1
|
Mancino S, Boraso M, Galmozzi A, Serafini MM, De Fabiani E, Crestani M, Viviani B. Dose-dependent dual effects of HDAC inhibitors on glial inflammatory response. Sci Rep 2025; 15:12262. [PMID: 40211035 PMCID: PMC11986048 DOI: 10.1038/s41598-025-96241-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 03/26/2025] [Indexed: 04/12/2025] Open
Abstract
Neuroinflammation is defined as a process that includes cellular responses designed to protect the central nervous system from external influences, and it initiates in cases of extreme deviations from homeostasis. While it serves a protective role, excessive immune activation can lead to the release of neurotoxic factors, worsening disease progression. Histone deacetylases (HDACs) have been shown to modulate the expression of inflammatory genes by remodeling chromatin through the process of histone deacetylation. HDAC inhibitors (HDACi) alter histone acetylation and affect the transcription of genes involved in inflammatory pathways, making them promising therapeutic tools for the modulation of a variety of inflammatory diseases. However, their use is limited due to non-specific targeting and contradictory results. This study aimed to reconcile conflicting results and share insights on relevant HDACi in the inflammatory response induced by lipopolysaccharide (LPS), considering different exposure scenarios, cellular models, and associated molecular pathways. Specifically, the study evaluated the dose-dependent effects of two broad-spectrum HDACi, Trichostatin A (TSA) and Suberoylanilide Hydroxamic Acid (SAHA, Vorinostat), alongside selective inhibitors-MS-275 (Entinostat, class I), and MC1568 (class II)-on the expression and release of pro- and anti-inflammatory cytokines. Broad-spectrum HDAC inhibitors TSA and SAHA exhibited dose-dependent modulation of LPS-induced cytokine release. Co-treatment with TSA and LPS enhanced pro-inflammatory cytokines (TNF-α, IL-1β) and decreased IL10 in a dose-dependent manner at lower doses (≤ 10 nM), while high concentrations (100 nM) induced the anti-inflammatory IL-10. Pre-treatment with TSA led to a reduction in TNF-α levels induced by LPS, without affecting IL-1β or IL-10 levels. In contrast, the presence of TSA in LPS-triggered alveolar macrophages resulted in a decline in the production of both pro- and anti-inflammatory cytokine, irrespective of the TSA concentration. SAHA exhibited dual effects, enhancing TNF-α and IL-1β at nanomolar levels but suppressing TNF-α at micromolar doses in co-treated glial cells with LPS. Class-selective inhibitors highlighted distinct HDAC roles on LPS modulation: MS-275 reduced, while MC1568 enhanced, TNF-α release, alongside varied IL-1β and IL-10 modulation. To better understand the dual effects of SAHA, transcriptomic analysis of glial cells was conducted in the presence of LPS and low and high SAHA concentrations (100 nM or 5 µM). This analysis revealed a dose-dependent alteration in gene expression and pathway enrichment associated with cytokine signaling and immune regulation (e.g., JAK-STAT). Altogether, these findings reveal insights on the subtle, dose- and context-dependent role of HDACi in modulating glia inflammation.
Collapse
Affiliation(s)
- Samantha Mancino
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università Degli Studi Di Milano, Milan, Italy.
- Departamento de Bioengenharia E Instituto de Bioengenharia E Biociências, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
| | - Mariaserena Boraso
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università Degli Studi Di Milano, Milan, Italy
| | - Andrea Galmozzi
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università Degli Studi Di Milano, Milan, Italy
- Department of Biomolecular Chemistry School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Melania Maria Serafini
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università Degli Studi Di Milano, Milan, Italy
| | - Emma De Fabiani
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università Degli Studi Di Milano, Milan, Italy
| | - Maurizio Crestani
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università Degli Studi Di Milano, Milan, Italy
| | - Barbara Viviani
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università Degli Studi Di Milano, Milan, Italy.
| |
Collapse
|
2
|
Aartsma-Rus A. Histone deacetylase inhibition with givinostat: a multi-targeted mode of action with the potential to halt the pathological cascade of Duchenne muscular dystrophy. Front Cell Dev Biol 2025; 12:1514898. [PMID: 39834392 PMCID: PMC11743666 DOI: 10.3389/fcell.2024.1514898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/12/2024] [Indexed: 01/22/2025] Open
Abstract
Muscle repair and regeneration are complex processes. In Duchenne muscular dystrophy (DMD), these processes are disrupted by the loss of functional dystrophin, a key part of the transmembrane dystrophin-associated glycoprotein complex that stabilizes myofibers, indirectly leading to progressive muscle wasting, subsequent loss of ambulation, respiratory and cardiac insufficiency, and premature death. As part of the DMD pathology, histone deacetylase (HDAC) activity is constitutively increased, leading to epigenetic changes and inhibition of muscle regeneration factors, chronic inflammation, fibrosis, and adipogenesis. HDAC inhibition has consequently been investigated as a therapeutic approach for muscular dystrophies that, significantly, works independently from specific genetic mutations, making it potentially suitable for all patients with DMD. This review discusses how HDAC inhibition addresses DMD pathophysiology in a multi-targeted mode of action and summarizes the recent evidence on the rationale for HDAC inhibition with givinostat, which is now approved by the United States Food and Drug Administration for the treatment of DMD in patients aged 6 years and older.
Collapse
Affiliation(s)
- A. Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, Netherlands
| |
Collapse
|
3
|
Watson N, Kuppuswamy S, Ledford WL, Sukumari-Ramesh S. The role of HDAC3 in inflammation: mechanisms and therapeutic implications. Front Immunol 2024; 15:1419685. [PMID: 39050859 PMCID: PMC11266039 DOI: 10.3389/fimmu.2024.1419685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/10/2024] [Indexed: 07/27/2024] Open
Abstract
Histone deacetylases (HDACs) are critical regulators of inflammatory gene expression, and the efficacy of pan-HDAC inhibitors has been implicated in various disease conditions. However, it remains largely unclear how HDACs precisely regulate inflammation. To this end, evaluating the isoform-specific function of HDACs is critical, and the isoform-specific targeting could also circumvent the off-target effects of pan-HDAC inhibitors. This review provides an overview of the roles of HDAC3, a class I HDAC isoform, in modulating inflammatory responses and discusses the molecular mechanisms by which HDAC3 regulates inflammation associated with brain pathology, arthritis, cardiovascular diseases, lung pathology, allergic conditions, and kidney disorders. The articles also identify knowledge gaps in the field for future studies. Despite some conflicting reports, the selective inhibition of HDAC3 has been demonstrated to play a beneficial role in various inflammatory pathologies. Exploring the potential of HDAC3 inhibition to improve disease prognosis is a promising avenue requiring further investigation.
Collapse
Affiliation(s)
| | | | | | - Sangeetha Sukumari-Ramesh
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
4
|
Guarnera L, Bravo-Perez C, Visconte V. Immunotherapy in Acute Myeloid Leukemia: A Literature Review of Emerging Strategies. Bioengineering (Basel) 2023; 10:1228. [PMID: 37892958 PMCID: PMC10604866 DOI: 10.3390/bioengineering10101228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/05/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
In the last twenty years, we have witnessed a paradigm shift in the treatment and prognosis of acute myeloid leukemia (AML), thanks to the introduction of new efficient drugs or approaches to refine old therapies, such as Gemtuzumab Ozogamicin, CPX 3-5-1, hypomethylating agents, and Venetoclax, the optimization of conditioning regimens in allogeneic hematopoietic stem cell transplantation and the improvement of supportive care. However, the long-term survival of non-M3 and non-core binding factor-AML is still dismal. For this reason, the expectations for the recently developed immunotherapies, such as antibody-based therapy, checkpoint inhibitors, and chimeric antigen receptor strategies, successfully tested in other hematologic malignancies, were very high. The inherent characteristics of AML blasts hampered the development of these treatments, and the path of immunotherapy in AML has been bumpy. Herein, we provide a detailed review of potential antigenic targets, available data from pre-clinical and clinical trials, and future directions of immunotherapies in AML.
Collapse
Affiliation(s)
- Luca Guarnera
- Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (C.B.-P.); (V.V.)
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Carlos Bravo-Perez
- Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (C.B.-P.); (V.V.)
- Department of Hematology and Medical Oncology, Hospital Universitario Morales Meseguer, University of Murcia, IMIB-Pascual Parrilla, CIBERER—Instituto de Salud Carlos III, 30005 Murcia, Spain
| | - Valeria Visconte
- Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (C.B.-P.); (V.V.)
| |
Collapse
|
5
|
Banerjee N, Khan MS, Swapna M, Yadav S, Tiwari GJ, Jena SN, Patel JD, Manimekalai R, Kumar S, Dattamajuder SK, Kapur R, Koebernick JC, Singh RK. QTL mapping and identification of candidate genes linked to red rot resistance in sugarcane. 3 Biotech 2023; 13:82. [PMID: 36778768 PMCID: PMC9911584 DOI: 10.1007/s13205-023-03481-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 01/13/2023] [Indexed: 02/12/2023] Open
Abstract
Sugarcane (Saccharum species hybrid) is one of the most important commercial crops cultivated worldwide for products like white sugar, bagasse, ethanol, etc. Red rot is a major sugarcane disease caused by a hemi-biotrophic fungus, Colletotrichum falcatum Went., which can potentially cause a reduction in yield up to 100%. Breeding for red rot-resistant sugarcane varieties has become cumbersome due to its complex genome and frequent generation of new pathotypes of red rot fungus. In the present study, a genetic linkage map was developed using a selfed population of a popular sugarcane variety CoS 96268. A QTL linked to red rot resistance (qREDROT) was identified, which explained 26% of the total phenotypic variation for the trait. A genotype-phenotype network analysis performed to account for epistatic interactions, identified the key markers involved in red rot resistance. The differential expression of the genes located in the genomic region between the two flanking markers of the qREDROT as well as in the vicinity of the markers identified through the genotype-phenotype network analysis in a set of contrasting genotypes for red rot infection further confirmed the mapping results. Further, the expression analysis revealed that the plant defense-related gene coding 26S protease regulatory subunit is strongly associated with the red rot resistance. The findings can help in the screening of disease resistant genotypes for developing red rot-resistant varieties of sugarcane. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03481-7.
Collapse
Affiliation(s)
- Nandita Banerjee
- ICAR-Indian Institute of Sugarcane Research, Raibareli Road, P.O. Dilkusha, Lucknow, 226002 India
| | - Mohammad Suhail Khan
- ICAR-Indian Institute of Sugarcane Research, Raibareli Road, P.O. Dilkusha, Lucknow, 226002 India
| | - M. Swapna
- ICAR-Indian Institute of Sugarcane Research, Raibareli Road, P.O. Dilkusha, Lucknow, 226002 India
| | - Sonia Yadav
- ICAR-Indian Institute of Sugarcane Research, Raibareli Road, P.O. Dilkusha, Lucknow, 226002 India
| | - Gopal Ji Tiwari
- Plant Molecular Biology Laboratory, CSIR-National Botanical Research Institute, Lucknow, 226001 India
| | - Satya N. Jena
- Plant Molecular Biology Laboratory, CSIR-National Botanical Research Institute, Lucknow, 226001 India
| | - Jinesh D. Patel
- Department of Crop, Soil and Environmental Sciences, Auburn University, Auburn, AL 36849 USA
| | - R. Manimekalai
- Biotechnology Lab, Sugarcane Breeding Institute, Coimbatore, 641007 India
| | - Sanjeev Kumar
- ICAR-Indian Institute of Sugarcane Research, Raibareli Road, P.O. Dilkusha, Lucknow, 226002 India
| | - S. K. Dattamajuder
- ICAR-Indian Institute of Sugarcane Research, Raibareli Road, P.O. Dilkusha, Lucknow, 226002 India
| | - Raman Kapur
- ICAR-Indian Institute of Sugarcane Research, Raibareli Road, P.O. Dilkusha, Lucknow, 226002 India
| | - Jenny C. Koebernick
- Department of Crop, Soil and Environmental Sciences, Auburn University, Auburn, AL 36849 USA
| | - Ram K. Singh
- ICAR-Indian Institute of Sugarcane Research, Raibareli Road, P.O. Dilkusha, Lucknow, 226002 India
- Present Address: Crop Science Division, Indian Council of Agricultural Research, Krishi Bhawan, New Delhi, 110001 India
| |
Collapse
|
6
|
Zhang Y, Chen Y, Zhou J, Wang X, Ma L, Li J, Yang L, Yuan H, Pang D, Ouyang H. Porcine Epidemic Diarrhea Virus: An Updated Overview of Virus Epidemiology, Virulence Variation Patterns and Virus-Host Interactions. Viruses 2022; 14:2434. [PMID: 36366532 PMCID: PMC9695474 DOI: 10.3390/v14112434] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
The porcine epidemic diarrhea virus (PEDV) is a member of the coronavirus family, causing deadly watery diarrhea in newborn piglets. The global pandemic of PEDV, with significant morbidity and mortality, poses a huge threat to the swine industry. The currently developed vaccines and drugs are only effective against the classic GI strains that were prevalent before 2010, while there is no effective control against the GII variant strains that are currently a global pandemic. In this review, we summarize the latest progress in the biology of PEDV, including its transmission and origin, structure and function, evolution, and virus-host interaction, in an attempt to find the potential virulence factors influencing PEDV pathogenesis. We conclude with the mechanism by which PEDV components antagonize the immune responses of the virus, and the role of host factors in virus infection. Essentially, this review serves as a valuable reference for the development of attenuated virus vaccines and the potential of host factors as antiviral targets for the prevention and control of PEDV infection.
