource and Science,
Dankook University, Cheonan 31116, Korea
| | - Jinho Cho
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| |
Collapse
|
3
|
Jeon K, Song M, Lee J, Oh H, Song D, Chang S, An J, Cho H, Park S, Kim H, Cho J. Effects of single and complex probiotics in growing-finishing pigs and swine compost. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2024; 66:763-780. [PMID: 39165745 PMCID: PMC11331375 DOI: 10.5187/jast.2023.e88] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/02/2023] [Accepted: 08/11/2023] [Indexed: 10/24/2024]
Abstract
This study was conducted to supplement single and complex probiotics to investigate the effect on growing-finishing pigs and compost. In experiment 1, the 64 crossbred ([Landrace × Yorkshire] × Duroc) pigs with an initial body weight of 18.75 ± 0.33 kg and a birth of 63 days were assigned to a completely randomized four treatment groups based on the initial body weight (4 pigs in a pen with 4 replicate pens for each treatment). For 13 weeks, the dietary treatments were provided: 1) Control (CON; basal diet), 2) T1 (CON + 0.2% Bacillus subtilis), 3) T2 (CON + 0.2% Saccharomyces cerevisiae), 4) T3 (CON + 0.2% Bacillus subtilis + 0.2% Saccharomyces cerevisiae). In experiment 2, the pig manure was obtained from Chungbuk National University (Cheongju, Korea) swine farm. For 12 weeks, the supplementary treatments were provided: 1) CON, non-additive compost; 2) T1, spray Bacillus subtilis 10 g per 3.306 m2; 3) T2, spray Bacillus subtilis 40 g per 3.306 m2; 4) T3, spray Saccharomyces cerevisiae 10 g per 3.306 m2; 5) T4: spray Saccharomyces cerevisiae 40 g per 3.306 m2; 6) T5, spray Bacillus subtilis 5 g + Saccharomyces cerevisiae 5 g per 3.306 m2; 7) T6, spray Saccharomyces subtilis 20 g + S. cerevisiae 20 g per 3.306 m2 and there were 6 replicates each treatment. In experiment 1, During the overall experimental period, T3 showed significantly improved (p < 0.05) feed conversion ratio and average daily gain compared to other groups. In average maturity score, T3 showed significantly higher (p < 0.05) than other groups. Supplementing complex probiotics group improved (p < 0.05) H2S emissions and fecal microflora compared to the non-supplementing group. In experiment 2, additive probiotics groups had no effect (p > 0.05) on moisture content than the non-additive group at 9 and 12 weeks. T6 showed a significantly improved (p < 0.05) average maturity score at all periods and ammonia emissions at 1 week and 4 weeks compared to other groups. In summary, supplementation complex probiotics induced positive effects on both pigs and compost.
Collapse
Affiliation(s)
- Kyeongho Jeon
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| | - Minho Song
- Department of Animal Science and
Biotechnology, Chungnam National University, Daejeon 34134,
Korea
| | - Jihwan Lee
- Department of Poultry Science, University
of Georgia (UGA), Athens, GA 30602, USA
| | - Hanjin Oh
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| | - Dongcheol Song
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| | - Seyeon Chang
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| | - Jaewoo An
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| | - Hyunah Cho
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| | - Sehyun Park
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| | - Hyeunbum Kim
- Department of Animal Resource and Science,
Dankook University, Cheonan 31116, Korea
| | - Jinho Cho
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| |
Collapse
|
4
|
Hossain MM, Cho S, Kim IH. Achyranthes japonica extract as phytogenic feed additive enhanced nutrient digestibility and growth performance in broiler. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2024; 66:471-481. [PMID: 38975581 PMCID: PMC11222119 DOI: 10.5187/jast.2023.e56] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/02/2023] [Accepted: 06/15/2023] [Indexed: 07/09/2024]
Abstract
Achyranthes japonica extract (AJE) is derived from a medicinal plant Achyranthes japonica, known for its anti-inflammatory, antioxidant, and antimicrobial properties. AJE contains multiple bioactive compounds, including saponins, triterpenoids, phytoecdysteroids, 20-hydroxyecdysone, and inokosterone. The aim of this investigation was to examine the impact of AJE as a phytogenic feed additive on growth performance, nutrient digestibility, excreta microbial count, noxious gas emissions, breast meat quality in broilers. About three hundred and sixty, day-old broilers (Ross 308) were assigned into four treatments (five replication cages/treatment, and 18 birds/cage). Dietary treatments: CON, basal diet; 0.02% AJE, basal diet with 0.02%; 0.04% AJE, basal diet with 0.04% AJE, and 0.06% AJE, basal diet with 0.06% of AJE. Body weight gain increased linearly (p < 0.05) through the inclusion of AJE during days 7 to 21, 21 to 35, as well as the entire experimental period. Besides, feed intake increased (p < 0.05) linearly during days 21 to 35 and the entire experiment with the increased AJE doses in broiler diet. Dry matter digestibility was increased (p < 0.05) linearly along with increasing amounts of AJE. With increasing AJE supplementation, nitrogen and energy utilization tended to improve (p < 0.10). In summary, the addition of AJE in the corn-soybean meal diet led to higher body weight gain and increased feed intake as well as enhanced nutrient digestibility, among them the highest improvement was found in 0.06%-AJE indicating the acceptance of AJE as a phytogenic feed additive.
