1
|
Chatzikalil E, Arvanitakis K, Kalopitas G, Florentin M, Germanidis G, Koufakis T, Solomou EE. Hepatic Iron Overload and Hepatocellular Carcinoma: New Insights into Pathophysiological Mechanisms and Therapeutic Approaches. Cancers (Basel) 2025; 17:392. [PMID: 39941760 PMCID: PMC11815926 DOI: 10.3390/cancers17030392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/19/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
Hepatocellular carcinoma (HCC), the most common form of primary liver cancer, is rising in global incidence and mortality. Metabolic dysfunction-associated steatotic liver disease (MASLD), one of the leading causes of chronic liver disease, is strongly linked to metabolic conditions that can progress to liver cirrhosis and HCC. Iron overload (IO), whether inherited or acquired, results in abnormal iron hepatic deposition, significantly impacting MASLD development and progression to HCC. While the pathophysiological connections between hepatic IO, MASLD, and HCC are not fully understood, dysregulation of glucose and lipid metabolism and IO-induced oxidative stress are being investigated as the primary drivers. Genomic analyses of inherited IO conditions reveal inconsistencies in the association of certain mutations with liver malignancies. Moreover, hepatic IO is also associated with hepcidin dysregulation and activation of ferroptosis, representing promising targets for HCC risk assessment and therapeutic intervention. Understanding the relationship between hepatic IO, MASLD, and HCC is essential for advancing clinical strategies against liver disease progression, particularly with recent IO-targeted therapies showing potential at improving liver biochemistry and insulin sensitivity. In this review, we summarize the current evidence on the pathophysiological association between hepatic IO and the progression of MASLD to HCC, underscoring the importance of early diagnosis, risk stratification, and targeted treatment for these interconnected conditions.
Collapse
Affiliation(s)
- Elena Chatzikalil
- Division of Pediatric Hematology-Oncology, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece;
- “Aghia Sofia” Children’s Hospital ERN-PeadCan Center, 11527 Athens, Greece
| | - Konstantinos Arvanitakis
- Division of Gastroenterology and Hepatology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, St. Kiriakidi 1, 54636 Thessaloniki, Greece; (K.A.); (G.K.); (G.G.)
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Georgios Kalopitas
- Division of Gastroenterology and Hepatology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, St. Kiriakidi 1, 54636 Thessaloniki, Greece; (K.A.); (G.K.); (G.G.)
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Matilda Florentin
- Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
| | - Georgios Germanidis
- Division of Gastroenterology and Hepatology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, St. Kiriakidi 1, 54636 Thessaloniki, Greece; (K.A.); (G.K.); (G.G.)
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Theocharis Koufakis
- Second Propaedeutic Department of Internal Medicine, Hippokration General Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece
| | - Elena E. Solomou
- Department of Internal Medicine, University of Patras Medical School, 26500 Rion, Greece
| |
Collapse
|
2
|
Sharma V, Patial V. Insights into the molecular mechanisms of malnutrition-associated steatohepatitis: A review. Liver Int 2024; 44:2156-2173. [PMID: 38775001 DOI: 10.1111/liv.15932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 08/10/2024]
Abstract
Malnutrition is a public health epidemic mainly targeting poverty-stricken people, young ones, older people, pregnant women, and individuals with metabolic disorders. Severe malnutrition is linked with several metabolic defects, such as hepatic dysfunction, hypertension, cardiovascular disease, and osteoarthritis. The proper functioning of the liver plays a crucial role in ensuring the supply of nutrients to the body. Consequently, inadequate nutrition can lead to severe periportal hepatic steatosis due to compromised mitochondrial and peroxisome functions. Reduced protein intake disrupts essential metabolic processes like the TCA cycle, oxidative phosphorylation, and β-oxidation, ultimately affecting ATP production. Furthermore, this can trigger a cascade of events, including disturbances in amino acid metabolism, iron metabolism, and gut microbiota, which activate genes involved in de novo lipogenesis, leading to the accumulation of lipids in the liver. The condition, in prolonged cases, progresses to steatohepatitis and liver fibrosis. Limited therapeutic solutions are available; however, few dietary supplements and drugs have demonstrated positive effects on the growth and health of malnourished individuals. These supplements improve parameters such as inflammatory and oxidative status, reduce triglyceride accumulation, enhance insulin sensitivity, and downregulate gene expression in hepatic lipid metabolism. This review elucidates the various mechanisms involved in malnutrition-associated steatohepatitis and provides an overview of the available approaches for treating this condition.