Collapse
Affiliation(s)
- Yuanzhu Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Yiwu Chen
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Jian Zhou
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Xi Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Lerong Ma
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Jianing Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Lin Yang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Hongming Yuan
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
- Chongqing Research Institute, Jilin University, Chongqing 401120, China
| | - Daxin Pang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
- Chongqing Research Institute, Jilin University, Chongqing 401120, China
- Chongqing Jitang Biotechnology Research Institute Co., Ltd., Chongqing 401120, China
| | - Hongsheng Ouyang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
- Chongqing Research Institute, Jilin University, Chongqing 401120, China
- Chongqing Jitang Biotechnology Research Institute Co., Ltd., Chongqing 401120, China
| |
Collapse
|
7
|
Efficacy of selective histone deacetylase 6 inhibition in mouse models of Pseudomonas aeruginosa infection: A new glimpse for reducing inflammation and infection in cystic fibrosis. Eur J Pharmacol 2022; 936:175349. [DOI: 10.1016/j.ejphar.2022.175349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 11/22/2022]
|
8
|
Dang F, Wei W. Targeting the acetylation signaling pathway in cancer therapy. Semin Cancer Biol 2022; 85:209-218. [PMID: 33705871 PMCID: PMC8423867 DOI: 10.1016/j.semcancer.2021.03.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/22/2021] [Accepted: 03/02/2021] [Indexed: 12/12/2022]
Abstract
Acetylation represents one of the major post-translational protein modifications, which introduces an acetyl functional group into amino acids such as the lysine residue to yield an acetate ester bond, neutralizing its positive charge. Regulation of protein functions by acetylation occurs in multiple ways, such as affecting protein stability, activity, localization, and interaction with other proteins or DNA. It has been well documented that the recruitment of histone acetyltransferases (HATs) and histone deacetylases (HDACs) to the transcriptional machinery can modulate histone acetylation status, which is directly involved in the dynamic regulation of genes controlling cell proliferation and division. Dysregulation of gene expression is involved in tumorigenesis and aberrant activation of histone deacetylases has been reported in several types of cancer. Moreover, there is growing body of evidence showing that acetylation is widely involved in non-histone proteins to impact their roles in various cellular processes including tumorigenesis. As such, small molecular compounds inhibiting HAT or HDAC enzymatic activities have been developed and investigated for therapeutic purpose. Here we review the recent progress in our understanding of protein acetylation and discuss the therapeutic potential of targeting the acetylation signaling pathway in cancer.
Collapse
Affiliation(s)
- Fabin Dang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
9
|
Mercury Induced Tissue Damage, Redox Metabolism, Ion Transport, Apoptosis, and Intestinal Microbiota Change in Red Swamp Crayfish (Procambarus clarkii): Application of Multi-Omics Analysis in Risk Assessment of Hg. Antioxidants (Basel) 2022; 11:antiox11101944. [PMID: 36290667 PMCID: PMC9598479 DOI: 10.3390/antiox11101944] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/22/2022] [Accepted: 09/24/2022] [Indexed: 11/22/2022] Open
Abstract
As one of the most toxic elements, mercury (Hg) is a widespread toxicant in aquatic environments. Crayfish are considered suitable for indicating the impact of heavy metals on aquatic crustaceans. Nevertheless, Hg toxicity on Procambarus clarkii is largely unknown. In this research, the acute Hg-induced alterations of biochemical responses, histopathology, hepatopancreatic transcriptome, and intestinal microbiome of Procambarus clarkii were studied. Firstly, Hg induced significant changes in reactive oxygen species (ROS) and malonaldehyde (MDA) content as well as antioxidant enzyme activity. Secondly, Hg exposure caused structural damage to the hepatopancreas (e.g., vacuolization of the epithelium and dilatation of the lumen) as well as to the intestines (e.g., dysregulation of lamina epithelialises and extension of lamina proprias). Thirdly, after treatment with three different concentrations of Hg, RNA-seq assays of the hepatopancreas revealed a large number of differentially expressed genes (DEGs) linked to a specific function. Among the DEGs, a lot of redox metabolism- (e.g., ACOX3, SMOX, GPX3, GLO1, and P4HA1), ion transport- (e.g., MICU3, MCTP, PYX, STEAP3, and SLC30A2), drug metabolism- (e.g., HSP70, HSP90A, CYP2L1, and CYP9E2), immune response- (e.g., SMAD4, HDAC1, and DUOX), and apoptosis-related genes (e.g., CTSL, CASP7, and BIRC2) were identified, which suggests that Hg exposure may perturb the redox equilibrium, disrupt the ion homeostasis, weaken immune response and ability, and cause apoptosis. Fourthly, bacterial 16S rRNA gene sequencing showed that Hg exposure decreased bacterial diversity and dysregulated intestinal microbiome composition. At the phylum level, there was a marked decrease in Proteobacteria and an increase in Firmicutes after exposure to high levels of Hg. With regards to genus, abundances of Bacteroides, Dysgonomonas, and Arcobacter were markedly dysregulated after Hg exposures. Our findings elucidate the mechanisms involved in Hg-mediated toxicity in aquatic crustaceans at the tissue, cellular, molecular as well as microbial levels.
Collapse
|
10
|
Tang YC, Powell RT, Gottlieb A. Molecular pathways enhance drug response prediction using transfer learning from cell lines to tumors and patient-derived xenografts. Sci Rep 2022; 12:16109. [PMID: 36168036 PMCID: PMC9515168 DOI: 10.1038/s41598-022-20646-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 09/16/2022] [Indexed: 11/24/2022] Open
Abstract
Computational models have been successful in predicting drug sensitivity in cancer cell line data, creating an opportunity to guide precision medicine. However, translating these models to tumors remains challenging. We propose a new transfer learning workflow that transfers drug sensitivity predicting models from large-scale cancer cell lines to both tumors and patient derived xenografts based on molecular pathways derived from genomic features. We further compute feature importance to identify pathways most important to drug response prediction. We obtained good performance on tumors (AUROC = 0.77) and patient derived xenografts from triple negative breast cancers (RMSE = 0.11). Using feature importance, we highlight the association between ER-Golgi trafficking pathway in everolimus sensitivity within breast cancer patients and the role of class II histone deacetylases and interlukine-12 in response to drugs for triple-negative breast cancer. Pathway information support transfer of drug response prediction models from cell lines to tumors and can provide biological interpretation underlying the predictions, serving as a steppingstone towards usage in clinical setting.
Collapse
Affiliation(s)
- Yi-Ching Tang
- grid.267308.80000 0000 9206 2401Center for Precision Health, School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX 77030 USA
| | - Reid T. Powell
- grid.264756.40000 0004 4687 2082Center for Translational Cancer Research, Texas A&M University, Houston, TX 77030 USA
| | - Assaf Gottlieb
- Center for Precision Health, School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| |
Collapse
|
11
|
Kim YA, Hodzic E, Amgalan B, Saslafsky A, Wojtowicz D, Przytycka TM. Mutational Signatures as Sensors of Environmental Exposures: Analysis of Smoking-Induced Lung Tissue Remodeling. Biomolecules 2022; 12:biom12101384. [PMID: 36291592 PMCID: PMC9599238 DOI: 10.3390/biom12101384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/23/2022] Open
Abstract
Smoking is a widely recognized risk factor in the emergence of cancers and other lung diseases. Studies of non-cancer lung diseases typically investigate the role that smoking has in chronic changes in lungs that might predispose patients to the diseases, whereas most cancer studies focus on the mutagenic properties of smoking. Large-scale cancer analysis efforts have collected expression data from both tumor and control lung tissues, and studies have used control samples to estimate the impact of smoking on gene expression. However, such analyses may be confounded by tumor-related micro-environments as well as patient-specific exposure to smoking. Thus, in this paper, we explore the utilization of mutational signatures to study environment-induced changes of gene expression in control lung tissues from lung adenocarcinoma samples. We show that a joint computational analysis of mutational signatures derived from sequenced tumor samples, and the gene expression obtained from control samples, can shed light on the combined impact that smoking and tumor-related micro-environments have on gene expression and cell-type composition in non-neoplastic (control) lung tissue. The results obtained through such analysis are both supported by experimental studies, including studies utilizing single-cell technology, and also suggest additional novel insights. We argue that the study provides a proof of principle of the utility of mutational signatures to be used as sensors of environmental exposures not only in the context of the mutational landscape of cancer, but also as a reference for changes in non-cancer lung tissues. It also provides an example of how a database collected with the purpose of understanding cancer can provide valuable information for studies not directly related to the disease.
Collapse
|
12
|
Kim HJ, Booth G, Saunders L, Srivatsan S, McFaline-Figueroa JL, Trapnell C. Nuclear oligo hashing improves differential analysis of single-cell RNA-seq. Nat Commun 2022; 13:2666. [PMID: 35562344 PMCID: PMC9106741 DOI: 10.1038/s41467-022-30309-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/26/2022] [Indexed: 11/09/2022] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) offers a high-resolution molecular view into complex tissues, but suffers from high levels of technical noise which frustrates efforts to compare the gene expression programs of different cell types. "Spike-in" RNA standards help control for technical variation in scRNA-seq, but using them with recently developed, ultra-scalable scRNA-seq methods based on combinatorial indexing is not feasible. Here, we describe a simple and cost-effective method for normalizing transcript counts and subtracting technical variability that improves differential expression analysis in scRNA-seq. The method affixes a ladder of synthetic single-stranded DNA oligos to each cell that appears in its RNA-seq library. With improved normalization we explore chemical perturbations with broad or highly specific effects on gene regulation, including RNA pol II elongation, histone deacetylation, and activation of the glucocorticoid receptor. Our methods reveal that inhibiting histone deacetylation prevents cells from executing their canonical program of changes following glucocorticoid stimulation.
Collapse
Affiliation(s)
- Hyeon-Jin Kim
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Greg Booth
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Lauren Saunders
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Sanjay Srivatsan
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | | | - Cole Trapnell
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA. .,Brotman Baty Institute of Precision Medicine, Seattle, WA, 98195, USA. .,Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, 98195, USA.
| |
Collapse
|
13
|
Jeong HS, Kim HJ, Kim DH, Chung KW, Choi BO, Lee JE. Therapeutic Potential of CKD-504, a Novel Selective Histone Deacetylase 6 Inhibitor, in a Zebrafish Model of Neuromuscular Junction Disorders. Mol Cells 2022; 45:231-242. [PMID: 35356895 PMCID: PMC9001154 DOI: 10.14348/molcells.2022.5005] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/19/2021] [Accepted: 12/25/2021] [Indexed: 11/27/2022] Open
Abstract
The neuromuscular junction (NMJ), which is a synapse for signal transmission from motor neurons to muscle cells, has emerged as an important region because of its association with several peripheral neuropathies. In particular, mutations in GARS that affect the formation of NMJ result in Charcot-Marie-Tooth disease and distal hereditary motor neuropathy. These disorders are mainly considered to be caused by neuronal axon abnormalities; however, no treatment is currently available. Therefore, in order to determine whether the NMJ could be targeted to treat neurodegenerative disorders, we investigated the NMJ recovery effect of HDAC6 inhibitors, which have been used in the treatment of several peripheral neuropathies. In the present study, we demonstrated that HDAC6 inhibition was sufficient to enhance movement by restoring NMJ impairments observed in a zebrafish disease model. We found that CKD-504, a novel HDAC6 inhibitor, was effective in repairing NMJ defects, suggesting that treatment of neurodegenerative diseases via NMJ targeting is possible.
Collapse
Affiliation(s)
- Hui Su Jeong
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul 06351, Korea
| | - Hye Jin Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul 06351, Korea
| | - Deok-Ho Kim
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ki Wha Chung
- Department of Biological Sciences, Kongju National University, Gongju 32588, Korea
| | - Byung-Ok Choi
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul 06351, Korea
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Ji Eun Lee
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul 06351, Korea
- Samsung Biomedical Research Institute, Samsung Medical Center, Seoul 06351, Korea
| |
Collapse
|
14
|
Sixto-López Y, Correa-Basurto J. HDAC inhibition as neuroprotection in COVID-19 infection. Curr Top Med Chem 2022; 22:1369-1378. [PMID: 35240959 DOI: 10.2174/1568026622666220303113445] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/25/2022] [Accepted: 01/30/2022] [Indexed: 11/22/2022]
Abstract
The SARS-CoV-2 virus is responsible of COVID-19 affecting millions of humans around the world. COVID-19 shows diverse clinical symptoms (fever, cough, fatigue, diarrhea, body aches, headaches, anosmia and hyposmia). Approximately 30% of the patients with COVID-19 showed neurological symptoms, these going from mild to severe manifestations including headache, dizziness, impaired consciousness, encephalopathy, anosmia, hypogeusia, hyposmia, psychology and psychiatry among others. The neurotropism of SARS-CoV-2 virus explains its neuroinvasion provoking neurological damage as acute demyelination, neuroinflammation etc. At molecular level, the COVID-19 patients had higher levels of cytokines and chemokines known as cytokines storms which disrupt the blood brain barrier allowing the entrance of monocytes and lymphocytes causing neuroinflammation, neurodegeneration and demyelination. In addition, ischemic, hemorrhagic strokes, seizures and encephalopathy have been observed due to the proinflammatory cytokines. In this sense, to avoid or decrease neurological damage due to SARS-CoV-2 infection, an early neuroprotective management should be adopted. Several approaches can be used; one of them includes the use of HDAC inhibitors (HDACi) due to their neuroprotective effects. Also, the HDACi down regulates the pro-inflammatory cytokines (IL-6 and TNF- decreasing the neurotoxicity. HDACi can also avoid and prevent the entrance of the virus into the Central nervous System (CNS) as well as decrease the virus replication by downregulating the virus receptors. Here we review the mechanisms that could explain how the SARS-CoV-2 virus could reach the CNS, induce the neurological damage and symptoms, as well as the possibility to use HDACi as neuroprotective therapy.