Collapse
Affiliation(s)
- Md Mortuza Hossain
- Department of Animal Resource and Science, Dankook University, Cheonan 31116, Korea
| | - Sungbo Cho
- Department of Animal Resource and Science, Dankook University, Cheonan 31116, Korea
| | - In Ho Kim
- Department of Animal Resource and Science, Dankook University, Cheonan 31116, Korea
| |
Collapse
|
5
|
Choi Y, Kwak MJ, Kang MG, Kang AN, Lee W, Mun D, Choi H, Park J, Eor JY, Song M, Kim JN, Oh S, Kim Y. Molecular characterization and environmental impact of newly isolated lytic phage SLAM_phiST1N3 in the Cornellvirus genus for biocontrol of a multidrug-resistant Salmonella Typhimurium in the swine industry chain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171208. [PMID: 38408652 DOI: 10.1016/j.scitotenv.2024.171208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/21/2024] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
Salmonella Typhimurium is a highly lethal pathogenic bacterium in weaned piglets, causing significant treatment costs and economic losses in the swine industry. Additionally, due to its ability to induce zoonotic diseases, resulting in harm to humans through the transmission of the pathogen from pork, it presents a serious public health issue. Bacteriophages (phages), viruses that infect specific bacterial strains, have been proposed as an alternative to antibiotics for controlling pathogenic bacteria. In this study, we isolated SLAM_phiST1N3, a phage infecting a multidrug-resistant (MDR) S. Typhimurium wild-type strain isolated from diseased pigs. First, comparative genomics and phylogenetic analysis revealed that SLAM_phiST1N3 belongs to the Cornellvirus genus. Moreover, utilizing a novel classification approach introduced in this study, SLAM_phiST1N3 was classified at the species level. Host range experiments demonstrated that SLAM_phiST1N3 did not infect other pathogenic bacteria or probiotics derived from pigs or other livestock. While complete eradication of Salmonella was not achievable in the liquid inhibition assay, surprisingly, we succeeded in largely eliminating Salmonella in the FIMM analysis, a gut simulation system using weaned piglet feces. Furthermore, using the C. elegans model, we showcased the potential of SLAM_phiST1N3 to prevent S. Typhimurium infection in living organisms. In addition, it was confirmed that bacterial control could be achieved when phage was applied to Salmonella-contaminated pork. pH and temperature stability experiments demonstrated that SLAM_phiST1N3 can endure swine industry processes and digestive conditions. In conclusion, SLAM_phiST1N3 demonstrates potential environmental impact as a substance for Salmonella prevention across various aspects of the swine industry chain.