Collapse
Affiliation(s)
- Vinesh Sharma
- Pharmacology and Toxicology Laboratory, Dietetics & Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Vikram Patial
- Pharmacology and Toxicology Laboratory, Dietetics & Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
3
|
Sun K, Zhao JV, Nelson EAS, Wong VWS, Lam HSHS, Hui LL. Iron status and non-alcoholic fatty liver disease: A Mendelian randomization study. Nutrition 2024; 118:112295. [PMID: 38103266 DOI: 10.1016/j.nut.2023.112295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 10/10/2023] [Accepted: 10/30/2023] [Indexed: 12/18/2023]
Abstract
OBJECTIVES The aim of this study was to assess the association of genetically determined iron status with the risk for non-alcoholic fatty liver disease (NAFLD) using two-sample Mendelian randomization (MR) analysis. METHODS We applied single nucleotide polymorphisms (SNPs) associated at genome-wide significance with iron status proxied by serum iron, ferritin, transferrin, and transferrin saturation from the Genetics of Iron status Consortium (N = 48 793), in a genome-wide association study of 1664 NAFLD cases and 400 055 controls from the United Kingdom Biobank. A SNP associated with multiple markers of iron status was only applied to one marker with the strongest association in the main analysis. Their effects on NAFLD were calculated using inverse variance weighting after excluding SNPs associated with alkaline phosphatase and lipid metabolism. RESULTS The risk for NAFLD is negatively associated with genetically predicted serum transferrin level with a 20% reduction in NAFLD risk per SD (0.65g/L) increase in transferrin (95% confidence interval [CI], 0.66-0.97), and trending positive association with transferrin saturation (odds ratio [OR], 1.50; 95% CI, 0.96-2.35) but it was not associated with serum iron (OR, 0.90; 95% CI, 0.63-1.29) and ferritin (OR, 1.33; 95% CI, 0.54-3.30). CONCLUSIONS MR analysis provided evidence that genetically predicted higher serum transferrin, indicating lower iron status, may be protective against NAFLD, whereas higher transferrin saturation, indicating higher iron status, might increase the risk for NAFLD and its pathogenesis.
Collapse
Affiliation(s)
- Kexin Sun
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Jie V Zhao
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China
| | - Edmund Anthony Severn Nelson
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China; School of Medicine, The Chinese University of Hong Kong, Shenzhen, PR China
| | - Vincent Wai Sun Wong
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Hugh Simon Hung San Lam
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Lai Ling Hui
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China; Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong SAR, PR China.
| |
Collapse
|
4
|
Jo D, Jung YS, Song J. Lipocalin-2 Secreted by the Liver Regulates Neuronal Cell Function Through AKT-Dependent Signaling in Hepatic Encephalopathy Mouse Model. Clin Nutr Res 2023; 12:154-167. [PMID: 37214781 PMCID: PMC10193436 DOI: 10.7762/cnr.2023.12.2.154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 05/24/2023] Open
Abstract
Hepatic encephalopathy (HE) associated with liver failure is accompanied by hyperammonemia, severe inflammation, depression, anxiety, and memory deficits as well as liver injury. Recent studies have focused on the liver-brain-inflammation axis to identify a therapeutic solution for patients with HE. Lipocalin-2 is an inflammation-related glycoprotein that is secreted by various organs and is involved in cellular mechanisms including iron homeostasis, glucose metabolism, cell death, neurite outgrowth, and neurogenesis. In this study, we investigated that the roles of lipocalin-2 both in the brain cortex of mice with HE and in Neuro-2a (N2A) cells. We detected elevated levels of lipocalin-2 both in the plasma and liver in a bile duct ligation mouse model of HE. We confirmed changes in cytokine expression, such as interleukin-1β, cyclooxygenase 2 expression, and iron metabolism related to gene expression through AKT-mediated signaling both in the brain cortex of mice with HE and N2A cells. Our data showed negative effects of hepatic lipocalin-2 on cell survival, iron homeostasis, and neurite outgrowth in N2A cells. Thus, we suggest that regulation of lipocalin-2 in the brain in HE may be a critical therapeutic approach to alleviate neuropathological problems focused on the liver-brain axis.