Collapse
Affiliation(s)
- Yudibeth Sixto-López
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica (Laboratory for the Design and Development of New Drugs and Biotechnological Innovation), Escuela Superior de Medicina, Instituto Politécnico Nacional, México. Plan de San Luis y Díaz Mirón S/N, Casco de Santo Tomas, Miguel Hidalgo, Mexico City, Mexico
| | - José Correa-Basurto
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica (Laboratory for the Design and Development of New Drugs and Biotechnological Innovation), Escuela Superior de Medicina, Instituto Politécnico Nacional, México. Plan de San Luis y Díaz Mirón S/N, Casco de Santo Tomas, Miguel Hidalgo, Mexico City, Mexico
| |
Collapse
|
15
|
Bag A, Schultz A, Bhimani S, Stringfield O, Dominguez W, Mo Q, Cen L, Adeegbe D. Coupling the immunomodulatory properties of the HDAC6 inhibitor ACY241 with Oxaliplatin promotes robust anti-tumor response in non-small cell lung cancer. Oncoimmunology 2022; 11:2042065. [PMID: 35223194 PMCID: PMC8865306 DOI: 10.1080/2162402x.2022.2042065] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
While HDAC inhibitors have shown promise in hematologic cancers, their efficacy remains limited in solid cancers. In the present study, we evaluated the immunomodulatory properties of the HDAC6 inhibitor, Citarinostat (ACY241) on lung tumor immune compartment and its therapeutic potential in combination with Oxaliplatin. As a single agent, ACY241 treatment promoted increased infiltration, activation, proliferation, and effector function of T cells in the tumors of lung adenocarcinoma-bearing mice. Furthermore, tumor-associated macrophages exhibited downregulated expression of inhibitory ligands in favor of increased MHC and co-stimulatory molecules in addition to higher expression of CCL4 that favored increased T cell numbers in the tumors. RNA-sequencing of tumor-associated T cells and macrophages after ACY241 treatment revealed significant genomic changes that is consistent with improved T cell viability, reduced inhibitory molecular signature, and enhancement of macrophage capacity for improved T cell priming. Finally, coupling these ACY241-mediated effects with the chemotherapy drug Oxaliplatin led to significantly enhanced tumor-associated T cell effector functionality in lung cancer-bearing mice and in patient-derived tumors. Collectively, our studies highlight the molecular underpinnings of the expansive immunomodulatory activity of ACY241 and supports its suitability as a partner agent in combination with rationally selected chemotherapy agents for therapeutic intervention in NSCLC.
Collapse
Affiliation(s)
- Arup Bag
- Department of Immunology, H. Lee. Moffitt Cancer Center, Tampa, Florida, USA
| | - Andrew Schultz
- Department of Immunology, H. Lee. Moffitt Cancer Center, Tampa, Florida, USA
| | - Saloni Bhimani
- Department of Immunology, H. Lee. Moffitt Cancer Center, Tampa, Florida, USA
| | - Olya Stringfield
- Department of Thoracic Oncology, H. Lee. Moffitt Cancer Center, Tampa, FL, USA
| | - William Dominguez
- Small Animal Imaging Lab, H. Lee. Moffitt Cancer Center, Tampa, FL, USA
| | - Qianxing Mo
- Department of Biostatistics and Bioinformatics, H. Lee. Moffitt Cancer Center, Tampa, FL, USA
| | - Ling Cen
- Department of Biostatistics and Bioinformatics, H. Lee. Moffitt Cancer Center, Tampa, FL, USA
| | - Dennis Adeegbe
- Department of Immunology, H. Lee. Moffitt Cancer Center, Tampa, Florida, USA
| |
Collapse
|
16
|
Barone S, Cassese E, Alfano AI, Brindisi M, Summa V. Chasing a Breath of Fresh Air in Cystic Fibrosis (CF): Therapeutic Potential of Selective HDAC6 Inhibitors to Tackle Multiple Pathways in CF Pathophysiology. J Med Chem 2022; 65:3080-3097. [PMID: 35148101 PMCID: PMC8883472 DOI: 10.1021/acs.jmedchem.1c02067] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
![]()
Compelling new support
has been provided for histone deacetylase
isoform 6 (HDAC6) as a common thread in the generation of the dysregulated
proinflammatory and fibrotic phenotype in cystic fibrosis (CF). HDAC6
also plays a crucial role in bacterial clearance or killing as a direct
consequence of its effects on CF immune responses. Inhibiting HDAC6
functions thus eventually represents an innovative and effective strategy
to tackle multiple aspects of CF-associated lung disease. In this
Perspective, we not only showcase the latest evidence linking HDAC(6)
activity and expression with CF phenotype but also track the new dawn
of HDAC(6) modulators in CF and explore potentialities and future
perspectives in the field.
Collapse
Affiliation(s)
- Simona Barone
- Department of Pharmacy, Department of Excellence 2018-2022, School of Medicine and Surgery, University of Naples "Federico II", Via D. Montesano 49, I-80131 Naples, Italy
| | - Emilia Cassese
- Department of Pharmacy, Department of Excellence 2018-2022, School of Medicine and Surgery, University of Naples "Federico II", Via D. Montesano 49, I-80131 Naples, Italy
| | - Antonella Ilenia Alfano
- Department of Pharmacy, Department of Excellence 2018-2022, School of Medicine and Surgery, University of Naples "Federico II", Via D. Montesano 49, I-80131 Naples, Italy
| | - Margherita Brindisi
- Department of Pharmacy, Department of Excellence 2018-2022, School of Medicine and Surgery, University of Naples "Federico II", Via D. Montesano 49, I-80131 Naples, Italy
| | - Vincenzo Summa
- Department of Pharmacy, Department of Excellence 2018-2022, School of Medicine and Surgery, University of Naples "Federico II", Via D. Montesano 49, I-80131 Naples, Italy
| |
Collapse
|
17
|
Porcine Epidemic Diarrhea Virus Inhibits HDAC1 Expression To Facilitate Its Replication via Binding of Its Nucleocapsid Protein to Host Transcription Factor Sp1. J Virol 2021; 95:e0085321. [PMID: 34232065 DOI: 10.1128/jvi.00853-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is an enteric coronavirus causing acute intestinal infection in pigs, with high mortality often seen in neonatal pigs. The newborns rely on innate immune responses against invading pathogens because of lacking adaptive immunity. However, how PEDV disables the innate immunity of newborns toward severe infection remains unknown. We found that PEDV infection led to reduced expression of histone deacetylases (HDACs), especially HDAC1, in porcine IPEC-J2 cells. HDACs are considered important regulators of innate immunity. We hypothesized that PEDV interacts with certain host factors to regulate HDAC1 expression in favor of its replication. We show that HDAC1 acted as a negative regulator of PEDV replication in IPEC-J2 cells, as shown by chemical inhibition, gene knockout, and overexpression. A GC-box (GCCCCACCCCC) within the HDAC1 promoter region was identified for Sp1 binding in IPEC-J2 cells. Treatment of the cells with Sp1 inhibitor mithramycin A inhibited HDAC1 expression, indicating direct regulation of HDAC1 expression by Sp1. Of the viral proteins that were overexpressed in IPEC-J2 cells, the N protein was found to be present in the nuclei and more inhibitory to HDAC1 transcription. The putative nuclear localization sequence 261PKKNKSR267 contributed to its nuclear localization. The N protein interacted with Sp1 and interfered with its binding to the promoter region, thereby inhibiting its transcriptional activity for HDAC1 expression. Our findings reveal a novel mechanism of PEDV evasion of the host responses, offering implications for studying the infection processes of other coronaviruses. IMPORTANCE The enteric coronavirus porcine epidemic diarrhea virus (PEDV) causes fatal acute intestinal infection in neonatal pigs that rely on innate immune responses. Histone deacetylases (HDACs) play important roles in innate immune regulation. Our study found PEDV suppresses HDAC1 expression via the interaction of its N protein and porcine Sp1, which identified a novel mechanism of PEDV evasion of the host responses to benefit its replication. This study suggests that other coronaviruses, including SARS-CoV and SARS-CoV-2, also make use of their N proteins to intercept the host immune responses in favor of their infection.
Collapse
|
18
|
Karagiannis D, Rampias T. HDAC Inhibitors: Dissecting Mechanisms of Action to Counter Tumor Heterogeneity. Cancers (Basel) 2021; 13:3575. [PMID: 34298787 PMCID: PMC8307174 DOI: 10.3390/cancers13143575] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 12/17/2022] Open
Abstract
Intra-tumoral heterogeneity presents a major obstacle to cancer therapeutics, including conventional chemotherapy, immunotherapy, and targeted therapies. Stochastic events such as mutations, chromosomal aberrations, and epigenetic dysregulation, as well as micro-environmental selection pressures related to nutrient and oxygen availability, immune infiltration, and immunoediting processes can drive immense phenotypic variability in tumor cells. Here, we discuss how histone deacetylase inhibitors, a prominent class of epigenetic drugs, can be leveraged to counter tumor heterogeneity. We examine their effects on cellular processes that contribute to heterogeneity and provide insights on their mechanisms of action that could assist in the development of future therapeutic approaches.
Collapse
Affiliation(s)
- Dimitris Karagiannis
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Theodoros Rampias
- Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| |
Collapse
|
19
|
Kumar V, Kundu S, Singh A, Singh S. Understanding the role of histone deacetylase and their inhibitors in neurodegenerative disorders: Current targets and future perspective. Curr Neuropharmacol 2021; 20:158-178. [PMID: 34151764 PMCID: PMC9199543 DOI: 10.2174/1570159x19666210609160017] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/09/2021] [Accepted: 05/26/2021] [Indexed: 11/28/2022] Open
Abstract
Neurodegenerative diseases are a group of pathological conditions that cause motor inc-ordination (jerking movements), cognitive and memory impairments result from degeneration of neurons in a specific area of the brain. Oxidative stress, mitochondrial dysfunction, excitotoxicity, neuroinflammation, neurochemical imbalance and histone deacetylase enzymes (HDAC) are known to play a crucial role in neurodegeneration. HDAC is classified into four categories (class I, II, III and class IV) depending upon their location and functions. HDAC1 and 2 are involved in neurodegeneration, while HDAC3-11 and class III HDACs are beneficial as neuroprotective. HDACs are localized in different parts of the brain- HDAC1 (hippocampus and cortex), HDAC2 (nucleus), HDAC3, 4, 5, 7 and 9 (nucleus and cytoplasm), HDAC6 & HDAC7 (cytoplasm) and HDAC11 (Nucleus, cornus ammonis 1 and spinal cord). In pathological conditions, HDAC up-regulates glutamate, phosphorylation of tau, and glial fibrillary acidic proteins while down-regulating BDNF, Heat shock protein 70 and Gelsolin. Class III HDACs are divided into seven sub-classes (SIRT1-SIRT7). Sirtuins are localized in the different parts of the brain and neuron -Sirt1 (nucleus), Sirt2 (cortex, striatum, hippocampus and spinal cord), Sirt3 (mitochondria and cytoplasm), Sirt4, Sirt5 & Sirt6 (mitochondria), Sirt7 (nucleus) and Sirt8 (nucleolus). SIRTs (1, 3, 4, and 6) are involved in neuronal survival, proliferation and modulating stress response, and SIRT2 is associated with Parkinsonism, Huntington’s disease and Alzheimer’s disease, whereas SIRT6 is only associated with Alzheimer’s disease. In this critical review, we have discussed the mechanisms and therapeutic targets of HDACs that would be beneficial for the management of neurodegenerative disorders.