Collapse
Affiliation(s)
- Youbin Choi
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Min-Jin Kwak
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Min-Geun Kang
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea
| | - An Na Kang
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Woogji Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Daye Mun
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyejin Choi
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeongkuk Park
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Ju Young Eor
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Minho Song
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jong Nam Kim
- Department of Food Science & Nutrition, Dongseo University, Busan 47011, Republic of Korea
| | - Sangnam Oh
- Department of Functional Food and Biotechnology, Jeonju University, Jeonju 55069, Republic of Korea.
| | - Younghoon Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
6
|
Hossain MM, Cho SB, Kim IH. Strategies for reducing noxious gas emissions in pig production: a comprehensive review on the role of feed additives. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2024; 66:237-250. [PMID: 38628679 PMCID: PMC11016746 DOI: 10.5187/jast.2024.e15] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 04/19/2024]
Abstract
The emission of noxious gases is a significant problem in pig production, as it can lead to poor production, welfare concerns, and environmental pollution. The noxious gases are the gasses emitted from the pig manure that contribute to air pollution. The increased concentration of various harmful gasses can pose health risks to both animals and humans. The major gases produced in the pig farm include methane, hydrogen sulfide, carbon dioxide, ammonia, sulfur dioxide and volatile fatty acids, which are mainly derived from the fermentation of undigested or poorly digested nutrients. Nowadays research has focused on more holistic approaches to obtain a healthy farm environment that helps animal production. The use of probiotics, prebiotics, dietary enzymes, and medicinal plants in animal diets has been explored as a means of reducing harmful gas emissions. This review paper focuses on the harmful gas emissions from pig farm, the mechanisms of gas production, and strategies for reducing these emissions. Additionally, various methods for reducing gas in pigs, including probiotic interventions; prebiotic interventions, dietary enzymes supplementation, and use of medicinal plants and organic acids are discussed. Overall, this paper provides a comprehensive review of the current state of knowledge on reducing noxious gas in pigs and offers valuable insights for pig producers, nutritionists, and researchers working in this area.
Collapse
Affiliation(s)
- Md Mortuza Hossain
- Department of Animal Resource and Science,
Dankook University, Cheonan 31116, Korea
| | - Sung Bo Cho
- Department of Animal Resource and Science,
Dankook University, Cheonan 31116, Korea
| | - In Ho Kim
- Department of Animal Resource and Science,
Dankook University, Cheonan 31116, Korea
| |
Collapse
|
7
|
Choi Y, Lee W, Kwon JG, Kang A, Kwak MJ, Eor JY, Kim Y. The current state of phage therapy in livestock and companion animals. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2024; 66:57-78. [PMID: 38618037 PMCID: PMC11007465 DOI: 10.5187/jast.2024.e5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/06/2024] [Accepted: 01/06/2024] [Indexed: 04/16/2024]
Abstract
In a global context, bacterial diseases caused by pathogenic bacteria have inflicted sustained damage on both humans and animals. Although antibiotics initially appeared to offer an easy treatment for most bacterial infections, the recent rise of multidrug-resistant bacteria, stemming from antibiotic misuse, has prompted regulatory measures to control antibiotic usage. Consequently, various alternatives to antibiotics are being explored, with a particular focus on bacteriophage (phage) therapy for treating bacterial diseases in animals. Animals are broadly categorized into livestock, closely associated with human dietary habits, and companion animals, which have attracted increasing attention. This study highlights phage therapy cases targeting prominent bacterial strains in various animals. In recent years, research on bacteriophages has gained considerable attention, suggesting a promising avenue for developing alternative substances to antibiotics, particularly crucial for addressing challenging bacterial diseases in the future.
Collapse
Affiliation(s)
- Youbin Choi
- Department of Agricultural Biotechnology
and Research Institute of Agriculture and Life Science, Seoul National
University, Seoul 08826, Korea
| | - Woongji Lee
- Department of Agricultural Biotechnology
and Research Institute of Agriculture and Life Science, Seoul National
University, Seoul 08826, Korea
| | - Joon-Gi Kwon
- Department of Agricultural Biotechnology
and Research Institute of Agriculture and Life Science, Seoul National
University, Seoul 08826, Korea
| | - Anna Kang
- Department of Agricultural Biotechnology
and Research Institute of Agriculture and Life Science, Seoul National
University, Seoul 08826, Korea
| | - Min-Jin Kwak
- Department of Agricultural Biotechnology
and Research Institute of Agriculture and Life Science, Seoul National
University, Seoul 08826, Korea
| | - Ju-Young Eor
- Department of Agricultural Biotechnology
and Research Institute of Agriculture and Life Science, Seoul National
University, Seoul 08826, Korea
| | - Younghoon Kim
- Department of Agricultural Biotechnology
and Research Institute of Agriculture and Life Science, Seoul National
University, Seoul 08826, Korea
| |
Collapse
|