Collapse
Affiliation(s)
- Danbi Jo
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Korea
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Korea
| | - Yoon Seok Jung
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Korea
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Korea
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Korea
| |
Collapse
|
5
|
Chen H, Zhao W, Yan X, Huang T, Yang A. Overexpression of Hepcidin Alleviates Steatohepatitis and Fibrosis in a Diet-induced Nonalcoholic Steatohepatitis. J Clin Transl Hepatol 2022; 10:577-588. [PMID: 36062292 PMCID: PMC9396326 DOI: 10.14218/jcth.2021.00289] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/22/2021] [Accepted: 09/28/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND AND AIMS Iron overload can contribute to the progression of nonalcoholic fatty liver disease (NAFLD) to nonalcoholic steatohepatitis (NASH). Hepcidin (Hamp), which is primarily synthesized in hepatocytes, is a key regulator of iron metabolism. However, the role of Hamp in NASH remains unclear. Therefore, we aimed to elucidate the role of Hamp in the pathophysiology of NASH. METHODS Male mice were fed a choline-deficient L-amino acid-defined (CDAA) diet for 16 weeks to establish the mouse NASH model. A choline-supplemented amino acid-defined (CSAA) diet was used as the control diet. Recombinant adeno-associated virus genome 2 serotype 8 vector expressing Hamp (rAAV2/8-Hamp) or its negative control (rAAV2/8-NC) was administered intravenously at week 8 of either the CDAA or CSAA diet. RESULTS rAAV2/8-Hamp treatment markedly decreased liver weight and improved hepatic steatosis in the CDAA-fed mice, accompanied by changes in lipogenesis-related genes and adiponectin expression. Compared with the control group, rAAV2/8-Hamp therapy attenuated liver damage, with mice exhibiting reduced histological NAFLD inflammation and fibrosis, as well as lower levels of liver enzymes. Moreover, α-smooth muscle actin-positive activated hepatic stellate cells (HSCs) and CD68-postive macrophages increased in number in the CDAA-fed mice, which was reversed by rAAV2/8-Hamp treatment. Consistent with the in vivo findings, overexpression of Hamp increased adiponectin expression in hepatocytes and Hamp treatment inhibited HSC activation. CONCLUSIONS Overexpression of Hamp using rAAV2/8-Hamp robustly attenuated liver steatohepatitis, inflammation, and fibrosis in an animal model of NASH, suggesting a potential therapeutic role for Hamp.
Collapse
Affiliation(s)
- Hui Chen
- Digestive Department, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Correspondence to: Hui Chen, Digestive Department, Beijing Chaoyang Hospital, Capital Medical University, No. 5 Jingyuan Road, Shijingshan District, Beijing 100043, China. Tel: +86-10-51718484, Fax: +86-10-83165944, E-mail: . Aiting Yang, Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong’an Road, Xicheng District, Beijing 100050, China. ORCID: https://orcid.org/0000-0002-5671-696X. Tel: +86-10-63139311, Fax: +86-10-83165944, E-mail:
| | - Wenshan Zhao
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Xuzhen Yan
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Tao Huang
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Aiting Yang
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center of Digestive Diseases, Beijing, China
- Beijing Clinical Medicine Institute, Beijing, China
- Correspondence to: Hui Chen, Digestive Department, Beijing Chaoyang Hospital, Capital Medical University, No. 5 Jingyuan Road, Shijingshan District, Beijing 100043, China. Tel: +86-10-51718484, Fax: +86-10-83165944, E-mail: . Aiting Yang, Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong’an Road, Xicheng District, Beijing 100050, China. ORCID: https://orcid.org/0000-0002-5671-696X. Tel: +86-10-63139311, Fax: +86-10-83165944, E-mail:
| |
Collapse
|