Collapse
Affiliation(s)
- Vishal Kumar
- Scholar, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Satyabrata Kundu
- Scholar, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Arti Singh
- Neuroscience Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Shamsher Singh
- Neuroscience Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
20
|
Pflieger M, Sönnichsen M, Horstick‐Muche N, Yang J, Schliehe‐Diecks J, Schöler A, Borkhardt A, Hamacher A, Kassack MU, Hansen FK, Bhatia S, Kurz T. Oxa Analogues of Nexturastat A Demonstrate Improved HDAC6 Selectivity and Superior Antileukaemia Activity. ChemMedChem 2021; 16:1798-1803. [PMID: 33629513 PMCID: PMC8251746 DOI: 10.1002/cmdc.202001011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/19/2021] [Indexed: 01/03/2023]
Abstract
The acetylome is important for maintaining the homeostasis of cells. Abnormal changes can result in the pathogenesis of immunological or neurological diseases, and degeneration can promote the manifestation of cancer. In particular, pharmacological intervention in the acetylome with pan-histone deacetylase (HDAC) inhibitors is clinically validated. However, these drugs exhibit an undesirable risk-benefit profile due to severe side effects. Selective HDAC inhibitors might promote patient compliance and represent a valuable opportunity in personalised medicine. Therefore, we envisioned the development of HDAC6-selective inhibitors. During our lead structure identification, we demonstrated that an alkoxyurea-based connecting unit proves to be beneficial for HDAC6 selectivity and established the synthesis of alkoxyurea-based hydroxamic acids. Herein, we report highly potent N-alkoxyurea-based hydroxamic acids with improved HDAC6 preference compared to nexturastat A. We further validated the biological activity of these oxa analogues of nexturastat A in a broad subset of leukaemia cell lines and demonstrated their superior anti-proliferative properties compared to nexturastat A.
Collapse
Affiliation(s)
- Marc Pflieger
- Institut für Pharmazeutische und Medizinische ChemieHeinrich-Heine-Universität DüsseldorfUniversitätsstr. 140225DüsseldorfGermany
| | - Melf Sönnichsen
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical FacultyHeinrich Heine University DüsseldorfUniversitätsstr. 140225DüsseldorfGermany
| | - Nadine Horstick‐Muche
- Institut für Pharmazeutische und Medizinische ChemieHeinrich-Heine-Universität DüsseldorfUniversitätsstr. 140225DüsseldorfGermany
| | - Jing Yang
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical FacultyHeinrich Heine University DüsseldorfUniversitätsstr. 140225DüsseldorfGermany
- Department of MedicineYangzhou Polytechnic CollegeWest Wenchang Road 458Yangzhou225009P.R. China
| | - Julian Schliehe‐Diecks
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical FacultyHeinrich Heine University DüsseldorfUniversitätsstr. 140225DüsseldorfGermany
| | - Andrea Schöler
- Institute for Drug Discovery, Medical FacultyLeipzig UniversityBrüderstraße 3404103LeipzigGermany
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical FacultyHeinrich Heine University DüsseldorfUniversitätsstr. 140225DüsseldorfGermany
| | - Alexandra Hamacher
- Institut für Pharmazeutische und Medizinische ChemieHeinrich-Heine-Universität DüsseldorfUniversitätsstr. 140225DüsseldorfGermany
| | - Matthias U. Kassack
- Institut für Pharmazeutische und Medizinische ChemieHeinrich-Heine-Universität DüsseldorfUniversitätsstr. 140225DüsseldorfGermany
| | - Finn K. Hansen
- Pharmaceutical and Cell Biological Chemistry, Pharmaceutical InstituteUniversity of BonnAn der Immenburg 453121BonnGermany
| | - Sanil Bhatia
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical FacultyHeinrich Heine University DüsseldorfUniversitätsstr. 140225DüsseldorfGermany
| | - Thomas Kurz
- Institut für Pharmazeutische und Medizinische ChemieHeinrich-Heine-Universität DüsseldorfUniversitätsstr. 140225DüsseldorfGermany
| |
Collapse
|
21
|
Chan AM, Fletcher S. Shifting the paradigm in treating multi-factorial diseases: polypharmacological co-inhibitors of HDAC6. RSC Med Chem 2021; 12:178-196. [PMID: 34046608 PMCID: PMC8127619 DOI: 10.1039/d0md00286k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 10/28/2020] [Indexed: 01/20/2023] Open
Abstract
Multi-factorial diseases are illnesses that exploit multiple cellular processes, or stages within one process, and thus highly targeted therapies often succumb to the disease, losing efficacy as resistance sets in. Combination therapies have become a mainstay to battle these diseases, however these regimens are plagued with caveats. An emerging avenue to treat multi-factorial diseases is polypharmacology, wherein a single drug is rationally designed to bind multiple targets, and is widely touted to be superior to combination therapy by inherently addressing the latter's shortcomings, which include poor patient compliance, narrow therapeutic windows and spiraling healthcare costs. Through its roles in intracellular trafficking, cell motility, mitosis, protein folding and as a back-up to the proteasome pathway, HDAC6 has rapidly become an exciting new target for therapeutics, particularly in the discovery of new drugs to treat Alzheimer's disease and cancer. Herein, we describe recent efforts to marry together HDAC pharmacophores, with a particular emphasis on HDAC6 selectivity, with those of other targets towards the discovery of potent therapeutics to treat these evasive diseases. Such polypharmacological agents may supercede combination therapies through inherent synergism, permitting reduced dosing, wider therapeutic windows and improved compliance.
Collapse
Affiliation(s)
- Alexandria M Chan
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy 20 N Pine St Baltimore MD 21201 USA
| | - Steven Fletcher
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy 20 N Pine St Baltimore MD 21201 USA
- University of Maryland Greenebaum Cancer Center 22 S Greene St Baltimore MD 21201 USA
| |
Collapse
|
22
|
Adamo A, Frusteri C, Pallotta MT, Pirali T, Sartoris S, Ugel S. Moonlighting Proteins Are Important Players in Cancer Immunology. Front Immunol 2021; 11:613069. [PMID: 33584695 PMCID: PMC7873856 DOI: 10.3389/fimmu.2020.613069] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/30/2020] [Indexed: 12/21/2022] Open
Abstract
Plasticity and adaptation to environmental stress are the main features that tumor and immune system share. Except for intrinsic and high-defined properties, cancer and immune cells need to overcome the opponent's defenses by activating more effective signaling networks, based on common elements such as transcriptional factors, protein-based complexes and receptors. Interestingly, growing evidence point to an increasing number of proteins capable of performing diverse and unpredictable functions. These multifunctional proteins are defined as moonlighting proteins. During cancer progression, several moonlighting proteins are involved in promoting an immunosuppressive microenvironment by reprogramming immune cells to support tumor growth and metastatic spread. Conversely, other moonlighting proteins support tumor antigen presentation and lymphocytes activation, leading to several anti-cancer immunological responses. In this light, moonlighting proteins could be used as promising new potential targets for improving current cancer therapies. In this review, we describe in details 12 unprecedented moonlighting proteins that during cancer progression play a decisive role in guiding cancer-associated immunomodulation by shaping innate or adaptive immune response.
Collapse
Affiliation(s)
- Annalisa Adamo
- Section of Immunology, Department of Medicine, University of Verona, Verona, Italy
| | - Cristina Frusteri
- Section of Immunology, Department of Medicine, University of Verona, Verona, Italy
| | | | - Tracey Pirali
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Silvia Sartoris
- Section of Immunology, Department of Medicine, University of Verona, Verona, Italy
| | - Stefano Ugel
- Section of Immunology, Department of Medicine, University of Verona, Verona, Italy
| |
Collapse
|
23
|
Mohammadi S, Abdollahi E, Nezamnia M, Esmaeili SA, Tavasolian F, Sathyapalan T, Sahebkar A. Adoptive transfer of Tregs: A novel strategy for cell-based immunotherapy in spontaneous abortion: Lessons from experimental models. Int Immunopharmacol 2021; 90:107195. [PMID: 33278746 DOI: 10.1016/j.intimp.2020.107195] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/06/2020] [Accepted: 11/07/2020] [Indexed: 01/05/2023]
Abstract
Since half of the genes are inherited from the paternal side, the maternal immune system has to tolerate the presence of foreign paternal antigens. Regulatory T cells facilitate the development and maintenance of peripheral tissue tolerance of the fetus during pregnancy. Reduction in regulatory T cells is associated with complications of pregnancy, including spontaneous abortion. Recent studies in mouse models have shown that the adoptive transfer of Tregs can prevent spontaneous abortion in mouse models through improving maternal tolerance. Thus, adoptive cell therapy using autologous Tregs could potentially be a novel therapeutic approach for cell-based immunotherapy in women with unexplained spontaneous abortion. Besides, strategies for activating and expanding antigen-specific Tregs ex vivo and in vivo based on pharmacological agents can pave the foundation for an approach incorporating immunotherapy and pharmacotherapy. This review aims to elaborate on the current understanding of the therapeutic potential of the adoptive transfer of Tregs in the treatment of spontaneous abortion disease.
Collapse
Affiliation(s)
- Sasan Mohammadi
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Abdollahi
- Department of Medical Immunology and Allergy, Student Research Committee, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Mater Research Institute-University of Queensland, Translational Research Institute, South Brisbane, Australia.
| | - Maria Nezamnia
- Department of Obstetrics and Gynecology, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Seyed-Alireza Esmaeili
- Immunology Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fataneh Tavasolian
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Thozhukat Sathyapalan
- Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, United Kingdom
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Halal Research Center of IRI, FDA, Tehran, Iran; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland.
| |
Collapse
|
24
|
Kim YD, Park SM, Ha HC, Lee AR, Won H, Cha H, Cho S, Cho JM. HDAC Inhibitor, CG-745, Enhances the Anti-Cancer Effect of Anti-PD-1 Immune Checkpoint Inhibitor by Modulation of the Immune Microenvironment. J Cancer 2020; 11:4059-4072. [PMID: 32368288 PMCID: PMC7196255 DOI: 10.7150/jca.44622] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 03/11/2020] [Indexed: 12/12/2022] Open
Abstract
Histone deacetylase inhibitors (HDACis) are well-known epigenetic regulators with therapeutic potential in various diseases. Recent studies have shown that HDACis are involved in immune-mediated anti-cancer effects and may modulate the activity of immunotherapy agents. CG-745, a histone deacetylase inhibitor, has shown anti-cancer effects in pancreatic cancer, colorectal cancer, and non-small cell lung cancer. However, the exact role of CG-745 within the immune system is largely unknown. In this study, we have shown that CG-745 induces microenvironment changes promoting anti-cancer effect of anti-PD-1 antibody in syngeneic mouse models. Specifically, CG-745 induces or extends IL-2 and IFN-γ expression with or without additional stimulation, and increases proliferation of cytotoxic T cells and NK cells, while inhibiting proliferation of regulatory T cells. The analysis of immune cell distribution in the tumor microenvironment and spleen reveals that CG-745 suppresses M2 macrophage polarization and decreases the myeloid-derived suppressor cells. Recent advances in immunotherapy highlight the anti-cancer effects of immune checkpoint inhibitor despite a relatively limited clinical benefit in the subset of patients. Our results indicate that CG-745 enables the synergistic effects of the immune checkpoint inhibitor combination therapy in various cancers by suppressing tumor microenvironment.
Collapse
Affiliation(s)
- Young-Dae Kim
- Institute for Drug Discovery, CrystalGenomics, Inc., Korea Bio Park, 700 Daewangpangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Korea
| | - Sang-Min Park
- Institute for Drug Discovery, CrystalGenomics, Inc., Korea Bio Park, 700 Daewangpangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Korea
| | - Hae Chan Ha
- Institute for Drug Discovery, CrystalGenomics, Inc., Korea Bio Park, 700 Daewangpangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Korea
| | - A Reum Lee
- Institute for Drug Discovery, CrystalGenomics, Inc., Korea Bio Park, 700 Daewangpangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Korea
| | - Heeyoung Won
- Institute for Drug Discovery, CrystalGenomics, Inc., Korea Bio Park, 700 Daewangpangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Korea
| | - Hyunju Cha
- Institute for Drug Discovery, CrystalGenomics, Inc., Korea Bio Park, 700 Daewangpangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Korea
| | - Sangsook Cho
- Institute for Drug Discovery, CrystalGenomics, Inc., Korea Bio Park, 700 Daewangpangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Korea
| | - Joong Myung Cho
- Institute for Drug Discovery, CrystalGenomics, Inc., Korea Bio Park, 700 Daewangpangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Korea
| |
Collapse
|
25
|
Gatla HR, Muniraj N, Thevkar P, Yavvari S, Sukhavasi S, Makena MR. Regulation of Chemokines and Cytokines by Histone Deacetylases and an Update on Histone Decetylase Inhibitors in Human Diseases. Int J Mol Sci 2019; 20:E1110. [PMID: 30841513 PMCID: PMC6429312 DOI: 10.3390/ijms20051110] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/26/2019] [Accepted: 02/28/2019] [Indexed: 12/12/2022] Open
Abstract
Histone acetyltransferases (HATs) and histone deacetylases (HDACs) counteract with each other to regulate gene expression by altering chromatin structure. Aberrant HDAC activity was reported in many human diseases including wide range of cancers, viral infections, cardiovascular complications, auto-immune diseases and kidney diseases. HDAC inhibitors are small molecules designed to block the malignant activity of HDACs. Chemokines and cytokines control inflammation, immunological and other key biological processes and are shown to be involved in various malignancies. Various HDACs and HDAC inhibitors were reported to regulate chemokines and cytokines. Even though HDAC inhibitors have remarkable anti-tumor activity in hematological cancers, they are not effective in treating many diseases and many patients relapse after treatment. However, the role of HDACs and cytokines in regulating these diseases still remain unclear. Therefore, understanding exact mechanisms and effector functions of HDACs are urgently needed to selectively inhibit them and to establish better a platform to combat various malignancies. In this review, we address regulation of chemokines and cytokines by HDACs and HDAC inhibitors and update on HDAC inhibitors in human diseases.
Collapse
Affiliation(s)
- Himavanth Reddy Gatla
- Department of Pediatric Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA.
| | - Nethaji Muniraj
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA.
| | - Prashanth Thevkar
- Department of Microbiology, New York University, New York, NY 10016, USA.
| | - Siddhartha Yavvari
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| | - Sahithi Sukhavasi
- Center for Distance Learning, GITAM University, Visakhapatnam, AP 530045, India.
| | - Monish Ram Makena
- Department of Physiology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
26
|
Krajewski D, Kaczenski E, Rovatti J, Polukort S, Thompson C, Dollard C, Ser-Dolansky J, Schneider SS, Kinney SRM, Mathias CB. Epigenetic Regulation via Altered Histone Acetylation Results in Suppression of Mast Cell Function and Mast Cell-Mediated Food Allergic Responses. Front Immunol 2018; 9:2414. [PMID: 30405614 PMCID: PMC6206211 DOI: 10.3389/fimmu.2018.02414] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/28/2018] [Indexed: 01/08/2023] Open
Abstract
Mast cells are highly versatile cells that perform a variety of functions depending on the immune trigger, context of activation, and cytokine stimulus. Antigen-mediated mast cell responses are regulated by transcriptional processes that result in the induction of numerous genes contributing to mast cell function. Recently, we also showed that exposure to dietary agents with known epigenetic actions such as curcumin can suppress mast cell-mediated food allergy, suggesting that mast cell responses in vivo may be epigenetically regulated. To further assess the effects of epigenetic modifications on mast cell function, we examined the behavior of bone marrow-derived mast cells (BMMCs) in response to trichostatin A (TSA) treatment, a well-studied histone deacetylase inhibitor. IgE-mediated BMMC activation resulted in enhanced expression and secretion of IL-4, IL-6, TNF-α, and IL-13. In contrast, pretreatment with TSA resulted in altered cytokine secretion. This was accompanied by decreased expression of FcεRI and mast cell degranulation. Interestingly, exposure to non-IgE stimuli such as IL-33, was also affected by TSA treatment. Furthermore, continuous TSA exposure contributed to mast cell apoptosis and a decrease in survival. Further examination revealed an increase in I-κBα and a decrease in phospho-relA levels in TSA-treated BMMCs, suggesting that TSA alters transcriptional processes, resulting in enhancement of I-κBα transcription and decreased NF-κB activation. Lastly, treatment of wild-type mice with TSA in a model of ovalbumin-induced food allergy resulted in a significant attenuation in the development of food allergy symptoms including decreases in allergic diarrhea and mast cell activation. These data therefore suggest that the epigenetic regulation of mast cell activation during immune responses may occur via altered histone acetylation, and that exposure to dietary substances may induce epigenetic modifications that modulate mast cell function.
Collapse
Affiliation(s)
- Dylan Krajewski
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy and Health Sciences, Western New England University, Springfield, MA, United States
| | - Edwin Kaczenski
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy and Health Sciences, Western New England University, Springfield, MA, United States
| | - Jeffrey Rovatti
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy and Health Sciences, Western New England University, Springfield, MA, United States
| | - Stephanie Polukort
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy and Health Sciences, Western New England University, Springfield, MA, United States
| | - Chelsea Thompson
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy and Health Sciences, Western New England University, Springfield, MA, United States
| | - Catherine Dollard
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy and Health Sciences, Western New England University, Springfield, MA, United States.,Northampton High School, Northampton, MA, United States
| | - Jennifer Ser-Dolansky
- Baystate Medical Center, Pioneer Valley Life Sciences Institute, Springfield, MA, United States
| | - Sallie S Schneider
- Baystate Medical Center, Pioneer Valley Life Sciences Institute, Springfield, MA, United States
| | - Shannon R M Kinney
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy and Health Sciences, Western New England University, Springfield, MA, United States
| | - Clinton B Mathias
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy and Health Sciences, Western New England University, Springfield, MA, United States
| |
Collapse
|
27
|
Hicks KC, Fantini M, Donahue RN, Schwab A, Knudson KM, Tritsch SR, Jochems C, Clavijo PE, Allen CT, Hodge JW, Tsang KY, Schlom J, Gameiro SR. Epigenetic priming of both tumor and NK cells augments antibody-dependent cellular cytotoxicity elicited by the anti-PD-L1 antibody avelumab against multiple carcinoma cell types. Oncoimmunology 2018; 7:e1466018. [PMID: 30377559 PMCID: PMC6205056 DOI: 10.1080/2162402x.2018.1466018] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/09/2018] [Accepted: 04/11/2018] [Indexed: 12/22/2022] Open
Abstract
Checkpoint inhibitors targeting the PD-1/PD-L1 axis are promising immunotherapies shown to elicit objective responses against multiple tumor types, yet these agents fail to benefit most patients with carcinomas. This highlights the need to develop effective therapeutic strategies to increase responses to PD-1/PD-L1 blockade. Histone deacetylase (HDAC) inhibitors in combination with immunotherapies have provided preliminary evidence of anti-tumor effects. We investigated here whether exposure of either natural killer (NK) cells and/or tumor cells to two different classes of HDAC inhibitors would augment (a) NK cell‒mediated direct tumor cell killing and/or (b) antibody-dependent cellular cytotoxicity (ADCC) using avelumab, a fully human IgG1 monoclonal antibody targeting PD-L1. Treatment of a diverse array of human carcinoma cells with a clinically relevant dose of either the pan-HDAC inhibitor vorinostat or the class I HDAC inhibitor entinostat significantly enhanced the expression of multiple NK ligands and death receptors resulting in enhanced NK cell‒mediated lysis. Moreover, HDAC inhibition enhanced tumor cell PD-L1 expression both in vitro and in carcinoma xenografts. These data demonstrate that treatment of a diverse array of carcinoma cells with two different classes of HDAC inhibitors results in enhanced NK cell tumor cell lysis and avelumab-mediated ADCC. Furthermore, entinostat treatment of NK cells from healthy donors and PBMCs from cancer patients induced an activated NK cell phenotype, and heightened direct and ADCC-mediated healthy donor NK lysis of multiple carcinoma types. This study thus extends the mechanism and provides a rationale for combining HDAC inhibitors with PD-1/PD-L1 checkpoint blockade to increase patient responses to anti-PD-1/PD-L1 therapies.
Collapse
Affiliation(s)
- Kristin C. Hicks
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Massimo Fantini
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Renee N. Donahue
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Angie Schwab
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Karin M. Knudson
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sarah R. Tritsch
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Caroline Jochems
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Paul E. Clavijo
- Head and Neck Surgery Branch, National Institute of Deafness and other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Clint T. Allen
- Head and Neck Surgery Branch, National Institute of Deafness and other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - James W. Hodge
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kwong Y. Tsang
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sofia R. Gameiro
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
28
|
Russell‐Hallinan A, Watson CJ, Baugh JA. Epigenetics of Aberrant Cardiac Wound Healing. Compr Physiol 2018; 8:451-491. [DOI: 10.1002/cphy.c170029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
29
|
Briere D, Sudhakar N, Woods DM, Hallin J, Engstrom LD, Aranda R, Chiang H, Sodré AL, Olson P, Weber JS, Christensen JG. The class I/IV HDAC inhibitor mocetinostat increases tumor antigen presentation, decreases immune suppressive cell types and augments checkpoint inhibitor therapy. Cancer Immunol Immunother 2018; 67:381-392. [PMID: 29124315 PMCID: PMC11028326 DOI: 10.1007/s00262-017-2091-y] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 11/07/2017] [Indexed: 02/07/2023]
Abstract
Checkpoint inhibitor therapy has led to major treatment advances for several cancers including non-small cell lung cancer (NSCLC). Despite this, a significant percentage of patients do not respond or develop resistance. Potential mechanisms of resistance include lack of expression of programmed death ligand 1 (PD-L1), decreased capacity to present tumor antigens, and the presence of an immunosuppressive tumor microenvironment. Mocetinostat is a spectrum-selective inhibitor of class I/IV histone deacetylases (HDACs), a family of proteins implicated in epigenetic silencing of immune regulatory genes in tumor and immune cells. Mocetinostat upregulated PD-L1 and antigen presentation genes including class I and II human leukocyte antigen (HLA) family members in a panel of NSCLC cell lines in vitro. Mocetinostat target gene promoters were occupied by a class I HDAC and exhibited increased active histone marks after mocetinostat treatment. Mocetinostat synergized with interferon γ (IFN-γ) in regulating class II transactivator (CIITA), a master regulator of class II HLA gene expression. In a syngeneic tumor model, mocetinostat decreased intratumoral T-regulatory cells (Tregs) and potentially myeloid-derived suppressor cell (MDSC) populations and increased intratumoral CD8+ populations. In ex vivo assays, patient-derived, mocetinostat-treated Tregs also showed significant down regulation of FOXP3 and HELIOS. The combination of mocetinostat and a murine PD-L1 antibody antagonist demonstrated increased anti-tumor activity compared to either therapy alone in two syngeneic tumor models. Together, these data provide evidence that mocetinostat modulates immune-related genes in tumor cells as well as immune cell types in the tumor microenvironment and enhances checkpoint inhibitor therapy.
Collapse
Affiliation(s)
- David Briere
- Mirati Therapeutics, Inc., 9393 Towne Center Dr, Suite 200, San Diego, CA, 92121, USA
| | - Niranjan Sudhakar
- Mirati Therapeutics, Inc., 9393 Towne Center Dr, Suite 200, San Diego, CA, 92121, USA
| | - David M Woods
- NYU Langone Medical Center, New York, NY, 10016, USA
| | - Jill Hallin
- Mirati Therapeutics, Inc., 9393 Towne Center Dr, Suite 200, San Diego, CA, 92121, USA
| | - Lars D Engstrom
- Mirati Therapeutics, Inc., 9393 Towne Center Dr, Suite 200, San Diego, CA, 92121, USA
| | - Ruth Aranda
- Mirati Therapeutics, Inc., 9393 Towne Center Dr, Suite 200, San Diego, CA, 92121, USA
| | - Harrah Chiang
- Mirati Therapeutics, Inc., 9393 Towne Center Dr, Suite 200, San Diego, CA, 92121, USA
| | | | - Peter Olson
- Mirati Therapeutics, Inc., 9393 Towne Center Dr, Suite 200, San Diego, CA, 92121, USA
| | | | - James G Christensen
- Mirati Therapeutics, Inc., 9393 Towne Center Dr, Suite 200, San Diego, CA, 92121, USA.
| |
Collapse
|
30
|
Chan E, Chiorean EG, O'Dwyer PJ, Gabrail NY, Alcindor T, Potvin D, Chao R, Hurwitz H. Phase I/II study of mocetinostat in combination with gemcitabine for patients with advanced pancreatic cancer and other advanced solid tumors. Cancer Chemother Pharmacol 2017; 81:355-364. [PMID: 29238851 DOI: 10.1007/s00280-017-3494-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 11/27/2017] [Indexed: 01/02/2023]
Abstract
PURPOSE To evaluate the safety and efficacy of mocetinostat (a Class I/IV HDAC inhibitor) in combination with gemcitabine in patients with solid tumors, including pancreatic cancer. METHODS In this open-label, non-randomized Phase I/II study (NCT00372437) sequential cohorts of patients with solid tumors received gemcitabine (1000 mg/m2, day 1 of three consecutive weeks, 4-week cycles) and oral mocetinostat [50-110 mg, three times per week (TIW)]. The maximum tolerated dose (MTD) and recommended Phase II dose (RP2D) was determined based on dose-limiting toxicities in Cycle 1 (Phase I study). The MTD/RP2D was further evaluated in patients with advanced pancreatic cancer (Phase II study) using a two-stage design. The Phase II primary endpoint was overall response rate (ORR). RESULTS Forty-eight patients were enrolled into the Phase I (n = 25) and Phase II (n = 23) studies. In the Phase I study, the MTD/RP2D was mocetinostat 90 mg TIW + gemcitabine 1000 mg/m2. Grade ≥ 3 treatment-related adverse events (AEs) were reported by 81% of all patients, the most frequent being fatigue (38%) and thrombocytopenia (19%). The ORR was 11% in the Phase I study (n = 2 patients with pancreatic cancer, responses lasting for 16.8 and 4.0 months, respectively). As no responses were seen in the Phase II cohort, the study was terminated. CONCLUSIONS Mocetinostat TIW in combination with gemcitabine was associated with significant toxicities in patients with advanced pancreatic cancer. The level of clinical activity of this treatment combination was not considered high enough to merit further testing in this setting.
Collapse
Affiliation(s)
- Emily Chan
- Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - E Gabriela Chiorean
- Fred Hutchinson Cancer Research Center, University of Washington, Seattle, WA, USA
- Indiana University Cancer Center, Indianapolis, IN, USA
| | - Peter J O'Dwyer
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Diane Potvin
- Mirati Therapeutics Inc., 9393 Towne Centre Drive, Suite 200, San Diego, CA, 92121, USA
| | - Richard Chao
- Mirati Therapeutics Inc., 9393 Towne Centre Drive, Suite 200, San Diego, CA, 92121, USA.
| | | |
Collapse
|
31
|
Abstract
The therapy of different advanced-stage malignancies with monoclonal antibodies blocking programmed cell death protein 1 (PD-1)/PD-1 ligand 1 (PD-L1) signaling has had an impressive long-lasting effect in a portion of patients, but in most cases, this therapy was not successful, or a secondary resistance developed. To enhance its efficacy in treated patients, predictive biomarkers are searched for and various combination treatments are intensively investigated. As the downregulation of major histocompatibility complex (MHC) class I molecules is one of the most frequent mechanisms of tumor escape from the host’s immunity, it should be considered in PD-1/PD-L1 checkpoint inhibition. The potential for the use of a PD-1/PD-L1 blockade in the treatment of tumors with aberrant MHC class I expression is discussed, and some strategies of combination therapy are suggested.
Collapse
|
32
|
Adeegbe DO, Liu Y, Lizotte PH, Kamihara Y, Aref AR, Almonte C, Dries R, Li Y, Liu S, Wang X, Warner-Hatten T, Castrillon J, Yuan GC, Poudel-Neupane N, Zhang H, Guerriero JL, Han S, Awad MM, Barbie DA, Ritz J, Jones SS, Hammerman PS, Bradner J, Quayle SN, Wong KK. Synergistic Immunostimulatory Effects and Therapeutic Benefit of Combined Histone Deacetylase and Bromodomain Inhibition in Non-Small Cell Lung Cancer. Cancer Discov 2017; 7:852-867. [PMID: 28408401 DOI: 10.1158/2159-8290.cd-16-1020] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/21/2016] [Accepted: 04/11/2017] [Indexed: 12/27/2022]
Abstract
Effective therapies for non-small cell lung cancer (NSCLC) remain challenging despite an increasingly comprehensive understanding of somatically altered oncogenic pathways. It is now clear that therapeutic agents with potential to impact the tumor immune microenvironment potentiate immune-orchestrated therapeutic benefit. Herein, we evaluated the immunoregulatory properties of histone deacetylase (HDAC) and bromodomain inhibitors, two classes of drugs that modulate the epigenome, with a focus on key cell subsets that are engaged in an immune response. By evaluating human peripheral blood and NSCLC tumors, we show that the selective HDAC6 inhibitor ricolinostat promotes phenotypic changes that support enhanced T-cell activation and improved function of antigen-presenting cells. The bromodomain inhibitor JQ1 attenuated CD4+FOXP3+ T regulatory cell suppressive function and synergized with ricolinostat to facilitate immune-mediated tumor growth arrest, leading to prolonged survival of mice with lung adenocarcinomas. Collectively, our findings highlight the immunomodulatory effects of two epigenetic modifiers that, together, promote T cell-mediated antitumor immunity and demonstrate their therapeutic potential for treatment of NSCLC.Significance: Selective inhibition of HDACs and bromodomain proteins modulates tumor-associated immune cells in a manner that favors improved T-cell function and reduced inhibitory cellular mechanisms. These effects facilitated robust antitumor responses in tumor-bearing mice, demonstrating the therapeutic potential of combining these epigenetic modulators for the treatment of NSCLC. Cancer Discov; 7(8); 852-67. ©2017 AACR.This article is highlighted in the In This Issue feature, p. 783.
Collapse
Affiliation(s)
- Dennis O Adeegbe
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Yan Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Patrick H Lizotte
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Belfer Center for Applied Cancer Science, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Yusuke Kamihara
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Amir R Aref
- Belfer Center for Applied Cancer Science, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Christina Almonte
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Ruben Dries
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Yuyang Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Shengwu Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Xiaoen Wang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | - Jessica Castrillon
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Guo-Cheng Yuan
- Harvard Chan School of Public Health, Boston, Massachusetts
| | | | - Haikuo Zhang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jennifer L Guerriero
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Shiwei Han
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Mark M Awad
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - David A Barbie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jerome Ritz
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Simon S Jones
- Acetylon Pharmaceuticals, Inc., Boston, Massachusetts
| | - Peter S Hammerman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - James Bradner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | - Kwok-Kin Wong
- Laura & Isaac Perlmutter Cancer Center, NYU Langone Medical Center, New York, New York.
| |
Collapse
|
33
|
Regulation of genes related to immune signaling and detoxification in Apis mellifera by an inhibitor of histone deacetylation. Sci Rep 2017; 7:41255. [PMID: 28112264 PMCID: PMC5253729 DOI: 10.1038/srep41255] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 12/19/2016] [Indexed: 12/16/2022] Open
Abstract
The western honeybee (Apis mellifera) is essential for the global economy due to its important role in ecosystems and agriculture as a pollinator of numerous flowering plants and crops. Pesticide abuse has greatly impacted honeybees and caused tremendous loss of honeybee colonies worldwide. The reasons for colony loss remain unclear, but involvement of pesticides and pathogen-pesticide interactions has been hypothesized. Histone deacetylase inhibitors (HDACis) inhibit the activity of histone acetylase, which causes the hyperacetylation of histone cores and influences gene expression. In this study, sodium butyrate, an HDACi, was used as a dietary supplement for honeybees; after treatment, gene expression profiles were analyzed using quantitative PCR. The results showed that sodium butyrate up-regulated genes involved in anti-pathogen and detoxification pathways. The bioassay results showed that honeybees treated with sodium butyrate were more tolerant to imidacloprid. Additionally, sodium butyrate strengthened the immune response of honeybees to invasions of Nosema ceranae and viral infections. We also performed a bioassay in which honeybees were exposed to pesticides and pathogens. Our results provide additional data regarding the mechanism by which honeybees react to stress and the potential application of HDACis in beekeeping.
Collapse
|
34
|
Chacon JA, Schutsky K, Powell DJ. The Impact of Chemotherapy, Radiation and Epigenetic Modifiers in Cancer Cell Expression of Immune Inhibitory and Stimulatory Molecules and Anti-Tumor Efficacy. Vaccines (Basel) 2016; 4:E43. [PMID: 27854240 PMCID: PMC5192363 DOI: 10.3390/vaccines4040043] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 10/17/2016] [Accepted: 11/01/2016] [Indexed: 12/19/2022] Open
Abstract
Genomic destabilizers, such as radiation and chemotherapy, and epigenetic modifiers are used for the treatment of cancer due to their apoptotic effects on the aberrant cells. However, these therapies may also induce widespread changes within the immune system and cancer cells, which may enable tumors to avoid immune surveillance and escape from host anti-tumor immunity. Genomic destabilizers can induce immunogenic death of tumor cells, but also induce upregulation of immune inhibitory ligands on drug-resistant cells, resulting in tumor progression. While administration of immunomodulatory antibodies that block the interactions between inhibitory receptors on immune cells and their ligands on tumor cells can mediate cancer regression in a subset of treated patients, it is crucial to understand how genomic destabilizers alter the immune system and malignant cells, including which inhibitory molecules, receptors and/or ligands are upregulated in response to genotoxic stress. Knowledge gained in this area will aid in the rational design of trials that combine genomic destabilizers, epigenetic modifiers and immunotherapeutic agents that may be synergized to improve clinical responses and prevent tumor escape from the immune system. Our review article describes the impact genomic destabilizers, such as radiation and chemotherapy, and epigenetic modifiers have on anti-tumor immunity and the tumor microenvironment. Although genomic destabilizers cause DNA damage on cancer cells, these therapies can also have diverse effects on the immune system, promote immunogenic cell death or survival and alter the cancer cell expression of immune inhibitor molecules.
Collapse
Affiliation(s)
- Jessica Ann Chacon
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Keith Schutsky
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Daniel J Powell
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
- Department of Pathology and Laboratory Medicine, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
35
|
Bouchat S, Delacourt N, Kula A, Darcis G, Van Driessche B, Corazza F, Gatot JS, Melard A, Vanhulle C, Kabeya K, Pardons M, Avettand-Fenoel V, Clumeck N, De Wit S, Rohr O, Rouzioux C, Van Lint C. Sequential treatment with 5-aza-2'-deoxycytidine and deacetylase inhibitors reactivates HIV-1. EMBO Mol Med 2016; 8:117-38. [PMID: 26681773 PMCID: PMC4734845 DOI: 10.15252/emmm.201505557] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Reactivation of HIV gene expression in latently infected cells together with an efficient cART has been proposed as an adjuvant therapy aimed at eliminating/decreasing the reservoir size. Results from HIV clinical trials using deacetylase inhibitors (HDACIs) question the efficiency of these latency‐reversing agents (LRAs) used alone and underline the need to evaluate other LRAs in combination with HDACIs. Here, we evaluated the therapeutic potential of a demethylating agent (5‐AzadC) in combination with clinically tolerable HDACIs in reactivating HIV‐1 from latency first in vitro and next ex vivo. We showed that a sequential treatment with 5‐AzadC and HDACIs was more effective than the corresponding simultaneous treatment both in vitro and ex vivo. Interestingly, only two of the sequential LRA combinatory treatments tested induced HIV‐1 particle recovery in a higher manner than the drugs alone ex vivo and at concentrations lower than the human tolerable plasmatic concentrations. Taken together, our data reveal the benefit of using combinations of 5‐AzadC with an HDACI and, for the first time, the importance of treatment time schedule for LRA combinations in order to reactivate HIV.
Collapse
Affiliation(s)
- Sophie Bouchat
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Nadège Delacourt
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Anna Kula
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Gilles Darcis
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies, Belgium Service des Maladies Infectieuses, Centre Hospitalier Universitaire (CHU) de Liège, Domaine Universitaire du Sart-Tilman, Université de Liège, Liège, Belgium
| | - Benoit Van Driessche
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Francis Corazza
- Laboratory of Immunology, IRISLab, CHU-Brugmann, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Jean-Stéphane Gatot
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Adeline Melard
- Service de Virologie, EA7327, AP-HP, Hôpital Necker-Enfants-Malades, Université Paris-Descartes, Paris, France
| | - Caroline Vanhulle
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Kabamba Kabeya
- Service des Maladies Infectieuses, CHU St-Pierre, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Marion Pardons
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Véronique Avettand-Fenoel
- Service de Virologie, EA7327, AP-HP, Hôpital Necker-Enfants-Malades, Université Paris-Descartes, Paris, France
| | - Nathan Clumeck
- Service des Maladies Infectieuses, CHU St-Pierre, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Stéphane De Wit
- Service des Maladies Infectieuses, CHU St-Pierre, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Olivier Rohr
- IUT Louis Pasteur de Schiltigheim, University of Strasbourg, Schiltigheim, France Institut Universitaire de France (IUF), Paris, France
| | - Christine Rouzioux
- Service de Virologie, EA7327, AP-HP, Hôpital Necker-Enfants-Malades, Université Paris-Descartes, Paris, France
| | - Carine Van Lint
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| |
Collapse
|
36
|
Entinostat up-regulates the CAMP gene encoding LL-37 via activation of STAT3 and HIF-1α transcription factors. Sci Rep 2016; 6:33274. [PMID: 27633343 PMCID: PMC5025742 DOI: 10.1038/srep33274] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 08/24/2016] [Indexed: 12/28/2022] Open
Abstract
Bacterial resistance against classical antibiotics is a growing problem and the development of new antibiotics is limited. Thus, novel alternatives to antibiotics are warranted. Antimicrobial peptides (AMPs) are effector molecules of innate immunity that can be induced by several compounds, including vitamin D and phenyl-butyrate (PBA). Utilizing a luciferase based assay, we recently discovered that the histone deacetylase inhibitor Entinostat is a potent inducer of the CAMP gene encoding the human cathelicidin LL-37. Here we investigate a mechanism for the induction and also find that Entinostat up-regulates human β-defensin 1. Analysis of the CAMP promoter sequence revealed binding sites for the transcription factors STAT3 and HIF-1α. By using short hairpin RNA and selective inhibitors, we found that both transcription factors are involved in Entinostat-induced expression of LL-37. However, only HIF-1α was found to be recruited to the CAMP promoter, suggesting that Entinostat activates STAT3, which promotes transcription of CAMP by increasing the expression of HIF-1α. Finally, we provide in vivo relevance to our findings by showing that Entinostat-elicited LL-37 expression was impaired in macrophages from a patient with a STAT3-mutation. Combined, our findings support a role for STAT3 and HIF-1α in the regulation of LL-37 expression.
Collapse
|
37
|
Toki S, Goleniewska K, Reiss S, Zhou W, Newcomb DC, Bloodworth MH, Stier MT, Boyd KL, Polosukhin VV, Subramaniam S, Peebles RS. The histone deacetylase inhibitor trichostatin A suppresses murine innate allergic inflammation by blocking group 2 innate lymphoid cell (ILC2) activation. Thorax 2016; 71:633-45. [PMID: 27071418 PMCID: PMC4941189 DOI: 10.1136/thoraxjnl-2015-207728] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 02/25/2016] [Accepted: 03/01/2016] [Indexed: 01/08/2023]
Abstract
BACKGROUND Group 2 innate lymphoid cells (ILC2) are an important source of the type 2 cytokines interleukin (IL)-5 and IL-13 that are critical to the allergic airway phenotype. Previous studies reported that histone deacetylase (HDAC) inhibition by trichostatin A (TSA) downregulated adaptive allergic immune responses; however, the effect of HDAC inhibition on the early innate allergic immune response is unknown. Therefore, we investigated the effect of TSA on innate airway inflammation mediated by ILC2 activation. METHODS BALB/c mice were challenged intranasally with Alternaria extract, exogenous recombinant mouse IL-33 (rmIL-33) or the respective vehicles for four consecutive days following TSA or vehicle treatment. Bronchoalveolar lavage (BAL) fluids and lungs were harvested 24 h after the last challenge. RESULTS We found that TSA treatment significantly decreased the number of ILC2 expressing IL-5 and IL-13 in the lungs challenged with Alternaria extract or rmIL-33 compared with vehicle treatment (p<0.05). TSA treatment significantly decreased protein expression of IL-5, IL-13, CCL11 and CCL24 in the lung homogenates from Alternaria extract-challenged mice or rmIL-33-challenged mice compared with vehicle treatment (p<0.05). Further, TSA treatment significantly decreased the number of perivascular eosinophils and mucus production in the large airways that are critical components of the asthma phenotype (p<0.05). TSA did not change early IL-33 release in the BAL fluids; however, TSA decreased lung IL-33 expression from epithelial cells 24 h after last Alternaria extract challenge compared with vehicle treatment (p<0.05). CONCLUSIONS These results reveal that TSA reduces allergen-induced ILC2 activation and the early innate immune responses to an inhaled protease-containing aeroallergen.
Collapse
Affiliation(s)
- Shinji Toki
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Kasia Goleniewska
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Sara Reiss
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Weisong Zhou
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Dawn C Newcomb
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Melissa H Bloodworth
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Matthew T Stier
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Kelli L Boyd
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Vasiliy V Polosukhin
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Sriram Subramaniam
- Department of Neurology, Vanderbilt University, Nashville, Tennessee, USA
| | - R Stokes Peebles
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
38
|
Di Liddo R, Valente S, Taurone S, Zwergel C, Marrocco B, Turchetta R, Conconi MT, Scarpa C, Bertalot T, Schrenk S, Mai A, Artico M. Histone deacetylase inhibitors restore IL-10 expression in lipopolysaccharide-induced cell inflammation and reduce IL-1β and IL-6 production in breast silicone implant in C57BL/6J wild-type murine model. Autoimmunity 2016; 49:155-165. [PMID: 26789595 DOI: 10.3109/08916934.2015.1134510] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 12/16/2015] [Indexed: 12/29/2022]
Abstract
Among epigenetic enzymes, histone deacetylases (HDACs) are responsible for regulating the expression of an extensive array of genes by reversible deacetylation of nuclear histones as well as a large number of non-histone proteins. Initially proposed for cancer therapy, recently the interest for HDAC inhibitors (HDACi) as orally active, safe, and anti-inflammatory agents is rising due to their ability in reducing the severity of inflammatory and autoimmune diseases. In particular, selective HDAC3, HDAC6, and HDAC8 inhibitors have been described to downregulate the expression of pro-inflammatory cytokines (TNF-α, TGF-β, IL-1β, and IL-6). Herein, using KB31, C2C12, and 3T3-J2 cell lines, we demonstrated that, under lipopolysaccharide-induced in vitro inflammation, HDAC3/6/8 inhibitor MC2625 and HDAC6-selective inhibitor MC2780 were effective at a concentration of 30 ng/mL to downregulate mRNA expression of pro-inflammatory cytokines (IL-1β and IL-6) and to promote the transcription of IL-10 gene, without affecting the cell viability. Afterwards, we investigated by immunohistochemistry the activity of MC2625 and MC2780 at a concentration of 60 ng/kg animal weight to regulate silicone-triggered immune response in C57BL/6J female mice. Our findings evidenced the ability of such inhibitors to reduce host inflammation in silicone implants promoting a thickness reduction of peri-implant fibrous capsule, upregulating IL-10 expression, and reducing the production of both IL-1β and IL-6. These results underline the potential application of MC2625 and MC2780 in inflammation-related diseases.
Collapse
Affiliation(s)
- Rosa Di Liddo
- Dipartimento Scienze del Farmaco, Università di Padova, Padova, Italy
| | - Sergio Valente
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Roma, Italy
| | - Samanta Taurone
- Dipartimento Organi di Senso, Sapienza Università di Roma, Roma, Italy
| | - Clemens Zwergel
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Roma, Italy
| | - Biagina Marrocco
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Roma, Italy
| | - Rosaria Turchetta
- Dipartimento Organi di Senso, Sapienza Università di Roma, Roma, Italy
| | | | - Carlotta Scarpa
- Dipartimento di Neuroscienze, Clinica di Chirurgia Plastica, Università di Padova, Padova, Italy, and
| | - Thomas Bertalot
- Dipartimento Scienze del Farmaco, Università di Padova, Padova, Italy
| | - Sandra Schrenk
- Dipartimento Scienze del Farmaco, Università di Padova, Padova, Italy
| | - Antonello Mai
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Roma, Italy
- Istituto Pasteur - Fondazione Cenci Bolognetti, Sapienza Università di Roma, Roma, Italy
| | - Marco Artico
- Dipartimento Organi di Senso, Sapienza Università di Roma, Roma, Italy
| |
Collapse
|
39
|
Cleophas MCP, Crişan TO, Lemmers H, Toenhake-Dijkstra H, Fossati G, Jansen TL, Dinarello CA, Netea MG, Joosten LAB. Suppression of monosodium urate crystal-induced cytokine production by butyrate is mediated by the inhibition of class I histone deacetylases. Ann Rheum Dis 2016; 75:593-600. [PMID: 25589513 DOI: 10.1136/annrheumdis-2014-206258] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 12/21/2014] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Acute gouty arthritis is caused by endogenously formed monosodium urate (MSU) crystals, which are potent activators of the NLRP3 inflammasome. However, to induce the release of active interleukin (IL)-1β, an additional stimulus is needed. Saturated long-chain free fatty acids (FFAs) can provide such a signal and stimulate transcription of pro-IL-1β. In contrast, the short-chain fatty acid butyrate possesses anti-inflammatory effects. One of the mechanisms involved is inhibition of histone deacetylases (HDACs). Here, we explored the effects of butyrate on MSU+FFA-induced cytokine production and its inhibition of specific HDACs. METHODS Freshly isolated peripheral blood mononuclear cells (PBMCs) from healthy donors were stimulated with MSU and palmitic acid (C16.0) in the presence or absence of butyrate or a synthetic HDAC inhibitor. Cytokine responses were measured with ELISA and quantitative PCR. HDAC activity was measured with fluorimetric assays. RESULTS Butyrate decreased C16.0+MSU-induced production of IL-1β, IL-6, IL-8 and IL-1β mRNA in PBMCs from healthy donors. Similar results were obtained in PBMCs isolated from patients with gout. Butyrate specifically inhibited class I HDACs. The HDAC inhibitor, panobinostat and the potent HDAC inhibitor, ITF-B, also decreased ex vivo C16.0+MSU-induced IL-1β production. CONCLUSIONS In agreement with the reported low inhibitory potency of butyrate, a high concentration was needed for cytokine suppression, whereas synthetic HDAC inhibitors showed potent anti-inflammatory effects at nanomolar concentrations. These novel HDAC inhibitors could be effective in the treatment of acute gout. Moreover, the use of specific HDAC inhibitors could even improve the efficacy and reduce any potential adverse effects.
Collapse
Affiliation(s)
- Maartje C P Cleophas
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tania O Crişan
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Heidi Lemmers
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Helga Toenhake-Dijkstra
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gianluca Fossati
- Department of Research and Development, Italfarmaco, Cinisello Balsamo, Italy
| | - Tim L Jansen
- Department of Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Charles A Dinarello
- Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, Colorado, USA Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
40
|
Fang S, Meng X, Zhang Z, Wang Y, Liu Y, You C, Yan H. Vorinostat Modulates the Imbalance of T Cell Subsets, Suppresses Macrophage Activity, and Ameliorates Experimental Autoimmune Uveoretinitis. Neuromolecular Med 2016; 18:134-45. [PMID: 26798022 DOI: 10.1007/s12017-016-8383-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 01/05/2016] [Indexed: 12/14/2022]
Abstract
The purpose of the study was to investigate the anti-inflammatory efficiency of vorinostat, a histone deacetylase inhibitor, in experimental autoimmune uveitis (EAU). EAU was induced in female C57BL/6J mice immunized with interphotoreceptor retinoid-binding protein peptide. Vorinostat or the control treatment, phosphate-buffered saline, was administrated orally from 3 days before immunization until euthanasia at day 21 after immunization. The clinical and histopathological scores of mice were graded, and the integrity of the blood-retinal barrier was examined by Evans blue staining. T helper cell subsets were measured by flow cytometry, and the macrophage functions were evaluated with immunohistochemistry staining and immunofluorescence assays. The mRNA levels of tight junction proteins were measured by qRT-PCR. The expression levels of intraocular cytokines and transcription factors were examined by western blotting. Vorinostat relieved both clinical and histopathological manifestations of EAU in our mouse model, and the BRB integrity was maintained in vorinostat-treated mice, which had less vasculature leakage and higher mRNA and protein expressions of tight junction proteins than controls. Moreover, vorinostat repressed Th1 and Th17 cells and increased Th0 and Treg cells. Additionally, the INF-γ and IL-17A expression levels were significantly decreased, while the IL-10 level was increased by vorinostat treatment. Furthermore, due to the reduced TNF-α level, the macrophage activity was considerably inhibited in EAU mice. Finally, transcription factors, including STAT1, STAT3, and p65, were greatly suppressed by vorinostat treatment. Our data suggest that vorinostat might be a potential anti-inflammatory agent in the management of uveitis and other autoimmune inflammatory diseases.
Collapse
Affiliation(s)
- Sijie Fang
- Department of Ophthalmology, Tianjin Medical University General Hospital, No. 154, Anshan Road, Tianjin, 300052, China
| | - Xiangda Meng
- Department of Ophthalmology, Tianjin Medical University General Hospital, No. 154, Anshan Road, Tianjin, 300052, China
| | - Zhuhong Zhang
- Department of Ophthalmology, Tianjin Medical University General Hospital, No. 154, Anshan Road, Tianjin, 300052, China
| | - Yang Wang
- Department of Ophthalmology, Tianjin Medical University General Hospital, No. 154, Anshan Road, Tianjin, 300052, China
| | - Yuanyuan Liu
- Department of Ophthalmology, Tianjin Medical University General Hospital, No. 154, Anshan Road, Tianjin, 300052, China
| | - Caiyun You
- Department of Ophthalmology, Tianjin Medical University General Hospital, No. 154, Anshan Road, Tianjin, 300052, China
| | - Hua Yan
- Department of Ophthalmology, Tianjin Medical University General Hospital, No. 154, Anshan Road, Tianjin, 300052, China.
| |
Collapse
|
41
|
Zhou P, Wu E, Alam HB, Li Y. Histone cleavage as a mechanism for epigenetic regulation: current insights and perspectives. Curr Mol Med 2015; 14:1164-72. [PMID: 25323999 DOI: 10.2174/1566524014666141015155630] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 07/28/2014] [Accepted: 07/29/2014] [Indexed: 11/22/2022]
Abstract
Discovered over a century ago, histones constitute one of the oldest families of proteins and have been remarkably conserved throughout eukaryotic evolution. However, only for the past 30 years have histones demonstrated that their influence extends far beyond packaging DNA. To create the various chromatin structures that are necessary for DNA function in higher eukaryotes, histones undergo posttranslational modifications. While many such modifications are well documented, others, such as histone tail cleavage are less understood. Recent studies have discovered several proteases that cleave histones and have suggested roles for clipped histones in stem cell differentiation and aging in addition to infection and inflammation; the underlying mechanisms, however, are uncertain. One histone class in particular, histone H3, has received outstanding interest due to its numerous N-terminal modification sites and prevalence in regulating homeostatic processes. Here, with special consideration of H3, we will discuss the novel findings regarding histone proteolytic cleavage as well as their significance in the studies of immunology and epigenetics.
Collapse
Affiliation(s)
| | | | | | - Y Li
- University of Michigan Medical School, Section of General Surgery, University of Michigan Hospital, Ann Arbor, MI 48109, USA.
| |
Collapse
|
42
|
Haworth KB, Leddon JL, Chen CY, Horwitz EM, Mackall CL, Cripe TP. Going back to class I: MHC and immunotherapies for childhood cancer. Pediatr Blood Cancer 2015; 62:571-6. [PMID: 25524394 PMCID: PMC4339346 DOI: 10.1002/pbc.25359] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Accepted: 10/23/2014] [Indexed: 12/11/2022]
Abstract
After decades of unfulfilled promise, immunotherapies for cancer have reached a tipping point, with several FDA approved products now on the market and many more showing promise in both adult and pediatric clinical trials. Tumor cell expression of MHC class I has emerged as a potential determinant of the therapeutic success of many immunotherapy approaches. Here we review current knowledge regarding MHC class I expression in pediatric cancers including a discussion of prognostic significance, the opposing influence of MHC on T-cell versus NK-mediated therapies, and strategies to reverse or circumvent MHC down-regulation.
Collapse
Affiliation(s)
- Kellie B. Haworth
- Division of Hematology/Oncology/Blood and Marrow Transplant, Nationwide Children’s Hospital
| | - Jennifer L. Leddon
- Center for Childhood Cancer and Blood Diseases, Nationwide Children’s Hospital,Medical Scientist Training Program, University of Cincinnati,Immunobiology Graduate Training Program, University of Cincinnati
| | - Chun-Yu Chen
- Center for Childhood Cancer and Blood Diseases, Nationwide Children’s Hospital
| | - Edwin M. Horwitz
- Division of Hematology/Oncology/Blood and Marrow Transplant, Nationwide Children’s Hospital,Center for Childhood Cancer and Blood Diseases, Nationwide Children’s Hospital
| | - Crystal L. Mackall
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH
| | - Timothy P. Cripe
- Division of Hematology/Oncology/Blood and Marrow Transplant, Nationwide Children’s Hospital,Center for Childhood Cancer and Blood Diseases, Nationwide Children’s Hospital,Correspondence and reprint requests should be addressed to: Timothy P. Cripe, Division of Hematology/Oncology/BMT, Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH 43205; Phone 614-722-3521; Fax (614) 722-3699;
| |
Collapse
|
43
|
Cross talk between histone deacetylase 4 and STAT6 in the transcriptional regulation of arginase 1 during mouse dendritic cell differentiation. Mol Cell Biol 2014; 35:63-75. [PMID: 25332236 DOI: 10.1128/mcb.00805-14] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
l-Arginine and l-arginine-metabolizing enzymes play important roles in the biology of some types of myeloid cells, including macrophage and myeloid-derived suppressor cells. In this study, we found evidence that arginase 1 (Arg1) is required for the differentiation of mouse dendritic cells (DCs). Expression of Arg1 was robustly induced during monocyte-derived DC differentiation. Ectopic expression of Arg1 significantly promoted monocytic DC differentiation in a granulocyte-macrophage colony-stimulating factor culture system and also facilitated the differentiation of CD8α(+) conventional DCs in the presence of Flt3 ligand. Knockdown of Arg1 reversed these effects. Mechanistic studies showed that the induced expression of Arg1 in differentiating DCs was caused by enhanced recruitment of histone deacetylase 4 (HDAC4) to the Arg1 promoter region, which led to a reduction in the acetylation of both the histone 3 and STAT6 proteins and subsequent transcriptional activation of Arg1. Further investigation identified a novel STAT6 binding site within the Arg1 promoter that mediated its regulation by STAT6 and HDAC4. These observations suggest that the cross talk between HDAC4 and STAT6 is an important regulatory mechanism of Arg1 transcription in DCs. Moreover, overexpression of Arg1 clearly abrogated the ability of HDAC inhibitors to suppress DC differentiation. In conclusion, we show that Arg1 is a novel regulator of myeloid DC differentiation.
Collapse
|
44
|
Lönnroth C, Andersson M, Asting AG, Nordgren S, Lundholm K. Preoperative low dose NSAID treatment influences the genes for stemness, growth, invasion and metastasis in colorectal cancer. Int J Oncol 2014; 45:2208-20. [PMID: 25340937 PMCID: PMC4215588 DOI: 10.3892/ijo.2014.2686] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 08/21/2014] [Indexed: 02/06/2023] Open
Abstract
Preclinical data, and an increasing list of clinical investigations, show anti-inflammatory agents to favourably influence the biology of colorectal tumor. We have earlier reported on re-expression of activated immune cells after three days preoperative treatment of patients with colorectal carcinoma, randomized to receive oral NSAID (indomethacin or celebrex). Antisecretory prophylaxis (esomeprasol) was provided to all patients and served as sham treatment. Concomittant to MHC locus activation, Prominin1/CD133, a marker associated with stemness and poor prognosis in several solid tumors, was downregulated. The aim of the present study was to evaluate expression of additional regulators belonging to the stem cell niche, OCT4, SOX2 and BMP7, as well as some microRNAs, reported to act as tumor suppressors or oncomiRs. Peroperative tumor biopsies were analyzed by microarrays, quantitative real-time PCR and immunohistochemistry (IHC). The stem cell master regulator SOX2 was increased by NSAIDs (p<0.01), as well as the tumor suppressor miR-630 (p<0.01), while BMP7, a marker for poor prognosis in CRC, was downregulated by NSAID (indomethacin, p<0.02). The upregulation of SOX2, but not of its heterodimer binding partner OCT4, could imply a negative feed-back loop, with a switch‑off for stemness preservation of tumor cells. This is supported by the overall evaluation of gene expression profiles with subsequent events, indicating less aggressive tumors following NSAID treatment.
Collapse
Affiliation(s)
- Christina Lönnroth
- Department of Surgery, Surgical Metabolic Research Laboratory at Lundberg Laboratory for Cancer Research, Sahlgrenska University Hospital, University of Gothenburg, SE 413 45 Gothenburg, Sweden
| | - Marianne Andersson
- Department of Surgery, Surgical Metabolic Research Laboratory at Lundberg Laboratory for Cancer Research, Sahlgrenska University Hospital, University of Gothenburg, SE 413 45 Gothenburg, Sweden
| | - Annika G Asting
- Department of Surgery, Surgical Metabolic Research Laboratory at Lundberg Laboratory for Cancer Research, Sahlgrenska University Hospital, University of Gothenburg, SE 413 45 Gothenburg, Sweden
| | - Svante Nordgren
- Department of Surgery, Surgical Metabolic Research Laboratory at Lundberg Laboratory for Cancer Research, Sahlgrenska University Hospital, University of Gothenburg, SE 413 45 Gothenburg, Sweden
| | - Kent Lundholm
- Department of Surgery, Surgical Metabolic Research Laboratory at Lundberg Laboratory for Cancer Research, Sahlgrenska University Hospital, University of Gothenburg, SE 413 45 Gothenburg, Sweden
| |
Collapse
|
45
|
Jones RB, O'Connor R, Mueller S, Foley M, Szeto GL, Karel D, Lichterfeld M, Kovacs C, Ostrowski MA, Trocha A, Irvine DJ, Walker BD. Histone deacetylase inhibitors impair the elimination of HIV-infected cells by cytotoxic T-lymphocytes. PLoS Pathog 2014; 10:e1004287. [PMID: 25122219 PMCID: PMC4133386 DOI: 10.1371/journal.ppat.1004287] [Citation(s) in RCA: 165] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 06/18/2014] [Indexed: 01/11/2023] Open
Abstract
Resting memory CD4+ T-cells harboring latent HIV proviruses represent a critical barrier to viral eradication. Histone deacetylase inhibitors (HDACis), such as suberanilohydroxamic acid (SAHA), romidepsin, and panobinostat have been shown to induce HIV expression in these resting cells. Recently, it has been demonstrated that the low levels of viral gene expression induced by a candidate HDACi may be insufficient to cause the death of infected cells by viral cytopathic effects, necessitating their elimination by immune effectors, such as cytotoxic T-lymphocytes (CTL). Here, we study the impact of three HDACis in clinical development on T-cell effector functions. We report two modes of HDACi-induced functional impairment: i) the rapid suppression of cytokine production from viable T-cells induced by all three HDACis ii) the selective death of activated T-cells occurring at later time-points following transient exposures to romidepsin or, to a lesser extent, panobinostat. As a net result of these factors, HDACis impaired CTL-mediated IFN-γ production, as well as the elimination of HIV-infected or peptide-pulsed target cells, both in liquid culture and in collagen matrices. Romidepsin exerted greater inhibition of antiviral function than SAHA or panobinostat over the dose ranges tested. These data suggest that treatment with HDACis to mobilize the latent reservoir could have unintended negative impacts on the effector functions of CTL. This could influence the effectiveness of HDACi-based eradication strategies, by impairing elimination of infected cells, and is a critical consideration for trials where therapeutic interruptions are being contemplated, given the importance of CTL in containing rebound viremia. The advent of antiretroviral therapy has greatly improved the prognosis for HIV-infected individuals with access to care. However, current therapies are unable to cure infection, committing treated individuals to a lifetime of medication with significant economic burden. Furthermore, it has become clear that antiretroviral therapy does not completely restore health, leaving treated HIV-infected individuals at increased risk of cardiovascular disease, neurological disorders, and other health issues. Thus, there is a need to develop therapies capable of curing HIV infection. It is thought that, to be successful, curative strategies will need to combine a means to flush the virus out of the latently-infected cells in which it hides, with a means to kill these unmasked targets. A front-running approach proposes to use a class of drugs called histone deacetylase inhibitors (HDACis) as flushing agents, with cytotoxic T-lymphocytes (CTL, or killer T-cells) to purge viral reservoirs. Here, we uncover an unexpected negative interaction between these two agents, whereby HDACis suppress the ability of CTL to kill HIV-infected cells. This interaction has the potential to limit the effectiveness of combining CTL with HDACis in flush and kill approaches to HIV eradication, and should be considered in the prioritization and optimization of potential curative strategies.
Collapse
Affiliation(s)
- Richard Brad Jones
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Boston, Massachusetts, United States of America
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts, United States of America
| | - Rachel O'Connor
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Boston, Massachusetts, United States of America
| | - Stefanie Mueller
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Boston, Massachusetts, United States of America
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts, United States of America
| | - Maria Foley
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts, United States of America
- Department of Biological Engineering, MIT, Cambridge, Massachusetts, United States of America
| | - Gregory L. Szeto
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts, United States of America
- Department of Biological Engineering, MIT, Cambridge, Massachusetts, United States of America
| | - Dan Karel
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Boston, Massachusetts, United States of America
| | - Mathias Lichterfeld
- Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Colin Kovacs
- The Maple Leaf Medical Clinic, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mario A. Ostrowski
- The Maple Leaf Medical Clinic, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Li Ka Shing Medical Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Alicja Trocha
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Boston, Massachusetts, United States of America
| | - Darrell J. Irvine
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Boston, Massachusetts, United States of America
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts, United States of America
- Department of Biological Engineering, MIT, Cambridge, Massachusetts, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Bruce D. Walker
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Boston, Massachusetts, United States of America
- Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
- * E-mail:
| |
Collapse
|
46
|
Abstract
Epigenetic modifications constitute the next frontier in tumor biology research. Post-translation modification of histones dynamically influences gene expression independent of alterations to the DNA sequence. These mechanisms are often mediated by histone linkers or by proteins associated with the recruitment of DNA-binding proteins, HDAC I and II interacting proteins and transcriptional activators, coactivators or corepressors. Early evidence suggested that histones and their modifiers are involved in sophisticated processes that modulate tumor behavior and cellular phenotype. In this review, we discuss how recent discoveries about chromatin modifications, particularly histone acetylation, are shaping our knowledge of cell biology and our understanding of the molecular circuitry governing tumor progression and consider whether recent insights may extend to novel therapeutic approaches. Furthermore, we discuss the latest oncogenomic findings in Head and Neck Squamous Cell Carcinoma (HNSCC) from studies using Next Generation Sequencing (NGS) technology and highlight the impact of mutations identified in histones and their modifiers.
Collapse
Affiliation(s)
- Manoela D Martins
- Department of Oral Pathology, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rogerio M Castilho
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| |
Collapse
|
47
|
Vaiserman AM, Pasyukova EG. Epigenetic drugs: a novel anti-aging strategy? Front Genet 2012; 3:224. [PMID: 23118737 PMCID: PMC3484325 DOI: 10.3389/fgene.2012.00224] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 10/06/2012] [Indexed: 01/15/2023] Open
Affiliation(s)
- A M Vaiserman
- D.F. Chebotarev State Institute of Gerontology NAMS of Ukraine Kiev, Ukraine
| | | |
Collapse
|
48
|
Remoli AL, Marsili G, Battistini A, Sgarbanti M. The development of immune-modulating compounds to disrupt HIV latency. Cytokine Growth Factor Rev 2012; 23:159-72. [PMID: 22766356 DOI: 10.1016/j.cytogfr.2012.05.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Antiretroviral therapy (ART) has proved highly effective in suppressing HIV-1 replication and disease progression. Nevertheless, ART has failed to eliminate the virus from infected individuals. The main obstacle to HIV-1 eradication is the persistence of cellular viral reservoirs. Therefore, the "shock-and-kill" strategy was proposed consisting of inducing HIV-1 escape from latency, in the presence of ART. This is followed by the elimination of reactivated, virus-producing cells. Immune modulators, including protein kinase C (PKC) activators, anti-leukemic drugs and histone deacetylase inhibitors (HDACis) have all demonstrated efficacy in the reactivation of latent virus replication. This review will focus on the potential use of these small molecules in the "shock and kill" strategy, the molecular basis for their action and the potential advantages of their immune-modulating activities.
Collapse
Affiliation(s)
- Anna Lisa Remoli
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161, Rome, Italy.
| | | | | | | |
Collapse
|